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Abstract 

Climate change poses serious challenges to achieving food security in a time of a need to produce 

more food to keep up with the world’s increasing demand for food. There is an urgent need to 

speed up the development of new high yielding varieties with traits of adaptation and mitigation 

to climate change. Mathematical approaches, including ML approaches, have been used to search 

for such traits, leading to unprecedented results as some of the traits, including heat traits that 

have been long sought-for, have been found within a short period of time. 

 

1. Introduction 

Climate change poses serious challenges to achieving food security. It is a dual challenge that requires 

keeping up with the world’s increasing demand for food, while both adapting to and mitigating climate 

change. The agriculture sector is in the midst of climate change, in a time of a need to keep pace and 

produce more to close the gap of 56% between the amount of food available today and that required by 

2050 (World Resources Institute, 2021, Figure 1). 

 

 

Figure 1. Required Increase to meet the food demand by the year 2050. 
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To help speed up the development of new crops varieties with traits to adapt and mitigate changing 

climate conditions, we have used mathematical approaches, including machine learning techniques. 

Mathematical approaches have played a major role in producing more food, prior to the emergence of 

molecular approaches. A century ago, Fisher (1930) elaborated the mathematical theoretical framework 

that was considered as the basis of quantitative genetic theory, on which crop improvement was 

established, to produce more food. These mathematical approaches have been used in crop improvement 

to capture genetic variability and inheritance of quantitative traits, assess the interaction between varieties 

and environments and predict the performance gains in yields (Scheffé, 1959). In their mathematical 

model, Koo and Wright (2000) found that early identification of valuable crop traits, is of equal 

importance to the process of transferring these traits into an improved genetic background. 

Interest is currently returning to the use of mathematical as well as machine learning approaches to 

accelerate and optimize further crop improvement, in particular to address networked genes involved in 

trait expression and also to optimize crop improvement processes by shortening the time and reducing the 

costs to develop new and portfolio of crop varieties with enhanced traits within a short period of time 

(Anderssen and Edwards, 2012; Bari et al., 2016; Parmley et al., 2019; Tong and Nikoloski, 2021). There 

is particular potential for using machine learning to identify economically important traits in genetic 

resources that can then be incorporated into crop improvement programs that develop portfolios of 

cultivars for diversified systems. Diversified systems have been reported to raise productivity and 

improve livelihoods, performing particularly well under environmental stress and delivering production 

increases in places where additional food is desperately needed (De Schutter and Frison, 2017). 

 

2. Methodology 

We used different machine-learning techniques to accelerate the search for adaptive traits to drought and 

heat in crops. The machine-learning technique used span supervised and unsupervised techniques, 

including Bayes, Neural Network (NN), Random Forest and K-means techniques, to help in the rapid 

identification and location of adaptive traits (Cherkassky and Mulier, 2007; Khazaei et al., 2013; Bari et 

al., 2016). The ML-based search for these adaptive traits is based on exploring and exploiting the 

dependence between the desired traits (denoted Y) and the environment (denoted X) as an evolutionary 

co-driver prevailing in the areas where the samples were collected (Henry and Nevo, 2014). The desired 

traits can be considered as representative variables with the additive influence of many genes with small 

effects (Brown et al., 1996). If this dependence exists, it should be possible to predict the values that 

could be assigned in silico to the unknown samples of crops of those lacking evaluation for these traits. A 

general regionalized variable model (GRVM) was also used, based on predicted probabilities of the Bayes 

model to create the map of climatic change performance of the models. Crop simulation models combined 

with high-resolution climate change map scenarios can help to identify key traits that are important under 

drought and high temperature stress in crops (Semenov and Halford, 2009). 

The environmental data (X) are long-term climate data of the original collection areas where the samples 

of crops are considered to have evolved. Two types of climate data were used, namely the CGIAR climate 

surface data and the world climate surfaces (Hijmans et al., 2005). The CGIAR surfaces were generated 

from meteorological-station data based on the ‘thin-plate-smoothing spline’ method (Hutchinson, 2000). 

The generation of surfaces included the use of terrain variables as auxiliary variables that were first 

converted into digital elevation models (DEM) to increase the precision of the interpolated values. The 

Worldclim data are also gridded data, generated through interpolation of average monthly climate data 
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from global networks of weather stations using the thin-plate smoothing spline procedure. All these 

climate datasets were of approximately of 1 km square resolution. 

The accuracy of all models was measured using values derived from a confusion-matrix table and the 

Area Under the Curve (AUC) of the Receiver Operating Characteristics (ROC) (Swets et al., 2000; 

Fawcett, 2006). The Kappa statistic was used also to measure the specific agreement between predictions 

and observations in the confusion matrix table. High values of both AUC and Kappa indicate that the 

model’s performance is adequate for prediction purposes (Scott et al., 2002). 

 

2.1 Adaptation to drought 

To identify traits of adaptation to drought, we used the faba bean (Vicia faba L.), which is a widely grown 

food legume crop in the dry areas and thus considered as one of the most likely crops to be impacted by 

climate change (Duc et al., 2011). Cumulative plant datasets from experiments on faba bean are used to 

explore the link between the trait expression (Y) and the environment (X). A total of 400 plant samples 

was originally selected on the basis of extreme “wet” and “dry” environmental profiles using a clustering 

algorithm from 10,000 samples stored in CGIAR genebanks. From these 400, a first subset was used to 

detect the presence of patterns, if any, in the data form the training set, and the patterns or dependence 

detected together with a new X was then used in turn to assign values, as predictive probabilities of 

having the sought-after drought traits, to another unknown test set. The plants of this latter subset were 

grown for evaluation, beside the first set, to test the predictions for their accuracy and agreement with the 

actual evaluation data. The trait plant data consists of a set of leaf morpho-physiological measurements 

that capture drought-adaptation related traits used previously (Khazaei et al., 2013). These measurements 

span plant gas exchange properties, photosynthesis and phenology. The assertion of the presence and 

absence of the traits of drought tolerance in the samples was tested and validated (Khazaei et al., 2013). 

 

2.2 Adaptation to heat 

Here we used unsupervised learning to cluster data, barley (Hordeum vulgare L.) was the test crop plant 

species. Clustering was conducted using environmental data (a priori information) to develop one subset 

that was likely to contain climate-change–related traits and another subset representative of the different 

environments where the barley samples were originally sampled across Morocco. The samples allocated 

to any one cluster shared phenotypic affinity vis a vis either presence or absence of the trait of tolerance 

to heat. Each subset contained 100 samples, of which 30 samples were selected at random. Another core 

subset was formed to capture most of the diversity, of which also 30 were drawn at random (Figure 2). 

All the subsets were grown in the same field for comparison based on a posteriori evaluation. The 

environmental data used in the partitioning consisted of 19 climate variables extracted from world climate 

data. 

This part of the partitioning process is to identify traits that breeders have long sought-for in order to 

combine an optimized grain-filling period with maturity rather than with earliness alone. Partitioning has 

been carried out for both the core subset and the trait-based subsets, in particular, to assess plant genetic 

resources of barley for heat traits based on agro-morphological data and climate data. 
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Heat subset with random set in blue  Representaive subset with random set in red 

Figure 2. Sites of samples of barley of both subsets with targeted subset (left) and representative subset (right). 

 

To compare and validate the sub-setting based on climate data, the samples were compared on their 

evaluation attributes. Both subsets were grown among 697 entries at the Moroccan INRA experimental 

station (33.605°N; 06.716°W; 410 m altitude) in single rows of 5 m length. Observations were taken on 

several agro-morphological and physiological traits. After harvesting, all the samples were passed through 

the Near-infrared spectroscopy (Infraneo machine) and the absorbance data (from 850 nm to 1048 nm) with 

protein content were extracted. Further evaluation was carried out using a honeycomb design of hill plots 

with the aim to also reduce the area needed for evaluation. Subsequent evaluation was also carried out 

focusing mostly on the two subsets and heat-related traits, among which were canopy temperature and 

phenology traits, specifically grain-filling period. 

 

3. Results and discussion 

3.1 Drought adaptation 

There was strong agreement between the prediction and the actual evaluation of the plants in terms of 

their capability to tolerate drought. Both AUC and Kappa values were high, indicating that it is highly 

likely to identify traits that will provide stress tolerance to crops and can be transferred to cultivars by 

breeding (Table 1). 

 

Table1. Performance metric values (case of NN model). 

Subset Training set Test set 

Statistic AUC %Correct Kappa  AUC %Correct Kappa 

Mean 0.96 0.96 0.92 Mean 0.88 0.88 0.77 

SD 0.02 0.01 0.03 SD 0.04 0.04 0.08 

CI 95% ±0.01 ±0.01 ±0.02 CI 95% ±0.02 ±0.02 ±0.05 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.06.463347doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463347
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

The results show (Figure 3) that machine learning can help in reducing field evaluation, as testing can be 

focused on those samples that are highly likely to have the desired traits rather than having to screen the 

whole collection, which is practically impossible, given the large number of samples. This thus will 

reduce costs, particularly for evaluation of the so many samples that are not likely to have the desired 

traits. This can help also in speeding up the development of new crop varieties, while minimising costs. 

 

 

Figure 3. Density plots of prediction for tolerance and susceptible samples for the ML model using test set; the 

green (broken) curve indicates the probability density distribution for adaptation to drought and the red (solid) curve 

indicates susceptibility to drought. 

 

3.2 Heat adaptation 

In terms of adaptation to heat, the results show that it is possible to identify the sought-after heat traits 

even with unsupervised learning prior to evaluation. The a posteriori evaluation involving heat-related 

traits such as days to maturity (a measure of phenology) and canopy temperature, especially in the grain-

filling period, showed that the two subsets were different. The heat subset tended to have lower leaf 

temperature than the core or random subsets (Figure 4), so it tolerated the heat better and the heat subset 

is thus more likely to yield heat-related traits. These results indicates that natural genetic variation 

contains the much-needed trait variation to help with heat tolerance in crop improvement. 
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Figure 4. Canopy temperature depression of the heat subset vs the core subset (representative set). The heat subset 

lowers its temperature when compared to core and random subsets. A trait that helps to withstand heat. 

 

4. Conclusions 

Mathematical models including machine-learning models can help tremendously in identifying the 

desired traits while shortening the time and potentially reducing significantly the costs to develop new 

crops. Machine learning can help to reduce costs that are incurred to assess and evaluate large number of 

samples in genebanks. There are more than 1,750 genebanks worldwide, holding together more than 7 

million plant samples. ML has the potential to identify rapidly traits, including climate-related traits, and 

to speed up the crop development processes to develop portfolios of crops varieties to adapt to and 

mitigate climate change. 
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