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 24 

Abstract 25 

Next generation sequencing has become a common tool in the diagnosis of genetic diseases. 26 

However, for the vast majority of genetic variants that are discovered, a clinical interpretation is 27 

not available. Variant effect mapping allows the functional effects of many single amino acid 28 

variants to be characterized in parallel. Here, we combine multiplexed functional assays with 29 

machine learning to assess the effects of amino acid substitutions in the human intellectual 30 

disability-associated gene, GDI1. We show that the resulting variant effect map can be used to 31 

discriminate pathogenic from benign variants. Our variant effect map recovers known 32 

biochemical and structural features of GDI1 and reveals additional aspects of GDI1 function. We 33 

explore how our functional assays can aid in the interpretation of novel GDI1 variants as they are 34 

discovered, and to re-classify previously observed variants of unknown significance. 35 

 36 

Background 37 

 Next-generation sequencing is now routinely practiced in the diagnosis of genetic 38 

conditions. However, the usefulness of these methods is limited by our ability to interpret the 39 

genetic variants that are discovered. The Genome Aggregation Database (gnomAD) (1), has 40 

amassed over 4.6 million unique missense variants present in the human population. Of these 41 

missense variants, 99% are rare (minor allele frequency < 0.5%) (2) and only 13% have a 42 

definitive clinical interpretation available on ClinVar (3). Therefore, methods to close the gap 43 

between variant identification and interpretation are needed. 44 

 Several approaches to variant interpretation are available, including genome wide 45 

association studies (GWAS), family segregation analysis, functional assays, and computational 46 
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prediction of variant effects. Of these, GWAS and computational prediction can both be used to 47 

interpret data at a scale commensurate with the numbers of human genetic variants.  However, 48 

GWAS is of limited value for the interpretation of rare variants due to limited statistical power 49 

and error in associations that is increased due to small sample sizes (4). Current computational 50 

prediction approaches are considered at best weak evidence for clinical variant interpretation (5). 51 

Functional assays have traditionally been used to test variants on an individual basis, but these 52 

experiments are resource-intensive and this evidence is unlikely to be available at the time a 53 

newly-discovered variant is first classified. However, it has become possible to perform 54 

multiplexed assays of variant effect (MAVE), enabling the testing of functional effects for large 55 

numbers of missense variants in parallel (2,6–8). For example, a framework for variant effect 56 

mapping of human genes by complementation in S. cerevisiae has been previously described and 57 

applied to multiple genes (8–10). This framework has been shown to identify, at stringent 58 

confidence thresholds (90% precision), two to three times more pathogenic variants than are 59 

identified by computational prediction alone (8–10). Here, we apply this framework to carry out 60 

large-scale testing of missense variants of human GDI1, one of multiple genes on the X 61 

chromosome that have been found to contain mutations causing X-linked non-syndromic 62 

intellectual disability (11). 63 

 The GDI1 gene encodes the protein GDI1 (Rab GDP dissociation inhibitor alpha). In 64 

mammals, GDI1 is expressed primarily in the brain and is necessary for the control of endocytic 65 

and exocytic pathways in neurons and astrocytes through the spatial and temporal control of 66 

numerous Rab proteins (12,13). GDI1 functions to extract inactive GDP-bound Rab from 67 

membranes by binding and solubilizing the genranylgeranyl anchor (a post-translational 68 

modification at C-terminal cysteine residues which anchors Rabs to membranes) (14). GDI1-null 69 
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mouse models show deficits in short- and long-term synaptic plasticity and behavioral 70 

phenotypes including alteration of hippocampus-dependent forms of short-term memory, spatial 71 

working memory and associative fear-related memory (12). In humans, GDI1 loss-of-function 72 

variants can cause non-syndromic intellectual disability (ID), characterized by cognitive 73 

impairment in the absence of other symptoms or physical anomalies (11). The form of ID caused 74 

by GDI1 variants follows an X-linked semi-dominant pattern of inheritance, with hemizygous 75 

males being most severely affected and female carriers showing milder or no symptoms (15,16). 76 

 As a common condition which has been estimated to affect up to 3% of the general 77 

population (11), ID presents a diagnostic challenge due to its many potential causes. Alterations 78 

in over 700 genes have been associated with ID, few of which are frequently-occurring (17,18). 79 

Separating causal from benign genetic variation in ID patients is therefore a significant clinical 80 

challenge. Indeed, although an etiological diagnosis brings substantial benefits for patients and 81 

their families (19), including more accurate prognosis, genetic counselling on recurrence risk, 82 

and earlier access to resources within the community and specialized education programs, only 83 

~30% of ID patients receive an etiological diagnosis (20,21). Proactive functional testing for 84 

variants in genes associated with ID could aid in the identification of causal variants and 85 

facilitate earlier etiological diagnosis.  86 

Here, we present large-scale measurements of the functional effects of missense variation 87 

in GDI1.  Variant assay results are consistent with our knowledge of GDI1 function. A 88 

comparison of variant scores with ClinVar annotations suggests that the map will prove useful in 89 

assigning pathogenicity to genetic variation.  90 

 91 

Results 92 
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Multiplexed yeast complementation efficiently identifies damaging GDI1 variants 93 

To efficiently test the deleteriousness of GDI1 missense variants, we used a previously-94 

validated humanized yeast model system(22). In this system, the Homo sapiens GDI1 (HsGDI1) 95 

can complement a temperature sensitive allele of the orthologous Saccharomyces cerevisiae gene 96 

Gdi1 (ScGdi1 (Ts)) and thereby restore yeast growth at restrictive temperatures. Importantly, 97 

pathogenic variants of HsGDI1 (L92P and R423P) showed a reduced ability to complement 98 

ScGdi1(Ts) (22). This supported the possibility of a yeast-based functional assay of HsGDI1 99 

variants, which we scaled up in order to test large numbers of missense variants in parallel (fig. 100 

1a).  101 

Mutagenesis of the HsGDI1 open reading frame (ORF) was performed using a 102 

previously-described pooled mutagenesis approach, Precision Oligo-Pool based Code Alteration 103 

or "POPCode" (8), which uses oligonucleotide-directed codon randomization to yield a library of 104 

single-codon GDI1 variants. Following mutagenesis, the variant library was cloned into yeast 105 

expression vectors and transformed en masse into a S. cerevisiae strain carrying the temperature 106 

sensitive ScGdi1(Ts) allele. The yeast library was then grown competitively at restrictive 107 

temperatures to induce selection for cells containing functional HsGDI1 variants.  108 

The library of HsGDI1 ORFs was extracted from both pre- and post-selection yeast 109 

populations, and sequenced deeply (with each position being observed in ~2 million reads). The 110 

deep sequencing approach used was TileSeq (8), involving amplification and paired-end 111 

sequencing of 12 "tiles", each ~100 nucleotides in length, that together cover the length of the 112 

GDI1 ORF. In order to decrease the rate of variants called erroneously due to sequencing error, 113 

only variants that were detected in both forward and reverse reads were accepted. In total, 5534 114 

unique amino acid changes were detected. To understand the rate at which missense variants are 115 
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detected due to PCR or sequencing errors, we also sequenced a ‘mock library’ derived from a 116 

wild-type clone.  These data were used to filter out variants that were not represented at high 117 

enough frequencies in the pre- or post- selective pools to rule out the possibility that they were 118 

detected due to PCR and sequencing error alone (see materials and methods).  Even after this 119 

filter, variants that were present at lower frequencies in the pre-selection library showed poorer 120 

agreement between replicates (fig. S1) and poorer correlation with PROVEAN (23) scores (fig. 121 

S2b). We therefore identified a set of high confidence variants by further removing variants that 122 

had been detected at a frequency lower than 2×10-4 in the original library. After filtering, 1730 123 

high confidence variants remained, covering 1154 unique amino acid changes (19% of all 124 

possible amino acid substitutions and 45% of possible amino acid substitutions accessible 125 

through alteration of a single nucleotide (fig. 1b). 126 

 For each variant, the ratio () of frequency in post- to pre-selective pools was used to 127 

infer variant functionality. Indeed, we saw a distinct separation between log() values for 128 

synonymous variants, which would generally be expected to fully complement the ScGdi1(Ts) 129 

allele, and log() values for stop codon variants, which would generally be expected to 130 

completely fail to complement (fig. 1c). Most missense variants appeared wild-type-like in their 131 

ability to complement, some were null-like, and many had intermediate effects (fig. 1c).  132 

 133 

A variant effect map for GDI1 134 

 Log() values were rescaled to define a "fitness score" for each variant, representing the 135 

ability of that variant to complement the ScGdi1(Ts) allele (see materials and methods). With the 136 

goal that a fitness score of 1 represents a fully-functional protein and a fitness score of 0 137 

represents complete loss of function, we rescaled log-ratios such that the median log ratio of 138 
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synonymous variants was 1 and the median log ratio of variants containing a premature stop 139 

codon was 0 (medians shown in fig. 1c). When calculating median log ratios, we included only 140 

high confidence measurements (SD < 0.3) and, because nonsense mutations near the C-terminus 141 

result in less severe loss of complementation, we only considered nonsense mutations within the 142 

first 400 amino acids of the GDI1 ORF (fig. S3).  In order to estimate fitness scores for the 143 

remaining 80% of amino acid changes and refine scores of variants that were less well measured, 144 

we applied a previously-described imputation pipeline (24). This pipeline uses the Gradient 145 

Boosted Tree method to impute missing values based on intrinsic features of the data set 146 

including average fitness of nearby variants, amino acid substitution matrix scores 147 

(BLOSUM100 (25)), and variant effect scores predicted by computational methods including 148 

PolyPhen-2 (26), and PROVEAN (23). To avoid low-confidence predictions based on limited 149 

experimental data, imputation was not performed for amino acid positions with fewer than 3 150 

well-measured variants. The result was a ‘variant effect map’ encompassing the majority of all 151 

possible amino acid substitutions in GDI1 (fig. 2). The most important features for predicting 152 

fitness scores in this data set were the average fitness scores of the three most similar variants at 153 

the same amino acid position, followed by BLOSUM100, PolyPhen2, and PROVEAN scores 154 

(fig. S4). 155 

 156 

Our variant effect map is consistent with known biochemical features of GDI1 157 

 The GDI1 protein contains four sequence conserved regions (SCRs), SCR1, SCR2, 158 

SCR3A and SCR3B, common to all members of the Rab-GDI/CHM superfamily (27). Together, 159 

SCR1 and SCR3B form a Rab-binding platform at the apex of the GDI1 structure (27,28) (fig. 160 

3a). SCR3A contains a mobile effector loop (MEL) which constitutes a membrane receptor 161 
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binding site as well as a helix flanking the lipid binding pocket (29,30). At its N-terminal end, 162 

SCR2 contains the C-terminus–binding region (CBR), which forms an essential interaction with 163 

the C-terminus of Rab (28). 164 

 To determine overall patterns of variant deleteriousness within GDI1, we took the 165 

average fitness score of all variants at a given amino acid position resulting in a "positional 166 

fitness score" (fig. 3b). As expected, average fitness was significantly lower in the sequence-167 

conserved regions than in other parts of the protein (fig. 3c, 3d), supporting the notion that these 168 

regions are important for biological function. We modeled the sequence of H. sapiens GDI1 on 169 

the crystal structure of S. cerevisiae RabGDP-dissociation inhibitor in complex with prenylated 170 

YPT1 GTPase (28) (the yeast homolog of human Rab-1A). The conserved face of GDI1 171 

constituting the Rab binding platform contains the majority of residues with low positional 172 

fitness scores (fig. 3a). Mutations in the SCR1 and SCR3B segments exhibited the lowest 173 

positional fitness on average (fig 3d), consistent with previous mutational analysis showing that 174 

disrupting these regions leads to decreased Rab binding and inability of GDI1 to extract Rab 175 

from membranes (27). Since the C-terminal non-conserved region showed a striking increase in 176 

average fitness scores around residue 425 (fig. 3b), we divided this region into two separate 177 

sections, “linker 3", consisting of residues 460-424, and "C-terminus", consisting of residues 178 

425-447. Mutations in the 22 “C-terminus” residues were significantly less deleterious than those 179 

in linker 3 (Wilcoxon p<0.01).  The non-conserved region between SCR1 and SCR2 (termed 180 

"linker 1") also exhibited high fitness scores, suggesting that variation here is also well tolerated 181 

(fig. 3d). 182 

 Compared to SCR1 and SCR3B, variants in SCR2 were significantly less deleterious 183 

(Wilcoxon p<0.01, and p<0.001 respectively).  On average, fitness scores of variants in SCR2 184 
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were comparable to those in the non-conserved region between SCR2 and SCR3A (termed 185 

"linker 2") and the non-conserved linker 3 region (fig. 3d). Within SCR2, variants with the most 186 

severe fitness effects tend towards the N-terminal CBR segment (fig. 3b). However, altering any 187 

one of several hydrophobic residues within the helices flanking the lipid binding pocket, 188 

especially Leu216 and Leu144, also yielded low positional fitness (fig. 3e). The location of these 189 

residues, coupled with their average positional fitness scores, suggests that they may play an 190 

important role in geranylgeranyl binding.  191 

 Deleterious mutations within the SCR3A region were observed predominantly towards 192 

the C-terminus. Residues within the MEL region had moderate average positional fitness scores 193 

between 0.5 to 0.75. It was previously reported that when MEL mutations Arg218Ala, 194 

Tyr219Ala, and Ser222Ala are introduced into the corresponding positions of the yeast protein 195 

ScGdi1, they do not cause visible growth defects in yeast.  However, when any one of these is 196 

introduced in combination, they can exacerbate the effects of partial loss-of-function variants 197 

elsewhere in GDI1 (29). Our results show that single mutants Arg218Ala, Tyr219Ala, and 198 

Ser222Ala each result in modest loss of function with fitness scores of 0.75 +/- 0.18, 0.67 +/- 199 

0.22, and 0.66 +/- 0.13 respectively (regularized standard error for fitness scores was calculated 200 

as described in materials and methods). It is possible that our competition-based assay was more 201 

sensitive to minor growth changes and thus able to detect growth defects not detected by spotting 202 

assays. While the study by Luan et al. only tested mutations in residues 218 - 222, we observed 203 

some variants just outside of this region to be extremely deleterious, especially a short  strand 204 

(termed -strand e3 in Luan et al.) from residues Ser222 to Pro227 (fig. 3e). Despite the 205 

importance of this segment indicated by our map, a biological function for this strand segment 206 

has not been described.   207 
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 208 

Relating fitness score to severity of intellectual disability  209 

 Severity of ID is highly variable with cases ranging from mild to profound (31). 210 

Although the severity of ID has been reported for only three GDI1 missense variants have been 211 

reported to date, we explored whether there was potential for variant fitness scores to predict the 212 

severity of the associated ID phenotype. Males from a family with the Leu92Pro variant, were 213 

reported to suffer from mild to moderate ID (11,32). For this variant, we obtained a fitness score 214 

of 0.74 +/- 0.03.  Individuals in a family carrying the Gly237Val variant were reported to have 215 

moderate ID (33), and we observed a corresponding lower fitness score of 0.55 +/- 0.07 for 216 

Gly237Val.  Thus, the order of the fitness scores for these two variants agreed with the reported 217 

order of ID severity. We note however that, like 20 (80%) of the 25 variants listed in the ClinVar 218 

database, both Leu92Pro and Gly237Val are currently annotated as a variants of uncertain 219 

significance, highlighting the need for better tools for interpretation.  Finally, a family carrying 220 

the Arg423Pro variant suffered moderate to severe ID (15).  We did not observe Arg423Pro in 221 

our assay, and were only able to impute a score with necessarily higher estimated uncertainty 222 

(0.64 +/- 0.24). Although fitness scores may be predictive of ID severity; it is currently 223 

insufficient to draw this conclusion from only reported ID severity data. 224 

 225 

GDI1 variant effect map predicts pathogenic variants with higher precision than 226 

computational methods alone 227 

 In order to test whether fitness scores from the GDI1 map can provide useful evidence for 228 

determining variant pathogenicity, we wished to determine whether our variant effect map can be 229 

used to separate known benign from damaging alleles. Our set of presumed-damaging variants 230 
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included the only variant currently annotated as pathogenic (Arg423Pro (15)) and the additional 231 

missense GDI1 variants discussed above: Leu92Pro (11,32) and Gly237Val (33) based on 232 

evidence from clinical reports. Because the number of currently known human pathogenic variants 233 

is small, we also included four missense variants in highly-conserved regions which have been 234 

previously shown to inhibit the ability of GDI1 to extract Rab3A from membranes in rat 235 

synaptosomes, Tyr39Val, Glu233Ser, Met250Tyr, and Thr248Pro (27). To establish a reference 236 

set of presumed-tolerated variants, we extracted all variants in gnomAD that had been observed in 237 

male subjects (who are hemizygous for GDI1 and less likely to be ID given that gnomAD excludes 238 

subjects with early-childhood disease). Although we cannot rule out the possibility that our set of 239 

presumed-damaging variants contains some tolerated variants, nor that our set of tolerated variants 240 

contains some damaging variants, we reasoned these sets would enable a conservative estimate of 241 

the ability of our scores to distinguish damaging from tolerated variation. 242 

We observed that our sets of presumed tolerated and damaging alleles were well-separated 243 

based on fitness score (fig 4a). Although fitness scores for presumed-damaging variants showed a 244 

strong tendency to have lower scores, the lowest score amongst these was 0.5 and none were null-245 

like. We next calculated a precision-recall curve (fig. 4b) showing, as we change the fitness score 246 

threshold below which a variant is deemed “damaging,” the trade-off between precision (fraction 247 

of below-threshold variants that are damaging) and recall (fraction of damaging variants that are 248 

below the threshold).  For comparison we also provide precision-recall curves for commonly used 249 

computational predictors of variant effect including PolyPhen-2 (34), PROVEAN (23), and 250 

VARITY (35) (fig. 4b). Our variant effect mapping framework was able to identify 6 out of 7 251 

damaging variants (87% recall) with 100% precision using a fitness score threshold of <0.68. We 252 

identified all damaging variants (100% recall) with 88% precision when a threshold fitness score 253 
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of <0.74 was used. The most accurate computational predictors were VARITY and PolyPhen-2, 254 

which were each able to identify ~75% of damaging variants with ~75% precision.  255 

Because single computational predictors are rarely used in isolation, we wondered 256 

whether a combined computational prediction score, encompassing data from PolyPhen-2, 257 

PROVEAN, and VARITY could separate damaging and tolerated variants with accuracy similar 258 

to our variant effect mapping framework. We rationalized that agreement between multiple 259 

computational prediction methods might be interpreted as stronger evidence for variant effect 260 

than a single computational method alone. We therefore scaled the PolyPhen-2, PROVEAN, and 261 

VARITY scores, and our fitness scores for the tolerated and damaging variant sets described 262 

above such that scores ranged from 0 to 1 (with 0 representing most damaging and 1 representing 263 

most tolerated). This  allowed us to make comparisons between the different score types (fig. 264 

4c). Notably, all the prediction methods were able to accurately identify all of the damaging 265 

variants (fig 4c). (Note that VARITY only generates predictions for single nucleotide variants, so 266 

scores were not generated for 3 out of 7 damaging variants). However, it can be seen that the 267 

increased accuracy of our VE mapping framework is due to the lack of false positives (prediction 268 

of a damaging variant/low fitness score when the variant is in fact tolerated). Moreover, the three 269 

computational methods tended to agree on many of the false positives, each assigning them low 270 

scores when the variant was in fact tolerated. For instance, Gly114Cys, Arg141Leu, Arg218Gln, 271 

and Arg292Trp were four particularly prominent false positives where each of the computational 272 

methods predicted a low score, however, the fitness score generated by our VE mapping 273 

framework correctly indicated that the variant was tolerated. Thus, we conclude that agreement 274 

between computational predictors does not necessarily appear to be an indicator of accuracy. To 275 

further illustrate this, wished to generate a “combined computational predictor score” which 276 
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takes into account the agreement between different computational predictors. We therefore took 277 

the median of the scaled scores from the three computational prediction tools, reasoning that this 278 

would eliminate outliers where an individual prediction tool did not agree with the other two. 279 

When we plotted the precision recall curve for this “combined computational predictor” we 280 

found that it did not perform better than the individual predictors (fig. 4d). This is consistent with 281 

our notion that the shortcomings of the computational prediction methods are not due to 282 

individual outlying predictions. 283 

 284 

Using our VE map to interpret clinically-relevant missense variants 285 

To facilitate the use of fitness scores as evidence to classify variants, we wished to 286 

calculate likelihood ratios that convey the extent to which one should raise or lower the 287 

probability that a variant is damaging, based on the fitness score. To this end, we estimated 288 

probability density functions that describe the distributions of scores from our presumed-289 

damaging and -tolerated variant sets (see Methods). Then, the ratios of probability density for 290 

damaging and tolerated variants can be used to obtain a damaging:tolerated likelihood ratio for 291 

variants with any given fitness score. By this method, we determined that variants with fitness 292 

scores below 0.72 were over 10 times more likely to be damaging than tolerated and variants 293 

with fitness scores above 0.81 were over 10 times more likely to be tolerated than damaging.  294 

We wondered whether our map could aid in the interpretation of GDI1 variants of 295 

unknown significance which have been observed in the clinic (fig. 5). The ClinVar database lists 296 

25 missense variants in GDI1, only four of which currently has a definitive clinical 297 

interpretation. For 15 out of the 21 variants without a definitive interpretation, we were able to 298 

generate an interpretation of either “deleterious” or “tolerated” with odds ratios greater than 1:10 299 
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based on our VE map (fig. 5). In order to be conservative with our interpretations, any variants 300 

which had intermediate fitness scores leading to odds ratios less than 1:10 were labeled as 301 

“unknown”. Of note, we discovered four additional variants (in addition to those previously 302 

included in our “likely damaging” variant set) that, were found by our assay to be highly 303 

deleterious: R35W, G40V, R290S, and V381E. The latter three of these variants had almost null-304 

like scores. This highlights the possibility that ID due to GDI1 mutations is under-diagnosed due 305 

to current limitations in clinical variant interpretation. 306 

Interestingly, Phe158Ser, annotated on ClinVar as "likely pathogenic" based on the 307 

amino acid change being located within in a conserved region (SCR2), was non-conservative 308 

with respect to amino acid properties, and was not observed as a common variant in the NHLBI 309 

Exome Sequencing Project (37). However, our map score for Phe158Ser ([0.875 +/- 0.03] 310 

originally, [0.870 +/- 0.03] post-refinement) does not provide strong evidence that this variant is 311 

damaging. Using our current model based on the distributions of known pathogenic and benign 312 

variants, and using no prior assumptions about the pathogenicity of Phe158Ser, a fitness score of 313 

0.87 indicates the odds that the variant is damaging is less than 1:100. If our likelihood ratio 314 

calibration is accurate, then even given a very strong prior belief (P = 0.99) that this variant is 315 

damaging, the posterior odds would be less than 1:10.  316 

 317 

 318 

Discussion 319 

 Towards clinical variant interpretation, the likelihood ratios that we derived for each 320 

variant from our map could be discretized as strong, moderate, or supporting evidence for the 321 

functional impact of a variant, and combined with other evidence using American College of 322 
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Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines 323 

(5). Alternatively, a Bayesian framework consistent with ACMG/AMP guidelines has been 324 

proposed (36), in which the likelihood ratios we provide could be used directly and 325 

quantitatively to infer variant pathogenicity (in the context of other evidence such as family 326 

history, co-segregation, etc.). 327 

A major drawback of our likelihood estimation approach is the limited number of known 328 

damaging and tolerated variants currently available. Due to small sample sizes, our current 329 

estimate of the score distributions of known damaging and tolerated variants is only an 330 

approximation. As more variants in GDI1 are discovered, assigned clinical significance and 331 

added to databases such as ClinVar, this information should be incorporated to more confidently 332 

estimate likelihood ratios. 333 

 In addition to variant interpretation, variant effect maps can also provide insights into the 334 

function of a protein’s structural components. In previous studies, structure-function analysis of 335 

GDI1 has been largely focused on the conserved regions common to all members of the 336 

GDI/CHM superfamily. Our results confirm that variants within the conserved regions forming 337 

the Rab binding platform do tend to be the most deleterious. However, certain residues within 338 

non-conserved regions exhibited fitness scores that suggested damaging substitutions. These 339 

positions may be important for protein folding or stability, or contribute to functional roles of 340 

GDI1 not shared by other members of the GDI family. While the MEL region has been the focus 341 

for mutational analysis within SCR3A, we found that variants flanking the MEL region, 342 

especially within -strand e3, appeared markedly more deleterious. These findings can be used 343 

to guide further mutational analysis of GDI1, aimed at discovering the specific functional roles 344 

of each of these regions. 345 
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 Due to the length of the GDI1 ORF, the coverage of well-measured amino acid 346 

substitutions for GDI1 (19%) was somewhat lower than had been achieved for previous genes 347 

studied using this approach (8,9). Nonetheless, precision-recall analysis revealed that, after 348 

imputation by machine learning, the variant effect map was able to predict pathogenic variants 349 

with greater accuracy than current computational methods alone, and with precision similar to 350 

previously studied genes. Thus, using experimental data for a minority of substitutions, we could 351 

accurately score variant effects for the majority of amino acid changes. 352 

 As genetic testing and exome sequencing continue to be used as diagnostic tools for 353 

genetic disorders, it is expected that more patients with novel GDI1 mutations will be 354 

discovered. This map can be used to assist the interpretation of variants immediately upon their 355 

discovery, thus accelerating the diagnostic process which is often costly, time-consuming, and 356 

stressful for patients and their families. Due to the highly heterogeneous etiology of ID, it is 357 

reasonable to expect that response to therapeutic and pharmacological interventions may also 358 

vary in accordance with the cause of ID. Unfortunately, therapeutic guidelines rarely 359 

differentiate between different forms of ID. Increased rates of etiological diagnoses could 360 

improve our understanding of rare forms of ID and aid in the development of more personalized 361 

guidelines for management and treatment. 362 

 363 

Conclusions 364 

Here we have presented the first variant effect map for single amino acid substitutions in GDI1, 365 

and showed that map scores could distinguish presumed-damaging from presumed-tolerated 366 

variants with better precision than current computational approaches (including Polyphen2, 367 

VARITY, and PROVEAN) at all recall thresholds. Furthermore, our variant effect map recovers 368 
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known biochemical and structural features of GDI1 and provides insights into structural regions 369 

which may be important for GDI1 function. 370 

 371 

 372 

 373 

Methods  374 

 375 

Strains and Plasmids 376 

The S. cerevisiae strain carrying the temperature sensitive Gdi1 allele, TSA64 (gdi1-1::KanR;  377 

his3∆1 leu2∆0 ura3∆0 met15∆0) (gift from G. Tan, C. Boone and B. Andrews) was used as a 378 

host for the GDI1 variant library. The Gateway destination vector used to express HsGDI1, 379 

pHYC-NatMX (CEN/ARS-based, ADH1 promoter, and NatMX marker), was constructed 380 

previously (22). The HsGDI1 ORF clone (pDONR223-GDI1) was obtained from the Human 381 

ORFeome v8.1 library (38). 382 

 383 

Construction of GDI1 variant library by POPcode mutagenesis 384 

POPcode mutagenesis was performed on the GDI1 ORF as described previously (9): 385 

Oligonucleotides of 28-38 bases were designed to target each codon in the open reading frame of 386 

GDI1, such that the targeted codon is replaced with a NNK-degenerate codon (a mixture of all 387 

four nucleotides in the 1st and 2nd codon positions, and a mixture of G and T in the 3rd 388 

position). Oligos were annealed to uracilated GDI1 template, gaps between annealed 389 

oligonucleotides were filled using KAPA HiFi Uracil+ DNA polymerase, nicks were sealed 390 

using T4 DNA ligase, and the wild type template was degraded using Uracil-DNA-Glycosylase. 391 
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The variant library was transferred to the yeast expression vector, pHYC-NatMX, by en masse 392 

Gateway LR reaction (8) followed by transformation into NEB5a competent E. coli cells (New 393 

England Biolabs) and selection for ampicillin resistance. Plasmids extracted from a pool of 394 

~100,000 clones were transformed into the S. cerevisiae temperature-sensitive strain TSA64 en 395 

masse using EZ Kit Yeast Transformation kit (Zymo Research). The entire transformed library 396 

was grown in selective media (YPD + clonNAT) for two overnights. All yeast growth was 397 

carried out at permissive temperature (25C). 398 

  399 

High-throughput yeast-based complementation  400 

For the pre-selection condition, plasmids were extracted from two 9 ODU samples of yeast 401 

culture carrying the variant library (to be used for downstream tiling PCR). For the selective 402 

condition, two replicates of 20 ODU of cells were inoculated into 200ml of YPD + clonNAT and 403 

grown to full density at restrictive temperature (38°C) with shaking. Plasmids for tiling PCR 404 

were extracted from 9 ODU of each culture following competitive growth. In parallel, 2 ODU of 405 

TSA64 expressing wild type GDI1 was inoculated into 20ml of YPD + clonNAT. Wild type 406 

pools were grown under the same conditions as the POPcode library and plasmid was extracted 407 

from 9 ODU samples to be used as a control for sequencing error during TileSeq. 408 

 409 

Measurement of allele frequencies in pre- and post-selective pools by TileSeq 410 

TileSeq was performed on the plasmids extracted from pre-selective, post-selective, and wild 411 

type pools as described previously (8): (i) The GDI1 ORF was amplified with primers carrying a 412 

binding site for Illumina sequencing adaptors; (ii) each amplicon was indexed with an Illumina 413 

sequencing adaptor; (iii) paired end sequencing was performed on the tiled amplicons to an 414 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2022. ; https://doi.org/10.1101/2021.10.06.463360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.06.463360
http://creativecommons.org/licenses/by/4.0/


19 

average sequencing depth of ~ 2 million reads. Raw sequencing reads were mapped to the GDI1 415 

ORF using Bowtie2 (39). A custom Perl script (40) was used to parse the alignment files to count 416 

the number of co-occurrences of a codon change in both paired reads. Mutational counts for each 417 

tiled region were subsequently normalized by the corresponding sequencing depth, generating a 418 

"raw data" file (table S1) where mutational counts are expressed in “reads per million”, i.e. the 419 

number of reads normalized to a depth of 1M reads (indicated as “reads/million” below). 420 

 421 

Data processing and fitness score calculation 422 

Processing of raw read count data (available in table S1) was carried out using the “legacy2.R” 423 

script (41). This script is derived from the “legacy.R” script from the tileseqMave R package 424 

described previously (10), with several modifications to improve filtering and fitness score 425 

calculation for variants detected at low frequencies. Read counts for each variant in the wild type 426 

control were subtracted from the corresponding read count for variants in each condition in order 427 

to account for the detection of variants due to sequencing error. An enrichment ratio () was 428 

calculated for each variant as the ratio of the normalized read counts after selection to before 429 

selection. Since there was less agreement between replicate read counts for variants present at 430 

lower frequencies in the pre-selection pool, a pre-filter was applied to remove all variants present 431 

in fewer than 200 reads/million in either replicate. The cut-off value of 200 reads/million was 432 

chosen in order to maximize the t-statistic measure of separation of mean synonymous and 433 

pathogenic log ratios (fig. S2a). Additionally, any variants with read counts within 3 standard 434 

deviations of zero in the post-selective condition were removed from the data set due to the 435 

possibility that they were lost due to a bottleneck effect when sampled from the pre-selective 436 

pool. As described previously (8), standard deviation estimates were regularized according to a 437 
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method for Bayesian regularization described by Baldi and Long (42), which improves 438 

confidence estimates for measurements for which few replicates are available (in this case, two). 439 

A fitness score (FSMUT) was calculated for each variant as ln(MUT/STOP)/ln(SYN/STOP), where 440 

MUT is the enrichment ratio calculated for each variant, STOP is the median enrichment ratio of 441 

all well-measured nonsense variants and SYN is the median enrichment ratio of all well-442 

measured synonymous variants, such that FSMUT equals zero when MUT equals STOP and FSMUT 443 

equals one when MUT equals SYN. Well-measured variants included in the calculation of the 444 

medians STOP and SYN were those for which enrichment ratios between replicates agreed highly 445 

with regularized standard deviation less than 0.3. Because nonsense mutations after residue 400 446 

did not result in complete loss of function (fig. S3), nonsense mutations at amino acid positions 447 

greater than 400 were excluded from the STOP calculation. Fitness scores generated through this 448 

pipeline are available in table S2. 449 

 450 

Imputation for missing variant effect map positions and fitness score refinement 451 

Imputation was performed using the variant effect imputation web server (24). The imputation 452 

machine learning model was trained on the fitness scores of the experimentally measured 453 

variants using the Gradient Boosted Tree (GBT) method. Features of the measured variants used 454 

in the model include mean fitness scores of up to three nearest neighbor variants, standard fitness 455 

score error of up to three most similar neighbor variants at the same position, number of 456 

neighbors used, PolyPhen-2 score, PROVEAN score, and Blosum100 score. Fitness scores for 457 

missing variants were not imputed for positions with fewer than three well-measured variants 458 

due to insufficient functional data. Fitness scores of experimentally measured variants were also 459 

refined using the weighted average of imputed and measured values (weighting by the inverse-460 
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square of estimated standard error in each input value). Output of the imputation pipeline is 461 

available in table S3. 462 

 463 

Construction of GDI1 homology model 464 

Human GDI1 (RefSeq: NP_001484.1) residues 1 - 426 were modeled on the crystal structure of 465 

RabGDP-dissociation inhibitor in complex with prenylated YPT1 GTPase (PDB: 1UKV) using 466 

Swiss-Model ProMod3 Version 1.3.0 (43). The poorly-aligned 21 C-terminal residues were not 467 

included in the model. 468 

 469 

Likelihood ratio calculations 470 

Our set of presumed damaging human variants contained Leu92Pro (11), Arg423Pro (15), and 471 

Gly237Val (33). Arg423pro is currently annotated as “pathogenic” on ClinVar. Leu92Pro was 472 

previously annotated as pathogenic but is currently annotated as having “uncertain significance”, 473 

however we believe that d’Adamo et. al (11) provide strong evidence for the deleteriousness of 474 

this mutation. Gly237Val was added to ClinVar more recently and is also annotated as having 475 

“uncertain significance”, however this variant seemed likely to be deleterious based on familial 476 

segregation analysis by Duan et. al (33). We included four additional variants, Tyr39Val, 477 

Glu233Ser, Met250Tyr, and Thr248Pro (27), which have not been observed in humans, but 478 

which were shown to inhibit GDI1 function in functional assays.  The set of presumed tolerated 479 

variants consisted of the 46 gnomAD variants from male subjects (hemizygous at the GDI1 480 

locus), who were presumed to be healthy given that gnomAD excludes subjects with early 481 

childhood disease. Normal distributions were fitted to the histograms of the fitness scores of 482 

presumed damaging and tolerated variants by maximum likelihood parameter estimation in order 483 
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to obtain estimated probability density functions for pathogenic/disease and benign variants (𝑝𝐷 484 

and 𝑝𝐵 respectively). The normal distributions used are shown in fig. 4a (but scaled such that the 485 

area under each curve equals 1 for likelihood ratio calculations). The damaging:tolerated 486 

likelihood ratio for a variant with fitness score, 𝑓, was calculated as the ratio of the estimated 487 

probability density functions evaluated at f: 𝛬ሺ𝐷: 𝑇 | 𝑓ሻ = 𝑝𝐷ሺ𝑓ሻ 𝑝𝑇ሺ𝑓ሻΤ . This likelihood ratio 488 

can be used together with prior beliefs about a variants' pathogenicity to calculate the odds that a 489 

variant is damaging, 𝑂ሺ𝐷: 𝑇 | 𝑓ሻ, using the Odds form of Bayes' rule: 490 

𝑂ሺ𝐷: 𝑇 | 𝑓ሻ = 𝛬ሺ𝐷: 𝑇 | 𝑓ሻ ×
𝑃ሺ𝐷ሻ

𝑃ሺ𝑇ሻ
 491 

where, 𝛬ሺ𝐷: 𝑇 | 𝑓ሻ is the likelihood ratio, 𝑃ሺ𝐷ሻ is the prior probability that the variant is 492 

damaging, and 𝑃ሺ𝑇ሻ is the prior probability that the variant is tolerated such that 𝑃ሺ𝑇ሻ = 1 −493 

𝑃ሺ𝐷ሻ. 494 

 495 
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 639 

Figure 1: High throughput yeast complementation screen separates synonymous and 640 

nonsense GDI1 variants 641 

a) Graphical overview of the variant effect mapping framework.  642 

b) Number of well-measured variants recovered from the complementation screen. 643 

c) Log() values comparing pre- and post-selection variant frequencies for all well measured 644 

synonymous, nonsense and missense GDI1 variants. 645 

 646 
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 647 

 Figure 2: GDI1 variant effect map 648 
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A GDI1 missense variant effect map resulting from the complementation screen coupled with 649 

imputation and refinement by machine learning. Fitness scores of 0 (blue) represent the median 650 

behavior of complete loss of function variants (based on observed fitness of nonsense variants) 651 

and fitness scores of 1 (white) represent wild type-like function (based on observed fitness of 652 

synonymous variants). Yellow tiles represent the wild type amino acid at that position. Gray tiles 653 

represent substitutions for which scores were not imputed due to insufficient data for 654 

substitutions at that amino acid position. 655 

 656 

 657 
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Figure 3: Fitness scores enable structure-function analysis of GDI1 658 

(a) Homology model of human GDI1 (colored surface) modeled on the structure of S. cerevisiae 659 

RabGDP-dissociation inhibitor in complex with prenylated YPT1 GTPase (yellow ribbon). In the 660 

bottom panel, residues are colored according to their average positional fitness scores with 0 661 

representing null-like scores (red) and 1 representing wild type-like scores (blue). 662 

(b) Average fitness score of all variants at each amino acid position (black line) overlaid with a 663 

smoothed summary curve (red). The dark blue region of the plot represents fitness scores less 664 

than 0.72 (over 10 times more likely to be damaging than tolerated) and the white region 665 

represents fitness scores over 0.81 (over 10 times more likely to be tolerated than damaging). 666 

[Tolerated:damaging odds ratios were calculated as described in methods]. The tracks above the 667 

plot represent: depiction of GDI1 with sequence conserved regions (SCRs) common to all 668 

members of the GDI/CHM superfamily (top track) and; the secondary structures of human GDI1 669 

as predicted by PSIPRED 4.0 (44) (bottom track; black = helix, gray = strand). 670 

(c) Average fitness scores of amino acid positions within non-conserved or "linker" regions 671 

versus sequence conserved regions. Significance level was determined using Wilcoxon signed-672 

rank test. 673 

(d) Region-wise comparison of average positional fitness scores. Wilcoxon signed-rank tests 674 

were performed comparing each region to the "C-terminus" region (red asterisks) and to SCR2 675 

(blue asterisks). Significance levels are denoted by: * (p<0.05), ** (p<0.01), *** (p<0.001), and 676 

**** (p<0.0001). 677 

e) Center: Ribbon representation of human GDI1 modeled on the structure of S. cerevisiae 678 

RabGDP-dissociation inhibitor in complex with prenylated YPT1 GTPase (yellow). 679 

GDI1 residues are colored by average positional fitness score. Left: side chains of all 680 
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hydrophobic residues within 5A of the geranylgeranyl group (orange). Right: side chains of 681 

residues comprising the mobile effector loop and proximal beta strand. 682 

 683 

 684 

Figure 4: GDI1 variant effect map separates damaging and common variants with higher 685 

precision than current computational methods 686 

(a) Distribution of fitness scores for known damaging and known common (presumed tolerated) 687 

GDI1 missense variants. Common variants are comprised of 46 missense variants listed in 688 

gnomAD which have been observed in at least one hemizygous individual.  689 

(b) Precision-recall curve for our fitness scores compared to various computational methods for 690 

variant interpretation. A sliding threshold was used for each score type starting at the lowest 691 

score; variants below this threshold were called as damaging. For each threshold value, the 692 

number of true damaging variants identified (true positives) and the number of benign variants 693 
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identified in error (false positives) was evaluated. The precision [true positives/(true positives + 694 

false positives)] versus the recall [true positives/(true positives + false negatives)] is shown for 695 

each threshold value. 696 

c) Scaled fitness scores and computational predictor scores for all variants from our tolerated and 697 

damaging variant sets. Scores were scaled such that all score types range from 0 to 1 with 0 698 

representing most damaging and 1 representing most tolerated. 699 

d) Precision recall curves for our fitness scores and for a “combined computational predictor 700 

score” which is the median of scaled PolyPhen-2, PROVEAN, and VARITY scores (scaling was 701 

performed as described in c). 702 

 703 
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Figure 5: Interpretation of clinically-relevant GDI1 missense variants from the ClinVar 704 

database 705 

Fitness scores (experimentally measured where available, and computationally imputed for all 706 

variants) are listed for all GDI1 missense variants listed on ClinVar. We concluded that a variant 707 

is “deleterious” where the damaging:tolerated odds ratio was greater than 1:10 and vice versa for 708 

“tolerated” variants. 709 

 710 

Supplemental Information 711 

Supplemental Figures and Legends 712 

 713 

 714 

Figure S1: Variants present at low frequencies in complementation screen show poorer 715 

agreement between replicates  716 

a) Coefficient of variation between two read count replicates for all detected variants in the pre-717 

selection pool versus frequency in the pre-selection pool (as measured by mean read count of the 718 

two replicates).  719 
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b) Coefficient of variation between two read count replicates for all detected variants in the post-720 

selection pool versus frequency in the post-selection pool (as measured by mean read count of 721 

the two replicates).  722 

 723 

 724 

Figure S2: Filtering out variants present at low frequencies in the pre-selection pool 725 

improves metrics of fitness measurement accuracy 726 

a) Multiple read count cut-offs were tested wherein read counts in the pre-selection pool were 727 

filtered to include only high-frequency variants (present at frequencies greater than the cut-off 728 

value). For each cut-off value tested, a two-sample t-statistic was calculated to evaluate the 729 

separation of fold changes between nonsense variants and synonymous variants. A cut-off value 730 

of 200 reads/million maximized the separation of synonymous and nonsense variants. 731 

b) Correlation between PROVEAN scores and our fitness scores increase as variants are filtered 732 

for higher frequency in the pre-selection variant pool. For each read count cutoff, the correlation 733 

(Pearson’s R) between our calculated fitness score (prior to imputation) and PROVEAN scores 734 

for all missense variants was calculated.  735 
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 736 

Figure S3: Fold changes (pre-selection/post-selection) of all measured nonsense mutations 737 

in GDI1 738 

Nonsense mutations after amino acid position 400 lead to less severe loss of complementation. 739 

 740 

Figure S4: Feature importance for gradient boosted trees imputation model 741 

Mean neighbor FS: the mean fitness scores of the 3 most similar amino acids at the same residue 742 

position. SE neighbor FS: Standard error of the fitness scores of the 3 most similar amino acids 743 

at the same residue position. Number neighbors: Number of variants measured at the same amino 744 

acid position  745 

 746 
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Descriptions of Supplementary Tables 747 

Table S1: Table of raw yeast complementation data 748 

Table of unfiltered GDI1 variant frequencies in pre- and post- selection deep sequencing pools. 749 

Variants counts are presented in reads/million. 750 

Table S2: Fitness score table 751 

Table of fitness score data calculated for all well-measured GDI1 variants. 752 

Table S3: Imputed scores 753 

Table of all fitness scores including computationally imputed scores for amino acid substitutions 754 

not measured experimentally. 755 
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