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Summary

The bulbil is an important vegetative reproductive organ in triploid Liliumlancifolium. Based on
our previously obtained transcriptome data, we screened two WUSCHCEL-related homeobox
(WOX) genes closely related to bulbil formation, LIWOX9 and LIWOX11. However, the
biological functions and regulatory mechanisms of LIWOX9 and LIWOX11 are unclear. In this
study, we cloned the full-length coding sequences of LIWOX9 and LIWOX11. Transgenic
Arabidopsis showed increased branch numbers, and the overexpression of LIWOX9 and
LIWOX11 in stem segments promoted bulbil formation, while the silencing of LIWOX9 and
LIWOX11 inhibited bulbil formation, indicating that LIWOX9 and LIWOX11 are positive
regulators of bulbil formation. Cytokinins acting through type-B response regulators (type-B
RRs) could bind to the promoters of LIWOX9 and LIWOX11 and promote their transcription.
LIWOXI11 could enhance cytokinin pathway signalling by inhibiting the transcription of type-A
LIRRO. Our study enriches the understanding of the regulation of plant development by the WOX
gene family and lays a foundation for further research on the molecular mechanism of bulbil

formation in lily.

Key words Bulbil formation, Cytokinin, Lilium lancifolium, Type-B response regulators,

WU S-related homeobox
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Introduction

Lilium lancifolium, also known as tiger lily, is an important Lilium species of the
Liliaceae family. L. lancifolium shows high adaptability and is widely cultivated in China for its
edible bulbs and medicinal applications (Liang & Tamura, 2000; China Pharmacopoeia
Committee, 2005; Yu et al., 2015), with a production value of approximately six billion Yuan per
year. L. lancifolium s a natural triploid and cannot be propagated sexually, but its leaf axils can
form a large number of purple-black bulbils (Bach & Sochacki, 2012; Chung et al., 2015).
Bulbils grow on leaf axils and can naturally fall off the mother plant and develop into a new
complete individual after maturity (Yang et al., 2017). The bulbil propagation strategy has the
advantages of high efficiency and better retention of maternal genetic characteristics and is
therefore the main reproductive strategy for L. lancifolium.

Bulbils are a special and important type of reproductive organ in plants and are only
formed in a few plant species, such as Dioscorea batatas, Allium sativum, Titanotrichum
oldhamii, Pinellia ternate, Agave tequilana, and Lilium species (Wang et al., 2004; Bell & Bryan,
2008; Abraham-Juarez et al., 2010; Sandoval et al., 2012; Yang et al., 2017). The formation of
bulbils is a complex developmental process that is regulated by genetic and environmental
factors and phytohormones.

Plant hormones, especially auxin and cytokinin, have been proven to be involved in the
regulation of bulbil formation, in which auxin inhibits bulbil formation, whereas cytokinin
promotes the bulbil formation (Wang & Cronk, 2003; Peng et al., 2005; Abraham-Juarez et al.,
2015; Navarro et al., 2015; He et al., 2020). Before bulbil initiation in D. polystachya, auxin
rapidly accumulates in the leaf axil, followed by the expression of auxin transport genes, such as
ARF9, ARF18, AX15A, and AUX22D, resulting in auxin outflow from the leaf axil and bulbil
initiation (Wu et al., 2020). AtgPIN1 and AtgSoPIN1 participate in auxin outflow in A. tequilana
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79  (Abraham-Juarez et al., 2015). In D. polystachya, the expression of cytokinin
80  oxidase/dehydrogenase genes (CKX1, CKX3, CKX9 and CKX11) is decreased before bulblet
81 initiation and leads to the accumulation of cytokinin in the leaf axil (Wu et al., 2020). In a
82  previous study, we revealed that iP-type cytokinins were the most important cytokinins during
83  bulbil formation and showed that the accumulation of iP-type cytokinins was mainly due to the
84  upregulation of cytokinin biosynthesis genes (IPT1 and IPT5) and cytokinin activation genes
85 (LOGL, LOGS, LOGS and LOGY7) and the significant downregulation of cytokinin degradation
86  gene (CKX4) expression (He et al., 2020).
87 As a special type of axillary organ, bulbils originate from the axillary meristem (AM). A
88  recent study revealed that cytokinins can promote AM initiation through cytokinin type-B
89  response regulators (type-B RRs) (Wang et al., 2017). Type-B RRs are positive regulatory
90 transcription factors in cytokinin signalling and mostly modulate the transcription of
91 cytokinin-regulated genes by directly binding target DNA sequences at their C-terminal MYB
92  domains (Hosoda et al., 2002; Kieber & Schaller, 2014). In A. thaliana, cytokinin signalling is
93  mainly mediated by five members of type-B RR subfamily I: ARR1, ARR2, ARR10, ARR11 and
94  ARRI12 (Mason €t al., 2004, 2005; Schaller et al., 2007; Yokoyama et al., 2007; Ishida et al.,
95  2008; Tsai et al., 2012). In regulating axillary bud formation, type-B RRs act as key
96  transcriptional regulators involved in AM initiation. ARR1 can directly bind to the WUS
97  promoter and activate the transcription of WUS ARR2, ARR10, ARR11 and ARR12 can also
98 activate the expression of WUS indicating that type-B ARRs show functional redundancy in
99  regulating the expression of WUS in which ARRI1 is the key regulatory factor (Wang et al.,
100 2014a,b, 2017).
101 Regarding the molecular regulation of bulbil formation, however, only a small number of
102 genes related to bulbil formation have been identified to date, and the associated regulatory
103  mechanism is not clear. In A. tequilana, AtgKNOX1 and AtgKNOX2 are expressed at the
104  beginning of globular bud formation and are specifically expressed during meristem

105  development (Abraham-Juarez et al., 2010). The expression of some AtQMADS genes is
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106  decreased during bulbil formation, indicating that AtgMADS genes may be negatively related to
107  bulbil formation in this species (Sandoval et al., 2012). In T. oldhamii, the expression of

108  Gesneriaceae-FLORICAULA (GFLO) is also downregulated during bulbil formation, indicating
109  that GFLO acts as a negative regulator during bulbil formation (Wang et al., 2004). The AGO
110  protein mediates the silencing of downstream genes through miRNA. In L. lancifolium, LIAGO1
111  1is specifically expressed in the bulbil and upregulated during bulbil formation, which indicates
112 that the miRNA pathway may also be involved in the regulation of bulbil formation (Yang et al.,
113 2018).

114 The WUSCHEL-related homeobox (WOX) proteins are a plant-specific family within the
115  eukaryotic homeobox transcription actor superfamily characterized by a conserved N-terminal
116  homeodomain (HD) consisting of 60-66 amino acids (Mayer €t al., 1998; Haecker €t al., 2004).
117  Functional studies have revealed that the WOX transcription factors play important roles in

118  promoting cell division, preventing immature cells from differentiating, embryonic development,
119  stem cell niche maintenance in the meristem and organ formation (Stahl et al., 2009; Van Der
120  Graaffet al., 2009; Yadav et al., 2011). Based on the phylogenetic analysis and the distribution
121  of WOX genes in the plant kingdom, they have been classified into three clades: a modern/WUS
122 clade (found in seed plants), an intermediate/WOX9 clade (found in vascular plants including
123 lycophytes), and an ancient/WOX13 clade (found in vascular and nonvascular plants, including
124  mosses and green algae) (Nardmann €t al., 2009; Van Der Graaff et al., 2009).

125 Some members of the WOX gene family have been shown to be involved in the

126  regulation of AM. In A. thaliana, WUS s essential for the initiation and maintenance of AM

127  (Wang et al., 2014a,b). Unlike the situation in A. thaliana, the AM of O. sativa is coregulated by
128  OsWUS and OsWOX4. OsWUS s expressed only before meristem formation and not in the

129  established AM, and OSWOX4 is expressed only in the established AM, indicating that OSWOX4
130  functions only in maintaining meristem activity (Ohmori et al., 2013; Lu et al., 2015; Tanaka et
131  al., 2015). WOX9 and WOX11 are members of the intermediate clade and regulate the shoot

132 meristem or AM. In the A. thaliana wox9 mutant, the development of the embryo, apical
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133 meristem and root meristem is abnormal, and the growth and development of the axillary buds
134 and roots is significantly inhibited (Skylar et al., 2010; Skylar & Wu, 2010). In addition, the loss
135  of WUSexpression in the wox9 mutant indicates that WOX9 can positively regulate the

136 expression of WUS(Wu et al., 2005). In O. sativa, OSWOX9 (Dwarftillerl, DWT1) plays an

137  important role in the development of rice tillers, and the dwtl mutant shows shorter tillers and a
138  reduced tiller number (Wang et al., 2014c). In A. thaliana and O. sativa, WOX11 mainly

139  regulates the lateral root or crown root primordium (Liu et al., 2014; Hu & Xu, 2016). wox11
140  mutants show crown root number and growth rate deficiencies, a dwarf phenotype and delayed
141  flowering (Zhao €t al., 2009). In crown and root development, OsWOX11 mediates the cytokinin
142 pathway by inhibiting the expression of type-A OSRR2, thus enhancing cytokinin signalling to
143  promote crown and root formation (Nardmann & Werr, 2006; Zhao et al., 2009). A recent study
144  revealed that in addition to its function in crown root development, OSWOX11 is also required
145  for rice shoot development and can activate gene expression during the development of the rice
146  shoot apical meristem by recruiting the H3K27me3 demethylase JMJ705 (Cheng et al., 2018).
147 On the basis of transcriptome data (accession number: SRP103184), we screened the

148  expression of all annotated WOX genes during bulbil formation and identified two WOX genes
149  closely related to bulbil formation, LIWOX9 and LIWOX11 (Fig. S1). In this study, our results
150  showed that LIWOX9 and LIWOX11 were members of the intermediate clade and that their

151  expression increased continuously during bulbil formation. The overexpression of LIWOX9 and
152 LIWOX11 promoted bulbil formation, while the silencing of LIWOX9 and LIWOX11 inhibited
153  bulbil formation, indicating that LIWOX9 and LIWOX11 are positive regulators of bulbil

154  formation. Cytokinin type-B LIRRs can bind to the promoters of LIWOX9 and LIWOX11 to

155  promote their transcription. In addition, LIWOXI11 can enhance cytokinin signalling by

156  inhibiting the transcription of type-A LIRRO. Our study enriches the understanding of the roles of
157  the WOX gene family in regulating plant development. We also show for the first time that WOX
158  genes cooperate with cytokinins to regulate the formation of bulbils. Our study lays a foundation

159  for further research on the molecular mechanism of bulbil formation in lily.
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160

161  Materials and methods

162

163  Plant materials and treatments

164 Bulbs of Lilium lancifolium of uniform size were harvested and buried in soil at 4°C at
165  the Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (CAAS),

166  Beijing, China, in November 2019. Well-grown stems with a height of 10 cm were selected

167  according to an in vitro bulbil induction system (He et al., 2020), and stem segments were

168  cultured on Murashige and Skong medium for bulbil induction. The stages of bulbil formation
169  were divided into the bulbil initiation stage (S0-S2), bulbil primordium formation stage (S3—S4),
170  and bulbil structure formation stage (S5) (He et al., 2020). Different stages of developing bulbils
171  and different tissues (leaf axils at stage S4, shoot apex, leaf, stem, root, scale, stigma, ovary,

172 anther and petal tissues) were collected for RNA extraction.

173 To determine whether LIWOX9 and LIWOX11 are immediately induced by cytokinins, 4
174 mM 6-BA was added to MS medium during bulbil formation, and stem segments at the S4 stage
175  were treated with 10 mM 6-BA or with 0.05 mM NaOH as a control. Leaf axils were harvested at
176  the SO-S5 stages and after 0, 0.5, 1.0, 1.5, 2.0 or 2.5 h of treatment.

177

178  Isolation of LIWOX9 and LIWOX11 genes and promoters

179 According to our transcriptome data (accession number: SRP103184), we designed

180  primers by using Primer 6 to clone the full-length sequences and promoters of LIWOX9 and

181  LIWOX11. The full-length sequences of LIWOX9 and LIWOX11 were cloned via RLM-RACE
182  using the GeneRacer ™ Kit (Invitrogen, US) according to the kit protocol. To obtain the promoter
183  sequences of LIWOX9 and LIWOX11, three gene-specific reverse primers were designed and a
184  nested PCR program was used according to the protocol of a genome walking kit (Takara, Japan).
185  The sequences of the primers used for amplification are shown in Table S1. Conserved protein

186  domains were analyzed using SMART (http://smart.embl.de/). Phylogenetic analysis was
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187  performed using MEGAG6 (http://mega6.software.informer.com/). Multiple sequence alignments
188  were analysed using the DNAMAN software package. New PLACE

189  (https://www.dna.affrc.go.jp/PLACE/?action=newplace) and PlantCARE

190  (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) were used to analyse the LIWOX9
191  and LIWOX11 promoters.

192

193  Real-time RT-PCR (gRT-PCR)

194 Total RNA from the different tissue and leaf axil specimens was extracted with an

195  RNAprep Pure Plant Kit (TTANGEN, China) according to the kit protocol, and DNA

196  contamination was removed with RNase-free DNase 1. First-strand cDNA was synthesized with
197  aHifair® I st Strand cDNA Synthesis Kit (gDNA digester plus) (Yeasen, China) according to
198  the kit protocol. Gene-specific primers for qRT-PCR were designed with Primer 6.0 (Table S2).
199  The LilyActin primer was used as an internal control (Xu et al., 2017), and SYBR® Green Master
200  Mix (No Rox) (Yeasen, Shanghai, China) was used in the reaction mixture according to the

201  manufacturer’s instructions. QRT-PCR was conducted using the CFX96 Real-Time System

202  (Bio-Rad, USA), with an initial denaturation step at 95°C for 3 min, followed by 40 cycles of
203  denaturation at 95°C for 10 s, annealing at 60°C for 20 s, and extension at 72°C for 1 min. The
204 27%*“method was used to calculate the relative expression levels of the different genes (Livak &
205  Schmittgen, 2001). Three biological and three technical replicates were performed to reduce
206  error.

207

208  Subcellular localization

209 The full-length cDNAs of LIWOX9 and LIWOX11 under the control of the 35S

210  cauliflower mosaic virus promoter were cloned into the pPCAMBIA 2300 vector using the

211  pEASY®-Basic Seamless Cloning and Assembly Kit (Transgen Biotech, China). The sequences
212 of the primer pairs used for amplification are shown in Table S3. The resulting plasmids were

213 transferred into Agrobacterium tumefaciens strain GV3101. Agrobacterium cells were collected
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214  and suspended in infiltration buffer (10 mM methylester sulfonate, 10 mM MgCl,, and 150 mM
215  acetosyringone, pH 5.7) at ODgoo=0.8 and infiltrated into Nicotiana benthamiana leaves. 3 days
216  after infiltration, the leaves were harvested and treated with 0.5 mg/ml DAPI

217  (4',6-diamidino-2-phenylindole; Sigma). A Zeiss LSM 510 confocal scanning microscope was
218  used to collect images.

219

220  RNAfluorescencein situ hybridization

221 Leaf axils in S1-S5 were fixed with FAA, and after dehydration, clearing and embedding,
222 paraffin sections of the leaf axils were sliced at a thickness of 0.8 um. The obtained slides were
223 rehydrated with xylene, digested with protease K (20 ng/mL) at 37°C, blocked with a 3%

224 methanol-H202 solution for 25 min, with avidin (0.07%) at 37°C for 25 min and with biotin
225  (0.005%) at 37°C for 15 min. Hybridization with the probes was performed at 37°C overnight in
226  amoist chamber. After hybridization, the slides were washed in 2% SSC for 10 min, three times
227  in 1x SSC for 5 min and once in 0.5% SSC for 10 min at 37°C. The avidin-labelled probe was
228  detected with a streptavidin Alexa Fluor 405 conjugate (1:250) (Invitrogen). Antibodies were
229  diluted in PBS containing 3% (w/v) BSA, and the slides were incubated with the antibodies for
230 30 min at 37°C. After antibody incubation, the slides were washed three times with 4x SSC

231  containing 0.1% Tween 20, stained with 100 ng/mL DAPI in PBS for 30 min and dehydrated
232 with ethanol. Confocal images were obtained using a Zeiss LSM 510 confocal scanning

233 microscope.

234

235  Transformation of A. thaliana and L. lancifolium

236 The full-length cDNAs of LIWOX9 and LIWOX11 were amplified by PCR and inserted
237  into the pPCAMBIA 3301 vector using the pEASY®-Basic Seamless Cloning and Assembly Kit
238  (Transgen Biotech, China). All primers used are listed in Table S1. A. thaliana was transformed
239  using A. tumefaciens strain GV3101 and the floral dip method (Clough & Bent, 1998).

240  Transgenic A. thaliana plants were selected on 1/2 Murashige and Skoog (MS) medium with 30
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241  mg/L kanamycin. Transgenic A. thaliana plants were grown in climate-controlled boxes at 24°C
242 under a 12/12 h light/dark cycle.

243 L. lancifolium was transformed using A. tumefaciens strain EHA 105 via

244  Agrobacterium-mediated vacuum infiltration. Agrobacterium cells were collected and suspended
245  in infiltration buffer that contained 10 mM MgCl,, 200 mM acetosyringone and 10 mM MES
246  (pH 5.6). The small stem segments of L. lancifolium were submerged in infiltration solution and
247  then subjected to -50 kPa vacuum for 10 min. The infiltrated segments were washed with

248  distilled water three times and then were grown on MS medium with 30 g/L sucrose and 6 g/L.
249  agar (pH 5.8) in the dark at 20°C for 1 d, followed by growth at 22°C under a 16/8 h light/dark
250  cycle. The rate of bulbil formation was assessed after one week of culture, and RNA was

251  extracted from leaf axils to measure the expression of the target genes. Each treatment consisted
252  of three experimental replicates, with 30 leaf axils per replicate.

253

254 Virus-induced gene silencing (VIGS)

255 For the generation of pTRV2-LIWOX9 and pTRV2-LIWOX11, gene-specific fragments
256 of ~300 bp were cloned into the pTRV2 vector using the pEASY *-Basic Seamless Cloning and
257  Assembly Kit (Transgen Biotech, China). Five pTRV2-LIRR vectors were constructed as

258  previously described (He et al., 2021). The primer pairs used to generate the TRV vectors are
259  shown in Table S3. VIGS was performed using A. tumefaciens strain EHA 105 and vacuum

260 infiltration method (He et al., 2021). The rate of bulbil formation was assessed after two weeks
261  of culture, and RNA was extracted from leaf axils to measure the expression of the target genes.
262  Each treatment consisted of three experimental replicates, with 30 leaf axils per replicate.

263

264  GUS staining

265 A 1318 bp fragment upstream of the start codon of LIWOX9 and a 2351 bp fragment
266  upstream of the start codon of LIWOX11 were introduced into the pPCAMBIA 3301 vector, and

267  the 35S promoter was replaced using the pEASY®-Basic Seamless Cloning and Assembly Kit

11
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268  (Transgen Biotech, China). The constructed plasmids were transferred into A. tumefaciens strain
269  EHAI105. The method of N. benthamiana leaf infiltration was the same as that used in the

270  subcellular localization assay. Stem segments at SO and S5 were used for vacuum infiltration
271  according to the method described above. Three days after infiltration, the leaves and stem

272 segments were harvested and treated with GUS staining solution (Solarbio, China) according to
273 the kit protocol. After staining, the leaves and stem segments were washed and cleared with 70%
274  ethanol for more than 24 h before image capture using a Leica Microsystems DM5500B

275  instrument (Wetzlar, Germany).

276

277  Yeast one-hybrid assay

278 Y 1H analysis was performed according to the method described by Lin et al. (2013).

279  Briefly, the full-length coding regions of five LIRRs and LIWOX11 were cloned into the pGADT7
280  vector to generate the pGADT7-LIRRs and pGADT7-LIWOX11 constructs. Various truncated
281  versions of the promoter regions of LIWOX9 and LIWOX11 were amplified and ligated into the
282  pABAi reporter vector. The constructs were then cotransformed into the yeast strain EGY4S.
283  Transformants were grown on SD-Trp/-Ura plates for 3 d at 28°C. The interactions were

284  determined based on the growth ability of the cotransformants on medium supplemented with
285  aureobasidin A (AbA).

286

287  Dual-luciferase reporter assay

288 The coding sequence of LIWOX11 was cloned into the pPCAMBIA 3301 vector using the
289  pEASY"-Basic Seamless Cloning and Assembly Kit (Transgen Biotech, China). Five pPCAMBIA
290  3301-LIRR vectors were constructed as previously described (He et al., 2021). A 1318 bp

291  fragment upstream of the start codon of LIWOX9 and a 2351 bp fragment upstream of the start
292 codon of LIWOX11 were introduced into the pluc-35Rluc vector using the pEASY *-Basic

293  Seamless Cloning and Assembly Kit (Transgen Biotech, China). The primers used to generate

294 the constructs are listed in Table S3. The constructed plasmids were transformed into A.
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295  tumefaciensstrain GV3101. Different effectors were subsequently coinfiltrated with the reporter
296 into N. benthamiana leaves using a syringe. At 3 d after infiltration, 2-cm-diameter leaf discs
297  were harvested and ground in liquid nitrogen. The activities of firefly and Renilla luciferase were
298  measured with a Dual-Luciferase Reporter Assay System (Promega) using a GloMax 20/20

299  luminometer (Promega).

300
301 EMSAs
302 To construct plasmids for the expression of the recombinant LIWOX11 protein in

303  Escherichia coli, the full-length cDNA was amplified and cloned into the pMal-c2X vector,

304  which was expressed in the Escherichia coli strain BL21 (DE3) cell line. The pET32a-LIRR1
305  vector was constructed as previously described (He et al., 2021). The primers are listed in Table
306  S3. Protein expression was induced by incubation in 1 mM IPTG at 16°C at 160 rpm for 24 h.
307  Protein purification was carried out using an amylose resin purification system (NEB) following
308  the manufacturer’s instructions. Double-stranded oligonucleotide probes were synthesized and
309 labelled with biotin at the 5’end. EMSA was carried out using the LightShift® Chemiluminescent
310 EMSA Kit (Thermo Fisher Scientific, USA). Competition experiments were performed with

311  different amounts of nonlabelled oligonucleotides. The mutated competitors were generated by
312 replacing eight base pairs in the WOX binding elements (TTAATGAG to AAAAAAAA).

313
314

13
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Results

Full-length cloning and sequence analysis of LIWOX9 and LIWOX11

On the basis of transcriptome data (accession number: SRP103184), we cloned the
full-length sequences of LIWOX9 (1008 bp) and LIWOX11 (699 bp) by RLM-RACE and found
that they encoded 335 and 232 amino acids, respectively (Fig. 1a). Amino acid sequence analysis
showed that both LIWOX9 and LIWOX11 contained HOX domains at the N-terminus (Fig. 1a).
Sequence alignment confirmed a conserved HOX domain at the N-terminus in LIWOX9 and
LIWOX11 (Fig. 1b,c). A phylogenetic tree of LIWOX9, LIWOX11 and the members of the
WOX transcription factor family in A. thaliana was constructed, and the results showed that
LIWOX9 and LIWOX11 belonged to the intermediate evolutionary branch of the WOX family
(Fig. 1d). Phylogenetic tree of WOX9 and WOX11 from different species showed that LIWOX9
and LIWOX11 were clustered with the sequences of other monocotyledonous species and were

closely related to the WOX9 and WOX11 amino acid sequences of Palmaceae plants (Fig. 1e, f).

14
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Fig. 1. Full-length cloning, sequence alignment and phylogenetic tree of LIWWOX9
and LIWOX11.

a: Full-length cloning and domain prediction of LIWOX9 and LIWOX11. b:
Multiple sequence alignment of LIWOX9 with sequences of other species. c:
Multiple sequence alignment of LIWOX11 with sequences of other species. The red
boxes in B and C represent the HOX domain. LI: Liliumlancifolium, Eg: Elaeis
guineensis (EgWOX9, XP 029121206.1; EgWOX11, XP 010938138.1), Pe:
Phalaenopsis equestris (PeWOX9, XP 020596429.1; PeWOX11, XP 020573379.1),
Jc: Jatropha curcas (JcWOX9, XP 012092417.1; JceWOX11, XP 012070529.1), Vv:
Mitis vinifera (VVWOX9, RVW37990.1; VvWOX11, XP 019077126.1), At:
Arabidopsis thaliana (AtWOX9, NP 180994.2; AtWOX11, NP 187016.2). d:
Neighbour-joining tree of the LIWOX9 and LIWOX11 amino acid sequences of L.
lancifolium and WOX family amino acid sequences from A. thaliana. e:
Neighbour-joining tree of the LIWOX9 amino acid sequence of L. lancifolium and
WOXO9 amino acid sequences from other species. f: Neighbour-joining tree of the
LIWOXI11 amino acid sequence of L. lancifoliumand WOX11 amino acid
sequences from other species. Bootstrap values from 1,000 replicates were used to

assess the robustness of the tree.

329

330 Expression pattern and subcellular localization of LIWOX9 and LIWOX11

331 To study the subcellular localization of LIWOX9 and LIWOX11, we fused the LIWOX9
332 and LIWOXI11 proteins with a green fluorescent protein (GFP) tag and introduced them into the
333  leaves of Nicotiana benthamiana. The subcellular localization results showed that the GFP

334  signals of the LIWOX9-GFP and LIWOX11-GFP fusion proteins were located in the nuclei of
335  tobacco leaf epidermal cells (Fig. 2a), indicating that LIWOX9 and LIWOX11 may function as

336  transcription factors in the nucleus.
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Fig. 2. Subcellular localization, expression patterns and fluorescence in situ hybridization of
LIWOX9 and LIWOX11. a: Subcellular localization of LIWOX9-GFP and LIWOX11-GFP
proteins in Nicotiana benthamiana leaf epidermal cells with 4’,6-diamidino-2-phenylindole
(DAPI) staining. Scale bars = 50 um. b: LIWOX9 and LIWOX11 expression during bulbil
formation. ¢: LIWOX9 and LIWOX11 expression in different tissues. Values are means + SDs
(n=3). Lowercase letters (a-d in B; a-e in C) indicate statistically significant differences at P <
0.05. d: Gene-specific probe of LIWOX9 used in fluorescence in situ hybridization. e:
Fluorescence in situ hybridization of LIWOX9 during bulbil formation. f: Gene-specific probe
of LIWOX11 used in fluorescence in situ hybridization. g: Fluorescence in situ hybridization of
LIWOX11 during bulbil formation. Scale bar in A (S2) and B (S1, S2), 100 um. Scale bar in A
(S1, S3-S5) and B (S3-S5), 500 pum.

337 The expression of LIWOX9 and LIWOX11 increased continuously during bulbil formation
338  (Fig. 2b). LIWOX9 was mainly expressed in the leaf axil (S4 stage), shoot apical meristem, scale,
339  stigma and ovary, with the highest relative expression in the ovary and the second highest in the
340  leafaxil (Fig. 2¢). LIWOX11 was mainly expressed in the leaf axil (S4 stage), shoot apical tissue,
341 root and scale, and the highest relative expression was found in the leaf axil (S4 stage) (Fig. 2¢).
342 The relatively high expression of LIWOX9 and LIWOX11 in leaf axils further indicated that

343  LIWOX9 and LIWOX11 might be involved in bulbil formation.

344 We further detected the expression of LIWOX9 and LIWOX11 during bulbil formation by
345  fluorescence in situ hybridization (FISH). Gene-specific sequences containing the 3'-UTRs of
346  LIWOX9 and LIWOX11 were selected to synthesize the FAM -labelled fluorescent probes (Fig.
347  2d,f). Our results showed that although the LIWOX9 and LIWOX11 fluorescent signals could be
348  detected throughout the analysed tissue, the fluorescent signals of LIWOX9 and LIWOX11 were
349  mainly located in the leaf axil and gradually increased during bulbil formation (Fig. 2e,g). In

350  addition, the fluorescent signals of LIWOX9 and LIWOX11 appeared on a differentiated scale (S5
351  stage) (Fig. 2e,g). These results further indicated that LIWOX9 and LIWOX11 are involved not

352  only in the formation of the bulbil primordium but also in the differentiation of the bulbil scale.
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353

354  Overexpression of LIWOX9 and LIWOXI11 increases the number of branchesin A. thaliana
355 Bulbils can be considered a special type of branch. To investigate the function of

356  LIWOX9 and LIWOX11 in A. thaliana branches, we generated transgenic A. thaliana lines. The
357  transgenic lines were identified using the 35S-F and LIWOX9-R or LIWOX11-R primers. An
358  ~1200 or ~800 bp band was amplified from the genomic DNA of the transgenic lines, and no
359  corresponding bands were amplified from control plants (Fig. 3a). Our results demonstrated that
360  overexpression of LIWOX9 or LIWOX11 in A. thaliana increased the number of branches and
361  promoted the formation of accessory buds on inflorescences (Fig. 3b,d). The number of branches
362  was significantly higher in the 35S::LIWOX9 and 35S::LIWOX11 transgenic lines than in the
363  wild type (Fig. 3c,e). Interestingly, we found that the 35S::LIWOX9 transgenic lines showed

364  some abnormal phenotypes, such as the development of the inflorescence branches into a single

365 flower and the abnormal elongation of stem internodes in rosette leaves (Fig. 3b).
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Fig. 3. The phenotypes of 35S :LIWOX9 and 35S::LIWOX11 transgenic lines and wild-type
Arabidopsisthaliana plants. a: The transgenic plants of the T3 generation of A. thaliana were
detected by PCR. ‘+’ indicates the positive control and ‘-’ indicates the negative control. 1-5
represent different transgenic lines overexpressing LIWOXO9, 6-11 represent different transgenic
lines overexpressing LIWOX11. b: The branching phenotypes of wild-type Col and transgenic
plants overexpressing LIWOXO. ¢: The numbers of branches on wild-type Col and transgenic
plants overexpressing LIWOXO9. d: The branching phenotypes of wild-type Col and transgenic

plants overexpressing LIWOX11. e: The numbers of branches on wild-type Col and transgenic

plants overexpressing LIWOX11.

366

367 LIWOX9 and LIWOX11 overexpression promotes bulbil formation

368 To preliminarily understand the functions of LIWOX9 and LIWOX11 during bulbil

369  formation, we further evaluated the functions of LIWOX9 and LIWOX11 via their transient

370  overexpression in leaf axils through an in vitro bulbil induction system. Our results showed that
371  after 6 d of culture, most of the developing leaf axils in the control group and the 35S :GUS
372  treatment group were still in the S3 stage (Fig. 4a), but the overexpression of LIWOX9 and

373  LIWOX11 could significantly promote the formation of bulbils (Fig. 4a), and the rate of bulbil
374  induction was significantly higher than that in the control group and the 35S :GUS treatment
375  group (Fig. 4b). These results indicated that LIWOX9 and LIWOX11 play important roles during
376  bulbil formation.
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Fig. 4. Phenotype and relative expression of LIWOX9 and LIWOX11 in leaf axils
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after overexpressing or silencing LIWOX9 and LIWOX11. a: The phenotype of the
leaf axil after the transient overexpression of LIWOX9 and LIWOX11. b: The bulbil
induction rate after the transient overexpression of LIWOX9 and LIWOX11. The red
box in figure A shows an enlargement of the indicated portion of the leaf axil.
Values are means + SDs (n=3). Scale bar in A, I mm. ¢: Specific fragments of
genes used in VIGS experiments. d: PCR was used to detect the presence of the
TRV1 and TRV2 viruses in the leaf axils. CK is the negative control, TRV?2 is the
positive control. Lanes 1, 3, 6 and 9 show TRV1 detection; 2, 4, 7 and 10 show the
detection of coat proteins in TRV2; and lanes 5, 8 and 11 show the detection of
inserts in TRV2. e: The phenotype of the leaf axil after silencing LIWOX9 and
LIWOX11. f: The relative expression of LIWOX9 and LIWOX11 in leaf axils after
silencing LIWOX9 and LIWOX11. g: The bulbil induction rate after silencing
LIWOX9 and LIWOX11. Values are means + SDs (n=3). Scale bar in C, 50 mm.
Lowercase letters (a-b in D, E) indicate statistically significant differences at P <

0.05.

LIWOX9 and LIWOX11 silencing inhibits bulbil formation

To further understand the functions of LIWOX9 and LIWOX11 during bulbil formation,
we constructed the TRV2-LIWOX9 and TRV2-LIWOX11 silencing vectors by selecting specific
fragments of the LIWOX9 and LIWOX11 genes (Fig. 4¢). After 12 d of infection with the empty
TRV2 vector and the recombinant TRV2-LIWOX9 or TRV2-LIWOX11 vector, leaf axil cDNAs
were obtained, and TRV 1-F/R and TRV2-F/R were used for PCR-based detection. The results
showed that in leaf axils infected with the empty TRV2 vector, TRV2-LIWOX9 or
TRV2-LIWOX11, the target bands of pTRV1, the coat protein in pTRV2 and the insert fragment
in pTRV2 could be detected (Fig. 4d). These results indicated that TRV2, TRV2-LIWOX9 and
TRV2-LIWOX11 were successfully inserted and expressed in the genome of L. lancifolium.

The silencing of the LIWOX9 and LIWOX11 genes in leaf axils was detected by qRT-PCR.
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389  The results showed that the expression of LIWOX9 and LIWOX11 in leaf axils infected with

390 TRV2-LIWOX9 or TRV2-LIWOX11 was significantly lower than that in the control and the leaf
391  axils infected with TRV2 (Fig. 4f). These findings indicated that LIWOX9 and LIWOX11 were
392 effectively silenced in TRV2-LIWOX9- and TRV2-LIWOX1-infected leaf axils, respectively.
393 The silencing experiment results showed that after LIWOX9 and LIWOX11 silencing, the
394  formation of bulbils was inhibited compared to that in the control group and the empty TRV2
395  treatment group (Fig. 4e) and the rate of bulbil induction decreased significantly (Fig. 4g). These
396  results indicated that LIWOX9 and LIWOX11 play important roles by positively regulating bulbil
397  formation.

398

399  Cytokininsinduce the expression of LIWOX9 and LIWOX11

400 Our previous studies have revealed that cytokinins can promote bulbil formation through
401  type-B RRs. To study whether the expression of LIWOX9 and LIWOX11 is regulated by

402  cytokinins, we detected the expression of LIWOX9 and LIWOX11 after exogenous cytokinin

403  treatment and the silencing of type-B LIRRs. The results showed that after treatment with 6-BA,
404  the expression of LIWOX9 and LIWOX11 during bulbil formation was significantly higher than in
405  the control group (Fig. 5a). To further study whether the expression of LIWOX9 and LIWOX11
406  was directly induced by exogenous cytokinins, we treated leaf axils at the S4 stage with 6-BA.
407  The results showed that after exogenous 6-BA treatment, the expression of LIWOX9 and

408  LIWOX11 was rapidly induced (Fig. 5b), indicating that exogenous cytokinins could induce the
409  expression of LIWOX9 and LIWOX11. In addition, because cytokinins regulate downstream

410  genes through type-B RRs, we detected the expression of LIWOX9 and LIWOX11 after the

411  silencing of five type-B LIRRs in leaf axils. The results showed that the expression of LIWOX9
412 and LIWOX11 decreased significantly after the silencing of a single type-B LIRR gene, while
413  after the silencing of five type-B LIRRs, the relative expression of LIWOX9 and LIWOX11 was
414  almost undetectable (Fig. Sc). These results suggest that cytokinins can induce the expression of

415  LIWOX9 and LIWOX11 and that type-B LIRRs may directly regulate the expression of LIWOX9
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Fig. 5. Expression of LIWOX9 and LIWOX11 after treatment with 6-BA and type-B

LIRR silencing. a: Expression of LIWOX9 and LIWOX11 after treatment with 4 uM

6-BA during bulbil formation. b: Expression of LIWOX9 and LIWOX11 in leaf axils
at stage S4 after 10 mM 6-BA treatment. ¢: Expression of LIWOX9 and LIWOX11

after type-B LIRR silencing. Lowercase letters (a-e in C) indicate statistically

significant differences at P < 0.05.

417
418  Type-B LIRRs promote the transcription of LIWOX9 and LIWOX11
419 To study whether type-B LIRRs regulate the transcription of LIWOX9 and LIWOX11, we

420  first cloned the promoter sequences of LIWOX9 and LIWOX11 via the chromosome walking
25
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technique and obtained promoters with lengths of 1318 bp and 2351 bp, respectively (Fig. 6a).
The use of the New Place and PlantCARE online element prediction tools showed that the
promoters of LIWOX9 and LIWOX11 contained a large number of type-B RR binding elements

(NGATT/C) (Fig. 6a). Furthermore, we studied the promoter activities of LIWOX9 and LIWOX11
26
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425  intobacco leaves and L. lancifolium stem segments. GUS staining results showed that both the
426  LIWOX9 and LIWOX11 promoters were active and that their activity was weaker than that of the
427 35S promoter (Fig. 6b). In the stem segments, we observed stronger GUS staining of the

428  promoters of LIWOX9 and LIWOX11 in the leaf axils (Fig. 6b), indicating that the promoters of
429  LIWOX9 and LIWOX11 may show tissue specificity.

a
pro Wo’;zOb GAT(TIC)
P
| | =
-131a| I I I I ” L_ ATG
proWoX11 500bp GAT(T/C)
-2351
| I I I il P~
I I [ | — ATe

P35S:GUS proWOX9:GUS  proWOX11:GUS

Fig. 6. Detection of LIWOX9 and LIWOX11 promoter activity. a: The LIWOX9 and

LIWOX11 promoters contain a large number of type-B RR binding elements. b: The
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expression of GUSwas driven by the 35§ LIWOX9 and LIWOX11 promoters, and
GUS staining was performed in Nicotiana benthamiana leaves and Lilium
lancifolium stems. In B, the N. benthamiana leaf scale bar is 50 mm, and the L.

lancifolium stem scale bar is 1 mm.

430 Then, we divided the LIWOX9 and LIWOX11 promoters into three or five segments,

431  respectively, according to the positions of GATT/C elements to construct yeast bait vectors (Fig.
432 7a). Yeast one-hybrid results showed that five type-B LIRRs could strongly bind the promoter
433 sequences of LIWOX9 and LIWOX11. Among these sequences, the protWOX9-I fragment could be
434 bound by LIRR1, LIRR2, LIRR10 and LIRR12 (Fig. 7b); the proWOX9-11 fragment could be
435  bound by LIRR2, LIRR11 and LIRR12 (Fig. 7b); and the proWOX9-I11 fragment could not be
436  bound by any LIRR because it contained no predicted binding element (Fig. 7b). The

437  proWOX11-l fragments could be bound by LIRR1, LIRR10 and LIRR12 (Fig. 7¢); the

438  proWOX11-1l fragments could be bound by LIRR1, LIRR2 and LIRR10 (Fig. 7¢); the

439  proWOX11-I11 fragments could be bound by LIRR1, LIRR10, LIRR11 and LIRR12 (Fig. 7¢); the
440  proWOX11-1V fragments could be bound by LIRR2, LIRR10 and LIRR11 (Fig. 7¢); and the

441  proWOX11-V fragments could be bound by LIRR1, LIRR2 and LIRR12 (Fig. 7¢).
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Fig. 7. Yeast one-hybrid and dual-luciferase reporter assays and EMSAs of type-B
LIRRs with the LIWOX9 and LIWOX11 promoters. a: Division of the LIWOX9 and
LIWOX11 promoters into fragments according to the location of type-B RR binding
elements (GATT/C). b: Yeast one-hybrid assays between five type-B LIRRs and
LIWOX9 promoter fragments. ¢: Yeast one-hybrid assays between type-B LIRRs and
LIWOX11 promoter fragments. d: The transient activation test in tobacco leaves
verified the transcriptional activation ability of the five type-B LIRRs toward the
LIWOX9 and LIWOX11 promoters. e: The binding ability of His-LIRR1 protein toward
the proLIWOX9-1 and proLIWOX11-2 fragments was verified by EMSAs. The binding
element GATT was mutated to TTTT in the mutant probe. Asterisks in A indicate
significant differences compared with the control, with two asterisks indicating P <

0.01.

Furthermore, we studied the transcriptional activation ability of five type-B LIRRs
toward the LIWOX9 and LIWOX11 promoters in tobacco leaves. The results showed that
compared with the control group, all five type-B LIRRs could significantly activate the
transcription of the LIWOX9 and LIWOX11 promoters (Fig. 7d). In addition, we selected 30 bp
fragments of the proWWOX9-1 and proWOX11-1| fragments containing GATT/C elements to
synthesize biotin-labelled probes for electrophoretic mobility shift assays (EMSAs). The results
showed that the His-LIRR1 protein could directly bind the proWOX9-I and proWOX11-I|

fragments (Fig. 7e).

LIWOX11 mediates the cytokinin pathway by inhibiting the transcription of LIRR9

LIRR9 is a type-A response regulator gene whose product is a negative regulator of
cytokinin signalling. Our previous studies have revealed that LIRR9 is involved in bulbil
formation and transcriptional regulation by LIRR1. In this study, we found a WOX binding
element (TTAATGAG) 2097 bp upstream of ATG in the promoter of LIRR9 (Fig. 8a). To
determine whether LIRR9 is a downstream gene directly regulated by LIWOX9 or LIWOX11, we
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that LIWOX9 did not affect transcription from the LIRR9 promoter (data not shown), but
LIWOX11significantly inhibited transcription from the LIRRO promoter (Fig. 8b). The results of
yeast one-hybrid assays showed that LIWOX11 could bind the LIRR9 promoter fragment
containing the TTAATGAG element (Fig. 8¢), while LIWOX9 did not show any binding
capacity (data not shown). Furthermore, a biotin-labelled probe was synthesized by selecting a

30 bp fragment of the LIRR9 promoter containing the TTAATGAG element for EMSA. The

EMSA results showed that LIWOX11 could directly bind the LIRRO promoter sequence (Fig.
8d).
a 500 bp dWiIdlype: 5'-TCTGAGACATCACCGCGTTAATGAGAGTAA-3’
-“l“ TTAATGAG E— = Mutanttype: 5'-TCTGAGACATCACCGCGAAAAAAAAAGTAA-3'
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Fig. 8. The interaction between LIWOX11 and the LIRR9 promoter was verified by
dual-luciferase reporter and yeast one-hybrid assays and EMSA.

a: The transient activation test in tobacco leaves verified the transcriptional
activation ability of LIWOX11 toward the LIRR9 promoter. b: The binding ability
of LIWOX11 toward the LIRR9 promoter was verified by a yeast one-hybrid assay.
¢: The binding ability of the MBP-LIWOXI11 protein toward the proLIRR9
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fragment was verified by EMSA. The binding element TTAATGA was mutated to
AAAAAAA in the mutant probe. d: The transient activation test in tobacco leaves
verified the transcriptional activation ability of LIWOX11 toward the LIWOX9
promoter. Asterisks in C indicate significant differences compared with the control,

with two asterisks indicating P < 0.01.
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468  Discussion

469

470  LIWOX9 and LIWOXI11 arewidely expressed in L. lancifolium

471 WOX9 and WOX11 show broad expression profiles in different species (Wu et al., 2005;
472  Zhao et al., 2009; Cheng et al., 2014; Li et al., 2018). In this study, we showed that LIWOX9 was
473  mainly expressed in the leaf axil (S4 stage), shoot apical tissue, scale, stigma and ovary and that
474  LIWOX11 was mainly expressed in the leaf axil (S4 stage), shoot apical tissue, root and scale.
475  Through in situ hybridization and the analysis of GUS reporter promoter fusions, WOX9 could
476  be detected in the vegetative SAM, leaf primordia, floral meristems, early floral organs and root
477  meristematic zone (Wu et al., 2005). OsSWOX11 mRNA was detected in calli, roots, 7-d-old

478  seedlings, SAM, leaf primordia, and young leaves (Zhao et al., 2009). Our results similarly

479  showed that LIWOX9 and LIWOX11 were highly expressed in leaf axils (S4 stage) and apical
480  shoots. In accord with the reported relationships of WOX11 with the development of lateral roots
481  and crown roots in A. thaliana and O. sativa (Liu et al., 2014; Hu & Xu, 2016), our results

482  showed that LIWOX11 was highly expressed in roots. Unlike previous research results, our

483  results showed that LIWOX9 presented the highest relative expression in female reproductive
484  organs but was almost undetectable in male reproductive organs. In M. truncatula, MtWOX9 is
485  mainly expressed in nodules, leaves and flowers but is expressed at lower levels in ovaries (Li et
486  al., 2018). OsWOX9 is expressed in axillary tillers, panicles, stamen primordia and pistil

487  primordia but can only be detected in anthers after flower development maturity (Cheng et al.,
488  2014).

489

490  LIWOX9 and LIWOXI11 are positive regulators during bulbil formation

491 Members of the intermediate clade are widely expressed in plants and usually play a role
492  in maintaining meristem cell division (Wu €t al., 2007; Breuninger et al., 2008; Zhao et al.,

493 2009). In A. thaliana, when WOX9 function is lost, cells divide abnormally, and the development
494  of the shoot meristem is defective (Wu et al., 2005; Skylar et al., 2010). In the Oswox11 mutant,
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495  the crown root number and plant height are decreased, and the growth rate and flowering time
496  are delayed, while in OSWOX11-overexpressing lines, the number of crown roots is increased,
497  ectopic crown roots form at the base of the spikelets, and the growth rate increases significantly
498  (Zhao et al., 2009). In this study, the overexpression of LIWOX9 and LIWOX11 in A. thaliana
499  significantly increased branch numbers and promoted bulbil formation in L. lancifolium. We
500  found that the rate of bulbil induction decreased after the silencing of LIWOX9 and LIWOX11
501  expression but increased significantly after LIWOX9 and LIWOX11 overexpression, indicating
502  that LIWOX9 and LIWOX11 are positive regulators of bulbil formation. After the overexpression
503  of LIWOX9 and LIWOX11, we also observed the abnormal proliferation of axillary tissue cells
504  and the development of large purple-black bulbils on leaf axils (Fig. S2), which indicated that
505  LIWOX9 and LIWOX11 maintain the normal division of the meristem.

506 A recent study showed that OsWOX11 can recruit the H3K27me3 demethylase JIMJ705
507  to activate the expression of related genes during rice shoot development (Cheng €t al., 2018).
508  We speculate that LIWOX11 may regulate the expression of downstream genes through a similar
509  mechanism to promote the formation of bulbils.

510

511  Cytokininsinduce the transcription of LIWOX9 and LIWOX11 through type-B LIRRs

512 Many studies have shown that WOX family genes can be induced by plant hormones,
513  such as auxin, cytokinin and gibberellin (Gonzali €t al., 2005; Leibfried et al., 2005; Weijers et
514  al., 2006; Sarkar et al., 2007; Skylar et al., 2010). Cheng et al. (2014) analysed the promoters of
515  rice WOX family genes and found that there are abundant hormone response elements in these
516  promoters, with the promoter regions of all family members including cytokinin response

517  elements (NGATT/C) and auxin response elements (TGTATC or GAGACA). Further study

518  showed that OSWOX5, OsWOX11, OsSWOX12A and OsWOX12B could be rapidly induced by
519  NAA and 6-BA (Cheng et al., 2014). In our study, we also found a large number of plant

520  hormone response elements, especially cytokinin response elements, in the LIWOX9 and

521  LIWOX11 promoters. Then, we demonstrated that the expression of LIWOX9 and LIWOX11 could
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be induced by cytokinin, during which the expression of LIWOXO9 reached a peak after 2.5 h of

induction, and the expression of LIWOX11 reached its highest level after 2 h of induction.

LIWOX11 mediates cytokinin signalling by inhibiting the transcription of LIRR9

Some studies have shown that both WOX9 and WOX11 can mediate cytokinin pathways
to regulate plant development (Wu et al., 2005, 2007; Zhao et al., 2009; Wang et al., 2014c;
Jiang et al., 2017). In rice crown root formation, OsWOX11 can directly bind and inhibit the
transcription of OSRR2 to mediate cytokinin signalling (Zhao et al., 2009). OsRR2 is specifically
expressed in the crown root and is a member of the type-A RRs, which are negative regulators of
cytokinin signalling. Therefore, after the transcription of OSRR2 is inhibited, cytokinin signalling
is enhanced to induce crown root formation (Zhao et al., 2009). The ERF3 protein can bind to
the OsWOX11 protein and further enhance the transcriptional inhibition of OsRR2 by OsWOX11
(Zhao et al., 2015). We identified a similar mechanism, as our results showed that LIWOX11 can
directly bind the promoter of LIRR9, a type-A LIRR gene, and inhibit its transcription to enhance
cytokinin signalling and thus promote bulbil formation.

WOX9 mediates cytokinin pathway signalling in a different way. During A. thaliana
seedling development, WOX9 seems to promote the expression of type-A RRs. In the wox9
mutant, ARRS expression is decreased, which causes shoot meristem development termination
(Skylar et al., 2010; Skylar & Wu, 2010). In rice, OsWOXO9 plays a negative role in regulating
the expression of type-A RRs (Wang et al., 2014c). A study in rice revealed that OSWOX9
modulates the cytokinin pathway to regulate the growth height and flowering time of tillers and
main branches (Wang et al., 2014c). In the Oswox9 mutant, tiller elongation is inhibited, and in
the shortened internodes, the expression of OSCKX4, OsCKX9 and several type-A OsSRR genes
(OsRR6, OsRR9, OsRR10) is increased (Wang et al., 2014¢). However, in our study, we did not
find an effect of LIWOX9 on the expression of LIRRO.

LIWOX9 may mediate gibberellin signalling
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549 In the Oswox9 mutant, the tillers have shorter internodes with cells that are fewer in

550  number and unelongated relative to those of the wild type, and OSWOX9 activity in internode
551  elongation is directly or indirectly associated with GA signalling (Wang et al., 2014c¢). The organ
552 boundary gene ARABIDOPS STHALIANA HOMEOBOX GENE 1 (ATH1) and the gibberellin
553  signalling DELLA genes maintain the compressed rosette growth habit of Arabidopsis. The loss
554  of ATH1 and DELLA function causes a change from a rosette to caulescent growth habit (Ejaz et
555 al., 2021). The phenotypes of LIWOX9-overexpressing Arabidopsis lines show elongated

556 internodes, and we speculate that LIWOX9 may regulate the internode elongation associated with
557  GA signalling.

558

559  LIWOX9 and LIWOX11 may be involved in scale development and anthocyanin synthesis
560 A recent study on the genome of garlic bulb plants showed that two WOX family genes
561  (Asa7G00799.1 and Asa3G03517.1) are involved in bulb development, among which

562  Asa7G00799.1 is expressed specifically in bulbs and positively correlated with bulb weight (Sun
563  etal., 2020). Our results showed that LIWOX9 and LIWOX11 were highly expressed in scales and
564  that the expression of LIWOX9 and LIWOX11 reached the highest level at the stage of bulbil

565  scale development (S5), indicating that LIWOX9 and LIWOX11 may be involved in the

566  development of lily bulbs.

567 Interestingly, we found that the overexpression of LIWOX9 and LIWOX11 not only

568  promoted bulbil formation but also resulted in abnormal purple-black bulbils on the leaf axils
569  (Fig. S2). Although bulbils may gradually turn purple-black during development under normal
570  circumstances, the overexpression of LIWOX9 and LIWOX11 significantly advanced this change.
571  Arecent study showed that PQWOX11 in Panax ginseng can positively regulate the expression of
572  ERF1B (an AP2/ETHYLENE-RESPONS VE FACTOR) and thus regulate the biosynthesis of

573  ginsenosides (Liu et al., 2020a,b). Therefore, we speculate that LIWOX9 and LIWOX11 may be
574  involved in the synthesis of anthocyanins.

575
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576  Conclusion

577 In conclusion, we revealed the molecular mechanism by which WOX genes cooperate
578  with cytokinin signalling to regulate bulbil formation. Type-B LIRRs promote the transcription
579  of LIWOX9 and LIWOX11, and LIWOX11 inhibits the transcription of type-A LIRR9 to enhance

580  cytokinin signalling, thus promoting bulbil formation (Fig. 9).
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Fig. 9. Model of WOX gene cooperation with cytokinin signalling to regulate the

bulbil formation.
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Fig. 1 Full-length cloning, sequence alignment and phylogenetic tree of LIWOX9 and LIWOX11.

a: Full-length cloning and domain prediction of LIWOX9 and LIWOX11. b: Multiple sequence
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alignment of LIWOX9 with sequences of other species. ¢: Multiple sequence alignment of LIWOX11

with sequences of other species. The red boxes in B and C represent the HOX domain. LI: Lilium
lancifolium, Eg: Elaeis guineensis (EgWOX9, XP 029121206.1; EgQWOX11, XP 010938138.1), Pe:
Phalaenopsis equestris (PeWOX9, XP 020596429.1; PeWOX11, XP 020573379.1), Jc: Jatropha
curcas (JcWOX9, XP 012092417.1; JeWOX11, XP 012070529.1), Vv: Vitis vinifera (VVWOXO,
RVW37990.1; VWWOX11, XP 019077126.1), At: Arabidopsis thaliana (AtWOX9, NP 180994.2;
AtWOX11, NP 187016.2). d: Neighbour-joining tree of the LIWOX9 and LIWOX11 amino acid
sequences of L. lancifolium and WOX family amino acid sequences from A. thaliana. e: Neighbour-
joining tree of the LIWOX9 amino acid sequence of L. lancifolium and WOX9 amino acid sequences
from other species. f: Neighbour-joining tree of the LIWOX11 amino acid sequence of L. lancifolium
and WOX11 amino acid sequences from other species. Bootstrap values from 1,000 replicates were

used to assess the robustness of the tree.
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Fig. 2 Subcellular localization, expression patterns and fluorescence in situ hybridization of LIWOX9
and LIWOX11. a: Subcellular localization of LIWOX9-GFP and LIWOX11-GFP proteins in Nicotiana
benthamiana leaf epidermal cells with 4’,6-diamidino-2-phenylindole (DAPI) staining. Scale bars =
50 pm. b: LIWOX9 and LIWOX11 expression during bulbil formation. c¢: LIWOX9 and LIWOX11
expression in different tissues. Values are means =SDs (n=3). Lowercase letters (a-d in B; a-e in C)

indicate statistically significant differences at P < 0.05. d: Gene-specific probe of LIWOX9 used in

fluorescence in situ hybridization. e: Fluorescence in situ hybridization of LIWOX9 during bulbil
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formation. f: Gene-specific probe of LIWOX11 used in fluorescence in situ hybridization. g:

Fluorescence in situ hybridization of LIWOX11 during bulbil formation. Scale bar in A (S2) and B

(S1, S2), 100 um. Scale bar in A (S1, S3-S5) and B (S3-S5), 500 pum.
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Fig. 3 The phenotypes of 35S::LIWOX9 and 35S::LIWOX11 transgenic lines and wild-type
Arabidopsis thaliana plants. a: The transgenic plants of the T3 generation of A. thaliana were detected
by PCR. ‘+’ indicates the positive control and -’ indicates the negative control. 1-5 represent different

transgenic lines overexpressing LIWOX9, 6-11 represent different transgenic lines overexpressing
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LIWOX11. b: The branching phenotypes of wild-type Col and transgenic plants overexpressing

LIWOX9. c: The numbers of branches on wild-type Col and transgenic plants overexpressing LIWOX9.
d: The branching phenotypes of wild-type Col and transgenic plants overexpressing LIWOX11. e: The

numbers of branches on wild-type Col and transgenic plants overexpressing LIWOX11.
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Fig. 4 Phenotype and relative expression of LIWOX9 and LIWOX11 in leaf axils after overexpressing
or silencing LIWOX9 and LIWOX1l. a: The phenotype of the leaf axil after the transient
overexpression of LIWOX9 and LIWOX11. b: The bulbil induction rate after the transient
overexpression of LIWOX9 and LIWOX11. The red box in figure A shows an enlargement of the
indicated portion of the leaf axil. Values are means £SDs (n=3). Scale bar in A, 1 mm. c: Specific
fragments of genes used in VIGS experiments. d: PCR was used to detect the presence of the TRV1
and TRV2 viruses in the leaf axils. CK is the negative control, TRV2 is the positive control. Lanes 1,
3, 6 and 9 show TRV1 detection; 2, 4, 7 and 10 show the detection of coat proteins in TRV2; and
lanes 5, 8 and 11 show the detection of inserts in TRV2. e: The phenotype of the leaf axil after
silencing LIWOX9 and LIWOX11. f: The relative expression of LIWOX9 and LIWOX11 in leaf axils

after silencing LIWOX9 and LIWOX11. g: The bulbil induction rate after silencing LIWOX9 and
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LIWOX11. Values are means *=SDs (n=3). Scale bar in C, 50 mm. Lowercase letters (a-b in D, E)

indicate statistically significant differences at P < 0.05.
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Fig. 5 Expression of LIWOX9 and LIWOX11 after treatment with 6-BA and type-B LIRR silencing. a:
Expression of LIWOX9 and LIWOX11 after treatment with 4 uM 6-BA during bulbil formation. b:
Expression of LIWOX9 and LIWOX11 in leaf axils at stage S4 after 10 mM 6-BA treatment. c:
Expression of LIWOX9 and LIWOX11 after type-B LIRR silencing. Lowercase letters (a-e in C)

indicate statistically significant differences at P < 0.05.
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Fig. 6 Detection of LIWOX9 and LIWOX11 promoter activity. a: The LIWOX9 and LIWOX11
promoters contain a large number of type-B RR binding elements. b: The expression of GUS was
driven by the 35S, LIWOX9 and LIWOX11 promoters, and GUS staining was performed in Nicotiana

benthamiana leaves and Lilium lancifolium stems. In B, the N. benthamiana leaf scale bar is 50 mm,

and the L. lancifolium stem scale bar is 1 mm.
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Fig. 7. Yeast one-hybrid and dual-luciferase reporter assays and EMSASs of type-B LIRRs with the

LIWOX9 and LIWOX11 promoters. a: Division of the LIWOX9 and LIWOX11 promoters into
fragments according to the location of type-B RR binding elements (GATT/C). b: Yeast one-hybrid
assays between five type-B LIRRs and LIWOX9 promoter fragments. c: Yeast one-hybrid assays
between type-B LIRRs and LIWOX11 promoter fragments. d: The transient activation test in tobacco

leaves verified the transcriptional activation ability of the five type-B LIRRs toward the LIWOX9 and
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LIWOX11 promoters. e: The binding ability of His-LIRR1 protein toward the proLIWOX9-1 and

proLIWOX11-2 fragments was verified by EMSAs. The binding element GATT was mutated to TTTT

in the mutant probe. Asterisks in A indicate significant differences compared with the control, with

two asterisks indicating P < 0.01.
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Fig. 8 The interaction between LIWOX11 and the LIRR9 promoter was verified by dual-luciferase
reporter and yeast one-hybrid assays and EMSA.

a: The transient activation test in tobacco leaves verified the transcriptional activation ability of
LIWOX11 toward the LIRR9 promoter. b: The binding ability of LIWOX11 toward the LIRR9
promoter was verified by a yeast one-hybrid assay. ¢: The binding ability of the MBP-LIWOX11
protein toward the proLIRR9 fragment was verified by EMSA. The binding element TTAATGA was
mutated to AAAAAAA in the mutant probe. d: The transient activation test in tobacco leaves verified

the transcriptional activation ability of LIWOX211 toward the LIWOX9 promoter. Asterisks in C

indicate significant differences compared with the control, with two asterisks indicating P < 0.01.
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Fig. 9 Model of WOX gene cooperation with cytokinin signalling to regulate the bulbil formation.
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Supplemental Figure 1. The expression of WOX genes during bulbil formation. Values are means +

SDs (n=3). Lowercase letters (a-d) indicate statistically significant differences at P < 0.05.
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LIWOX9 and LIWOX11.
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