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We explore the use of literature-curated signed causal gene

expression and gene-function relationships to construct un-

supervised embeddings of genes, biological functions, and

diseases. Our goal is to prioritize and predict activating and

inhibiting functional associations of genes, and to discover

hidden relationships between functions. As an application,

we are particularly interested in the automatic construction

of networks that capture relevant biology in a given disease

context.

We evaluated several unsupervised gene embedding models

leveraging literature-curated signed causal gene expression

findings. Using linear regression, it is shown that, based on these

gene embeddings, gene-function relationships can be predicted

with about 95% precision for the highest scoring genes. Func-

tion embedding vectors, derived from parameters of the linear

regression model, allow to infer relationships between different

functions or diseases. We show for several diseases that gene

and function embeddings can be used to recover key drivers of

pathogenesis, as well as underlying cellular and physiological

processes. These results are presented as disease-centric net-

works of genes and functions. To illustrate the applicability of

the computed gene and function embeddings to other machine

learning tasks we expanded the embedding approach to drug

molecules, and used a simple neural network to predict drug-

disease associations.
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Introduction

Many experimental observations reported in the biomedical

literature represent cause-effect relationships. Examples are

observations that directly or indirectly couple the activation

or inhibition of genes to the downstream regulation of other

genes, or the activation or inhibition of biological functions.

Collectively, such literature-derived causal relationships (1)

can be viewed as the defining features of genes and functions,

and therefore be exploited in machine learning (ML) models.

A widely used approach is the construction of mappings to

high-dimensional vector representations (2), so-called em-

beddings, that are at the heart of many modern ML methods.

The most famous example for this arguably is the word2vec

algorithm (3), which uses word proximity in a text to en-

code semantic relationships in high-dimensional word em-

beddings. Embeddings have also been applied to graphs

(4, 5) and used in scientific contexts, for instance to discover

latent knowledge in materials science (6). In the biological

context, embeddings for genes have been constructed from

protein sequences (7), protein-protein interaction networks

(8), co-expression data (9), and using text mining (10, 11).

In this work we explore the use of literature-curated signed

causal gene expression and gene-function relationships to

construct unsupervised embeddings of genes and functions.

In contrast to protein-protein interactions or correlation mea-

sures like co-expression, causal gene expression relationships

capture information about the behavior of a biological sys-

tem as a whole in response to perturbations. Here, we make

explicit use of the fact that causal interactions carry a sign

which distinguishes between activating and inhibiting effects.

The obtained gene embeddings can be used to predict and

prioritize genes affecting functions and diseases. We distin-

guish our approach from existing function prediction meth-

ods that aim to annotate previously uncharacterized genes

with their predicted function, based on some form of “guilt-

by-association”, i.e. the assumption that co-localized and in-

teracting genes or proteins are more likely to be functionally

correlated (12). Here, in contrast, we are interested in the

identification of the most relevant genes causally affecting

a given function or disease. These genes can either be pre-

viously known to be associated with that function or purely

predicted. In the context of diseases, gene prioritization ap-

proaches were previously developed based on matrix factor-

ization (13, 14), but those do not distinguish between activat-

ing and inhibiting effects. In addition to gene embeddings,

we also construct function embedding vectors that allow to

infer previously unknown signed function-function relation-

ships, including disease-function associations that point to

disease mechanisms and involved cell types or tissues.

Our embeddings are generally useful to construct biological

networks that highlight some mechanism or key contexts. A

recent example is the “Coronavirus Network Explorer” (15)

which uses an early version of our gene-function prediction

approach to compute networks that connect SARS-CoV-2 vi-

ral proteins to host cell functions. In this paper, we illustrate

the application to biological networks by constructing disease

networks which capture disease-underlying functions and as-

sociated key genes. Embeddings are not limited to genes,

but can also be extended to other molecules including drugs.

Such embedding feature vectors can then be used in other

ML models trained for arbitrary prediction tasks. As an ex-

ample we demonstrate this for the prediction of drug-disease

associations.
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Methods

Literature-curated content. We employ the QIAGEN

Knowledge Base (QKB), a structured collection of biomed-

ical content that includes findings manually curated

from the literature as well as content from third-

party databases (https://digitalinsights.qiagen.com/products-

overview/qiagen-knowledge-base/). The QKB was used to

create a large-scale knowledge graph with nodes represent-

ing genes, chemical compounds, drugs, microRNAs, biologi-

cal functions, and diseases; and edges categorized into differ-

ent edge types representing a variety of interactions such as

gene expression, activation/inhibition, phosphorylation, and

protein-protein binding among others. In this work we par-

ticularly use two kinds of edges: 1) gene expression relation-

ships that represent the causal effect of genes on the expres-

sion of other genes, and 2) causal gene-function and gene-

disease edges that represent causal effects of genes on bio-

logical functions and diseases. We only consider edges that

have an associated direction of effect which is either activa-

tion (leading to an increase) or inhibition (leading to a de-

crease). All edges generally bundle a number of underlying

literature findings from various experimental contexts, there-

fore edge signs reflect a consensus among all those contexts.

As part of an ontology, functions are organized in a hierarchy

where, except for very general terms, parents inherit causal

gene associations (and edge signs) from their descendants.

In total, 6,757 genes and 29,553 functions are included in our

embedding model (see Supplementary data, Section 1). Here

and in the following, the term “function” generally referes

to both functions and diseases, unless we want to explicitly

make the distinction.

Unsupervised gene embeddings. In the following we de-

scribe three approaches to derive unsupervised gene em-

beddings from downstream expression signatures using

literature-curated signed causal gene expression relation-

ships. The starting point is a bipartite graph G (see Fig-

ure 1a) in which N genes (for which we will compute em-

beddings) are connected to their M expression-regulated tar-

get genes by signed edges that represent causal expression

findings from the literature. From G we define the signed,

weighted N ×M bi-adjacency matrix W , Wij =
sij√
Ni

, where

sij ∈ {−1,0,1} (activation: +1, inhibition: -1, no edge: 0),

and Ni =
∑

j |sij | is the total number of genes that are reg-

ulated by gene i. The matrix W can be viewed as taking

N -dimensional one-hot encoded gene vectors as input and

outputting normalized M -dimensional vectors corresponding

to the up/down regulation pattern (see Figure 1b). Two of

our embedding strategies (E1 and E2) are based on an ap-

proximation of the matrix W , which is associated with the

compression of the one-hot encoded input into a lower di-

mensional embedding space.

The “spectral” embedding E1 uses a low-rank approximation

of W based on singular value decomposition (16),

W̃ = UΣV T , (1)

where columns of the N × K matrix U are eigenvectors of
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Fig. 1. Gene embedding methods. (a) In the bipartite graph G, regulating genes

are connected to expression-regulated genes by signed edges that represent up-

regulating (red: +1) and down-regulating (blue: -1) causal expression findings from

the literature. Embedding vectors are computed for the N regulating genes. G

defines the signed, weighted adjacency matrix W . (b) W can be viewed as tak-

ing N -dimensional one-hot encoded gene vectors as input and outputting normal-

ized M -dimensional vectors corresponding to the up/down regulation pattern. (c)

The spectral method E1 uses a low-rank approximation W̃ = UΣV T to compute

embedding vectors, which is equivalent to training a simple 3-layer linear neural

network without bias terms and mean-squared error (MSE) loss. (d) The neural

network-based embedding strategy E2 extends the linear model by adding another

layer which includes bias and a ReLU activation function. (e) The graph-based

approach E3 uses a signed similarity graph H connecting similar and anti-similar

genes. (f) From H an unsigned graph H′ is constructed with a replicated set of

nodes. H′ allows the computation of embeddings using the node2vec algorithm

(5).

the positive definite matrix S = WW T , corresponding to its

top K eigenvalues. Entries of the matrix S represent a signed

“similarity” of genes based on their downstream regulation

patterns. Note, that the normalization factor 1/
√

Ni used

in the construction of W was chosen such that diagonal el-

ements of S are equal to one, regardless of the number of

regulated genes. The square roots of the eigenvalues of S
form the matrix elements of the diagonal K × K matrix Σ,

and V is a M × K matrix. One can think of U as projecting

one-hot encoded vectors representing single genes onto K-

dimensional embedding vectors, i.e. these embedding vec-

tors are the rows of U , where UT U = I . This spectral method

of computing embedding vectors is equivalent (up to constant

scale factors on embedding vector components) to training a

simple 3-layer linear neural network without bias terms and

mean-squared error (MSE) loss (corresponding to the Frobe-

nius norm of W̃ ), where embeddings are retrieved from the

middle layer (17) (see Figure 1c). The neural network-based

embedding strategy E2 extends this linear model by adding

another layer which includes bias and has a rectified linear

unit (ReLU) activation function in order to capture non-linear

effects (see Figure 1d). Since there is no bias term between
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the final layers for both the E1 and E2 approaches, invert-

ing the sign of an embedding vector will result in exactly the

opposite effect on downstream regulated genes.

For the third embedding strategy (E3), instead of using the

signed similarity matrix S, we construct a signed similarity

graph H that has a signed edge between two gene nodes i
and k if the two genes exhibit a similar downstream regula-

tion pattern. In particular, we compute the “z-score” zik =
1√
Nik

∑
j sijskj where Nik =

∑
j |sij ||skj | is the number

of co-regulated genes, and require the absolute value of zik

to meet a certain cut off for an edge to be present. The sign of

an edge is given by the sign of zij (see Figure 1e). From H
we construct an unsigned graph H ′ by replicating each node

of H and connecting the replicated nodes in H ′ either paral-

lel (positive edge sign) or crosswise (negative edge sign) with

unsigned edges as shown in Figure 1f. This construction of

an unsigned graph H ′ preserves the information contained in

the edge signs of H . In the next step we apply the node2vec

graph embedding algorithm (5) that samples random walks

in order to map the graph embedding problem to word2vec

using the skip-gram approach (3). Embedding vectors ui and

vi are computed for all nodes in H ′, where u and v denote

the two replicas. The final gene embedding vectors are then

obtained by taking the difference, ui −vi which preserves the

same symmetry w.r.t. sign changes as described for the spec-

tral and neural network-based approaches, i.e. a gene with

the opposite effect on expression regulation would have an

embedding vector whose sign is inverted.

Function embeddings. Functions are characterized by

their causally-associated genes that were curated from litera-

ture along with the respective direction of the effect (activa-

tion or inhibition). We construct function embedding vectors

p in the same vector space as gene embedding vectors x such

that their scalar product p · x approximates the effect of x
on p, (activation: p · x > 0, inhibition: p · x < 0, no effect:

p · x ≈ 0). This construction is in line with the symmetry de-

scribed above: a gene with opposite causal expression signa-

ture, i.e. with the embedding vector −x has also the opposite

effect −p ·x on the function p.

Function embedding vectors are determined as follows: Let

the matrix Y = {Yij} represent the effect of gene i on a

function j (activation: Yij = 1, inhibition: Yij = −1, no

effect: Yij = 0) as curated from the literature, then the

embedding vector pj for function j is determined by stan-

dard linear regression (using MSE loss), i.e. minimizing∑
i(xi ·pi −Yij)2. This leads to

pj = (UT U)−1UT yj , (2)

where the matrix U has K-dimensional gene embedding vec-

tors as rows, yj is a column vector of Y , and it is assumed

that the r.h.s. of Equation (2) is well-behaved, and no further

regularization is needed, which is usually the case if K ≪ N .

For the spectral method E1 in particular we have UT U = I ,

which simplifies Equation (2) to pj = UT yj . Note, that gene-

function prediction is viewed as a regression problem, not

classification, since the values of Yij are ordered in a se-

quence, -1, 0, 1, and there could in principle be a continuous

transition from “inhibition”, to “no effect”, to “activation”.

We finalize the construction of function embedding vectors

by also performing a normalization step, p̃j =
pj

||pj || , in order

to put embedding vectors on the same footing for all func-

tions. This is motivated by the expectation that isotropically

distributed random gene embeddings (i.e. “noise”) should

lead to the same distribution of sij = p̃j ·xi for all functions.

Gene-function prediction and prioritization. Signed

causal gene-function relationships are predicted if the abso-

lute value of the gene-function score defined by the scalar

product sij = p̃j · xi is greater than a certain threshold. For

a given function, we can think of function embedding vec-

tors p̃j , based on the construction above, to be tilted towards

“consensus” sets of function-associated genes that have simi-

lar (or anti-similar) gene embedding vectors. This means that

predicted genes that are also similar to one of these sets, as

well as all genes within these sets (that are already known

to be associated with the function), will receive high abso-

lute scores. In this sense scoring will prioritize “key” genes

that are concordant with the consensus sets. Likewise, genes

whose embedding vectors are more scattered and not simi-

lar to one of the consensus sets, will not receive high scores,

and thus not be prioritized. The choice of the embedding di-

mension K determines whether the gene-function prediction

model tends to under- or overfit. If K is too small, not enough

information will be encoded in the embedding vectors; if K
is too large, similarity between genes will not be sufficiently

represented. For example in the spectral model E1, in the

limit K = N all gene embedding vectors are orthogonal.

Gene-function scores were also transformed to z-scores (see

Supplementary data Section 4). Since z-scores measure sta-

tistical significance, this is useful to define meaningful cut

offs for top-scoring genes.

Cosine similarity for embedded functions. Similarity of

functions is determined by using cosine similarity of the asso-

ciated embedding vectors, which in our case is simply given

by their scalar product since function embedding vectors are

normalized. This scalar product can assume negative values

corresponding to “anti”-similarity, i.e. the activation of one

function being similar to the inhibition of another. Statis-

tical significance of function similarity can be assessed by

considering the standard deviation σc of the cosine similarity

distribution (centered around 0) for two random unit vectors.

Since one of these vectors can be held fixed, this is the same

as the standard deviation of a single vector component xi of a

random unit vector. From the condition
∑

i x2
i = 1 then fol-

lows that 1 =
∑

i〈x2
i 〉 = Kσ2

c since all K vector components

are equivalent. An appropriate significance threshold (at 2σc)

for the cosine similarity score is therefore 2K−1/2 which is

about 0.09 for a typical embedding dimension of K = 500.

Implementation. Algorithms were implemented in Python

using the standard scientific computing stack (numpy, scipy,
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(a)

(b)

Fig. 2. Cross validation: (a) Average AUC and precision at 5% recall for absolute

and sign prediction as a function of the embedding dimension K for models E1,

E2, and E3. (b) ROC and and precision-recall curves for the near-optimal cases

K = 500 (E1), K = 350 (E2), and K = 100 (E3). Error bars and shaded areas

reflect standard deviations across 50 independent cross-validation runs

pandas, scikit-learn). Most code was run on a standard lap-

top in minutes to hours time frame. The implementation of

the neural network-based embedding strategy E2 uses the py-

torch framework, and we ran experiments on a machine with

a T4 GPU (about 1 hour per run). For node2vec (E3) we

utilized the python implementation provided by Grover and

Leskovec (5) based on the gensim library with default pa-

rameter settings (random walks with 30 nodes, 100 walks per

node, hyperparameters p = q = 1).

Results

Cross validation of gene-function prediction. We used

the following cross-validation approach to test accuracy of

gene-function prediction. We randomly set gene-function re-

lationships Yij to zero, trained the linear regression model,

and then determined how well those removed gene-function

relationships could be predicted. To avoid artificial depen-

dencies between functions we included only “leaves” of the

function hierarchy in the subset of functions on which the

model was tested, and required that functions were supported

by at least 10 genes. A balanced test set was created by ran-

domly picking n entries of the matrix Y = {Yij} that had the

value 1, n entries that had the value -1, and 2n entries that

were zero. We repeated the procedure k times to create k in-

dependent test sets. For each test set, the selected elements

of Y were set to zero, and a model was trained using this

new matrix Y . From the resulting gene-function scores, we

then computed receiver-operating characteristic (ROC), and

precision-recall curves (PRC). Strictly speaking, zero-entries

of Y , i.e. the lack of a gene-function relationship in the cu-

rated content are not true negative examples in a training or

test set, since they do not mean that there was experimental

evidence of no functional effect. However, we can assume

that the vast majority of zero-entries in Y are true negative

examples, and the few “false” negative examples do not sig-

nificantly affect test results.

Two prediction tasks were considered. For the first task, we

predicted the presence of a gene-function relationship using

an absolute gene-function score threshold |s| for the com-

plete test set with 4n examples. For the second task, we used

the signed score itself to predict the sign of the effect, i.e.

whether it is is activating or inhibiting, and the test set was

limited to the 2n non-zero examples. There are two sub-cases

corresponding to the prediction of either activation (vs. inhi-

bition) or inhibition (vs. activation) among edges with un-

known sign, which means there are two distinct PRCs. The

ROC is symmetric w.r.t. these two sub-cases, i.e. the second

sub-case can be obtained from the first by transforming true

(TPR) and false positive rates (FPR) according to TPR → 1−
TPR, and FPR → 1− FPR, or simply by “flipping” the ROC

curve.

Two metrics are used to assess the capability of our signed

gene-function prediction model: The AUC, which measures

overall how ranking by score discriminates between true pos-

itives and negatives, and the precision in the limit of low re-

call (here set to 5%) which measures how precise the pre-

dictions for the highest-scoring genes are. We use the latter

metric because we are particularly interested in the identifica-

tion of the most relevant, key genes causally affecting a given

function or disease. In all cross-validation experiments, we

set n = 1000 and k = 50.

Figure 2a shows average AUC and precision at 5% recall

for absolute and sign prediction as a function of the embed-

ding dimension K for all models E1, E2, and E3. The neu-

ral network model E2 uses a single intermediate layer with

N2 = 1000 nodes, and the z-score cut off for the graph-based

model E3 was set to z = 1.5. Error bars shown correspond to

the measured standard deviation across the k replicated runs.

We observed that increase of the number of nodes in the in-

termediate layer, or inserting an additional layer (E2) did not

result in significant change, and larger cut off values z lead to

a decrease of AUC and precision (E3). From Figure 2a one

can obtain “optimal” embedding dimensions for which AUC

and precision are maximal. Embedding dimensions greater

than this optimal dimension will lead to over-fitting, while

smaller embedding dimensions result in under-fitting of the

model. This can be seen for all three cases, E1, E2, and

E3, with slightly different behavior of AUC and precision

curves. For the spectral case E1 (absolute prediction), the

AUC curve shows a very broad peak with maximum AUC

≈ 0.68, while precision (at 5% recall) has a plateau around
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Fig. 3. Discovery of latent biological relationships from function embeddings. (a, b)

Two-dimensional projection of embedding vectors of functions of the form “X of Y”

where X is one of the biological processes Adhesion, Proliferation, Cell movement,

and Differentiation; and Y is one of the cell type contexts given in Supplementary

Table S1 (e.g. T lymphocytes). (c) Global tSNE visualization of disease embedding

vectors. Diseases from different disease categories (cardiovascular, neurological,

immunological, infective, congenital, or cancer) tend to cluster together. Note, that

cancer and the other disease categories are not exclusive, for instance some can-

cers were also classified as immunological or neurological, and the non-cancer

classification took precedence.

95% for dimensions larger than 500, and drops sharply to-

ward lower embedding dimensions. The behaviors of cases

E1 and E2 are very close to each other (for absolute and

sign prediction) with the AUC (for absolute prediction) drop-

ping slightly more strongly towards high dimensions for the

latter. For E3, performance is also similar except that the

AUC is lower for absolute prediction, and the maximum (at

AUC=0.637) appears shifted to lower embedding dimensions

likely because the model included many fewer genes. Fig-

ure 2b shows ROC and precision-recall curves for the near

optimal cases K = 500 (E1), K = 350 (E2), and K = 100
(E3). All three models reach an average precision of nearly

95% for absolute prediction and about 90% for sign predic-

tion, while the AUC for sign prediction is about 0.70. For the

spectral approach E1 we also evaluated models that require

each included gene to have a minimum number of down-

stream regulated genes in the bipartite graph G (see Supple-

mentary data, Section 2).

As a result we find that there is no advantage of using the

computationally more expensive neural network-based (E2)

and graph-based (E3) models compared to the spectral model

E1. In the remainder of the paper we therefore focus on the

spectral model only.

Fig. 4. Psoriasis network. Bipartite graph connecting the 15 top-scoring genes, and

20 top-scoring functions through edges with high absolute gene-function scores (|z-

score| > 3). The network shows disease-underlying biological functions and known

disease genes, as well as genes that are predicted to be implicated in psoriasis

based on QKB content. Each node (gene or function) carries a color-coded sign

(positive: orange, negative: blue) depending on whether that gene or function is

positively- or anti-correlated with psoriasis. The edge style indicates whether gene-

function relationships are supported by content of the QKB (solid), or purely inferred

(dashed). Genes marked with an asterisk (*) have known associations with psoria-

sis in the QKB.

Function embeddings: discovery of latent biological

relationships. Similarity of embedding vectors encoding

functions and diseases is expected to reflect underlying bi-

ological relationships. In order to test this, we examined how

functional contexts are represented in embedding space, con-

structed a global t-distributed stochastic neighbor embedding

(tSNE) map of diseases, and visualized relationships between

diseases and associated biological functions (for the latter see

Supplementary data, Section 3).

One result of the word2vec algorithm (3) is the association of

semantic relationships with simple linear vector operations.

For instance, in the most famous example, the vector repre-

sentation of the word “king” is related to the word “queen”

by the (approximate) identity “king” = “queen” − “female”

+ “male”. In order to find similar relationships in our func-

tion embedding space, we consider functions that describe

biological processes in a particular context. As an example

we examine functions of the form “X of Y”, where the bi-

ological process X is from the set Adhesion, Proliferation,

Cell movement, Differentiation, and Y is a cell type (e.g.

T lymphocytes, complete list given in Supplementary Table

S1). Linear relationships between embeddings can be visu-

alized by performing Principal Component Analysis (PCA),

and projecting embedding vectors on the two main princi-

pal components which is shown in Figure 3a,b for the pro-

cess pairs Adhesion vs. Proliferation, and Cell movement vs.

Differentiation. Pairs of functions with different processes,

but the same cell type context are connected by straight line
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segments. If a linear vector relationship like in the “king”-

“queen” example above holds, then these line segments are

expected to be parallel. From Figure 3a,b it is seen that this

is approximately the case for most of the function pairs. In or-

der to make a quantitative assessment of this observation we

computed the standard deviation of the distribution of angles

that line segments form with the horizontal axis, and com-

pared it to the standard deviation of angles of line segments

with randomly shuffled endpoints. The resulting estimated

p-values obtained by random sampling are p = 1 × 10−5 for

the Adhesion-Proliferation pair, and p = 4×10−7 for the Cell

movement-Differentiation pair, clearly showing the statistical

significance of this result.

A global tSNE visualization of embedding vectors for dis-

eases (after first reducing dimensionality to 20 using PCA)

is shown in Figure 3c. It is seen that, except for the center

of the tSNE map, diseases from the same disease category

(cardiovascular, neurological, immunological, infective, con-

genital, and cancer) tend to cluster together, indicating that

function embedding vectors capture biological similarity and

dissimilarity between diseases.

Application: inferred disease networks. To explore how

the top-scoring genes for a given disease relate to its asso-

ciated functions, we selected three examples, psoriasis, pul-

monary hypertension, and Alzheimer’s disease, which repre-

sent a wide spectrum of “systemic” diseases with distinct un-

derlying mechanisms and manifestations. For each of these

diseases we determined top-scoring genes and functions and

their signs (see tables S2-7 in the supplementary data). In

order to give priority to the most “specific” functions (rather

than more general terms), we did not include functions that

are parents in the process hierarchy of other functions in the

list. Redundancy was further decreased by bundling func-

tions from the same context (e.g. cell type), and considering

only the highest scoring function from each bundle. For each

disease, we constructed a bipartite graph connecting the 15

top-scoring genes and 20 top-scoring functions through edges

if the absolute value of the corresponding gene-function score

is greater than a certain threshold (here: |z-score|>3), and

its sign is consistent with the signs of the adjacent gene and

function.

Figure 4 and Figures S4, S5 in the supplementary data show

networks constructed this way for all three diseases above.

In the following we discuss the psoriasis network. Similar

discussions for the other two diseases are given in the sup-

plementary data (Section 4).

Psoriasis is a chronic inflammatory skin disease with a strong

genetic component (18). The disease has multiple forms and

also may affect organs other than the skin. The network

shown in Figure 4 highlights the main immune axis repre-

sented by the IL17-IL23 T helper components (Activation

of Th1 cells, Activation of Th17 cells). IL17 and IL23, as

well as TNF, are known to be involved in the pathogenesis of

psoriasis. One of the hallmarks of psoriasis is keratinocyte

proliferation and immune cell infiltration. This and the dis-

ease phenotype (Scaling of skin, Degradation of connective

tissue) are well represented among the functions shown in
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Fig. 5. Drug-disease prediction. (a) MLP trained on drug labels and/or clinical

trial information to predict drug-disease associations using feature representations

based on both, drug and disease embedding vectors. The MLP used here has one

hidden layer with 200 nodes. The following cases were considered (see legends):

random pairs in test set (R), only drugs included in the test set that were not seen

during training (DR), and only diseases included in the test set that were not seen

during training (DI). We also distinguished between training based on drug labels

(DL) only and drug labels plus clinical trials (CT), as well as all diseases (A) and

cancer-related only (C). (b) Average receiver operating characteristics. (c) Aver-

age precision-recall curves. Shaded areas reflect standard deviations across 50

independent cross-validation runs.

the network (Activation of keratinocytes, Adhesion of periph-

eral blood monocytes, Cell movement of naive B cells, In-

flux of neutrophils, Migration of Langerhans cells). A num-

ber of genes shown are purely predicted from QKB content

(BANF1, HSD17B14, IL1RL2, KLK5, NFKBIZ, TNIP1).

An independent literature search uncovered known or sus-

pected involvement of these genes in the disease: BANF1

has been suggested to be associated with upregulated prolif-

eration of keratinocytes in psoriatic lesions (19). Kallikreins

(like KLK5) were found in the serum of patients with psori-

asis which suggests that they might be involved in the patho-

genesis (20). The expression of NFKBIZ (a nuclear inhibitor

of NF-κB) in keratinocytes has been found to trigger not only

skin lesions but also systemic inflammation in mouse psori-

asis models (21). Loss of TNIP1 in keratinocytes leads to

deregulation of IL-17-induced gene expression and increased

chemokine production in vitro and psoriasis-like inflamma-

tion in vivo (22).

This demonstrates that these networks indeed capture known

underlying disease mechanisms and have the potential to gen-

erate novel insights.

Application: drug-disease prediction. In the following,

we demonstrate that the embeddings computed with our ap-

proach can also be used for independent prediction tasks. As

an example, we built a simple ML model, trained on drug-

disease pairs collected from drug labels or clinical trial infor-
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mation, to predict drug effects on diseases. Since the QKB

also contains literature-derived information about the effect

of drugs on gene expression, it is straightforward to extend

the gene embedding model to drug molecules by simply in-

cluding them in the bipartite graph G (see Methods section).

Using the spectral model (K = 500), we constructed embed-

ding vectors for 1077 drugs and 1388 diseases that were in-

cluded in the QKB from curated drug labels or clinical trials.

These embeddings were combined to build “compound” fea-

ture vectors for arbitrary drug-disease pairs (see Figure 5a).

No drug information was used for the disease embedding

vectors, which were constructed using the standard spectral

approach outlined in the previous sections. Using the com-

pound feature vectors, we then trained a multilayer percep-

tron (MLP) to predict novel drug-disease associations. Two

different training sets were considered: one containing 2,102

drug-disease pairs curated from drug labels only, and one

also including drug-disease pairs from clinical trials (13,182

drug-disease pairs in total). The same number of negative

training samples was randomly drawn from the set of all pos-

sible drug-disease combinations. For both training sets we

performed cross-validation on 10% of the drug-disease pairs

randomly held out and repeated the experiment 50 times. We

also considered the (harder) task of predicting drugs or dis-

eases not seen in the training set before, by randomly ex-

cluding 50 drugs (or diseases) from the training set, and pre-

dicting drug-disease pairs only on those. Resulting average

ROC and precision-recall curves are shown in Figure 5b and

c: For the training set based on drug labels only and random

hold-out, the AUC is 0.857 (0.872 when clinical trials are in-

cluded), restricting this to only cancer-related diseases in the

test set increases the AUC to 0.922 (drug labels only). For the

harder prediction task involving only drugs or diseases un-

seen during training these values are significantly lower, for

new drugs AUC=0.725, for new diseases AUC=0.788 (drug

labels only).

Comparison to gene embeddings based on other in-

formation. We compared our gene embeddings to those

obtained with gene2vec (9) (based on co-expression) and

Mashup (8) (based on protein-protein interactions). For the

gene-function prediction task (see Results section) we find

that our approach outperforms gene2vec, while performing at

the same level as Mashup. We also find that top scoring gene

sets computed with our approach are mostly disjoint from

those computed with Mashup. For a discussion see Supple-

mentary data, Section 5.

Discussion

We have used signed cause-effect relationships curated from

the biomedical literature to construct high-dimensional em-

beddings of genes, biological functions, and diseases. Gene

embeddings are based on literature-derived downstream ex-

pression signatures in contrast to embeddings obtained with

existing approaches that leverage either co-expression, or

protein binding networks. Function embeddings are con-

structed using gene embedding vectors with a linear model

trained on signed gene-function relationships.

Three separate methods were applied to construct gene em-

beddings, a “spectral” approach based on a low-rank matrix

approximation, a neural network-based approach to capture

non-linear effects, and a graph-based method utilizing the

node2vec algorithm. All three methods performed similarly,

reaching on average close to 95% precision for top-scoring

genes (90% precision for distinguishing between activating

and inhibiting effects) in cross-validation experiments for the

gene-function prediction task.

By analyzing various examples, we showed that function em-

bedding vectors capture hidden biological relationships as

well as semantic context similar to word embeddings. As

an application, we determined top-scoring genes and related

functions for three diseases, Alzheimer’s disease, pulmonary

hypertension, and psoriasis, to build disease-specific net-

works. These networks show key genes known to be involved

in disease progression, and they capture underlying cellular

and physiological processes. We were able to predict a num-

ber of disease genes that were not present in the training data

(i.e. connected to the disease in the QKB) but could be val-

idated through an independent literature search. It shall be

noted that a current constraint of our method is that only a

fraction of genes (≈30%) can be covered, limited by content

curation and available literature coverage.

In order to demonstrate the applicability of our approach to

other prediction tasks, we extended gene embeddings also to

drug molecules, and used a simple MLP, trained on known

drug-disease associations from drug labels and clinical trials,

to predict new drug-disease associations. In cross-validation

testing using random drug-disease pairings as negative train-

ing set, here, we achieved an average AUC of 0.872.

Our work illustrates that prior knowledge from the biomed-

ical literature can be used collectively to generate new in-

sights, going beyond the findings reported in individual re-

search articles. Applications of knowledge-driven embed-

ding models are manifold. As already implied by the disease

networks discussed here, the approach can be used to create

new hypotheses for biological mechanisms, identify new po-

tential gene targets for drug repurposing, or predict possible

new disease indications in a given therapeutic context.
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Mining	hidden	knowledge:	Embedding	models	of	cause-effect	
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1.	Knowledge	graph	summary	statistics	

The	knowledge	graph	obtained	from	the	QKB	and	used	for	this	paper	contains	in	total	

6,757	genes	that	appear	in	both	literature-derived	gene	expression	and	gene-function	

relationships.	The	total	number	of	included	expression	edges	is	147,792	with	286,022	

underlying	literature	findings,	and	14,176	regulated	genes.	There	are	217,239	gene-

function	edges	with	395,224	underlying	findings	that	regulate	29,553	functions	of	which	

7,388	are	diseases.	As	part	of	an	ontology,	functions	are	organized	in	a	hierarchy	where,	

except	for	very	general	terms,	parents	inherit	causal	gene	associations	(and	edge	signs)	

from	their	descendants.	This	inheritance	mechanism	increases	the	total	number	of	gene-

function	edges	to	748,626.	The	sign	distribution	on	edges	is	slightly	unbalanced,	with	

roughly	two	thirds	of	edge	signs	being	positive,	and	one	third	of	edges	being	negative	(for	

both,	gene	expression,	and	gene-function	edges).	

	

2.	Cross-validation	for	smaller	networks	

For	the	spectral	model	E1	we	also	built	models	that	require	each	included	gene	to	have	a	

minimum	number	Nmin	of	downstream	regulated	genes	in	the	bipartite	graph	G.	The	

number	of	embedded	genes	included	in	these	models	decreases	strongly	with	increasing	

value	of	Nmin	which	is	shown	in	the	inset	of	Figure	S1.	Because	the	spectral	model	is	linear,	

it	is	expected	that	the	optimal	embedding	dimension	scales	linearly	with	the	number	of	

genes	(i.e.,	the	size	of	the	matrix	S).	This	is	confirmed	by	overlaying	scaled	AUC-vs-

dimension	and	precision-vs-dimension	functions	in	one	plot	showing	an	approximate	

collapse	onto	one	curve	(see	Figure	S2).		Figure	S1	shows	AUC	and	precision	(at	5%	recall)	

plotted	against	the	parameter	Nmin	for	these	optimal	embedding	dimensions.	It	is	seen	that	

the	AUC	for	absolute	prediction	decreases	for	increasing	Nmin	because	functions	are	

represented	by	fewer	genes	and	therefore	embedding	vectors	carry	less	information.	At	the	

same	time	the	AUC	for	sign	prediction	increases,	presumably	because	only	genes	are	

included	that	are	encoded	based	on	a	greater	number	of	downstream	expressed	genes	in	G,	

thus	reducing	noise.	
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Figure	S1.	Cross	validation:	AUC	and	precision	(at	5%	recall)	plotted	against	the	parameter	Nmin	for	

optimal	embedding	dimensions	(spectral	model).	Error	bars	correspond	to	the	measured	standard	

deviation	across	the	50	replicated	runs.	The	inset	shows	the	number	of	genes	included	in	the	model	

as	a	function	of	Nmin.	

 

 

Figure	S2.	Scaling	plots.	Because	the	spectral	model	is	linear,	it	is	expected	that	the	optimal	

embedding	dimension	scales	linearly	with	the	number	of	genes.	This	is	confirmed	by	plotting	AUC	

and	precision	at	5%	recall	as	function	of	𝐾/𝑁	(where	𝐾	is	the	embedding	dimension	and	𝑁	is	the	

total	number	of	genes)	for	models	with	different	parameters	𝑁!"#	and	also	subtracting	their	

maximal	value.	It	is	seen	that	the	resulting	curves	for	each	model	approximately	collapse	onto	one	

curve.	
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3.	Visualization	of	relationships	between	a	disease	and	associated	biological	

functions	

The	neighborhood	in	embedding	space	around	a	given	disease	can	be	mapped	onto	the	two	

top	PCA	components,	where	PCA	in	this	case	is	performed	on	all	functions	in	the	vicinity	of	

the	disease,	as	determined	by	a	preselected	cut	off	on	the	absolute	value	of	the	cosine	

similarity	(here:	0.2).	Before	performing	PCA,	we	multiply	with	-1	all	function	embedding	

vectors	whose	cosine	similarity	is	less	than	zero;	those	functions	f	are	therefore	read	as	

“inhibition	of	f	”	or	“decrease	of	f	”.	This	allows	for	functions	that	are	related	but	have	an	

opposite	sign	to	appear	close	to	each	other	in	the	PCA	projection.	The	result	is	shown	in	

Figure	S3	for	the	example	of	Alzheimer's	disease	(AD),	where	related	functions	whose	sign	

was	inverted	are	shown	in	blue,	and	all	others	in	red.	For	better	readability,	Figure	S3	

shows	a	subset	of	all	functions,	similar	to	AD,	where	redundant	other	functions	were	

removed.	This	is	described	in	more	detail	in	section	3.3	(main	text).	Interestingly,	this	

procedure	automatically	detects	many	of	the	underlying	disease	manifestations	of	AD	

which	are	purely	inferred	from	our	embedding	model	of	genes	and	functions.	No	explicit	

function-function	or	function-disease	relationships	from	the	literature	were	used	in	this	

approach.	Note,	that	predicted	functions	potentially	reflect	underlying	disease	mechanisms,	

however,	this	cannot	be	distinguished	from	processes	that	share	biological	aspects	of	the	

disease	but	are	not	directly	involved	in	it.	

	

	

Figure	S3.	PCA	projection	of	functions	and	diseases	in	the	neighborhood	of	"Alzheimer's	disease".	

Functions	with	embedding	vectors	that	are	anti-similar	to	Alzheimer's	disease	are	shown	in	blue	

(with	the	embedding	vector	multiplied	by	-1),	vectors	that	are	similar	to	Alzheimer's	Disease	are	

shown	in	red.	
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4.	Disease	networks	

For	the	following,	gene-function	scores	sij	were	transformed	to	z-scores,		

𝑧!" =
#!"$%&'(!(#!")

#+,!(#!")
		that	normalize	the	distribution	of	scores	sij	for	each	function	j	

independently.	Since	z-scores	measure	statistical	significance,	this	is	useful	to	define	

meaningful	cut	offs	for	top-scoring	genes	(e.g.,	|z|>2).	We	verified	that	z-scores,	and	the	

original	gene-function	scores	s	are	linearly	related	with	approximately	the	same	scale	

factor	for	all	functions,	so	they	can	be	used	interchangeably.	

	

4.1.	Alzheimer’s	disease	

	

	AD	is	a	progressive	neurodegenerative	disease	characterized	by	severe	cognitive	

impairment,	progressive	extensive	neuronal	death,	and	eventually	severe	dementia	[1,	2,	

3].	Neuronal	death	is	one	of	the	main	histological	and	biological	markers	of	AD	with	

hippocampus	and	striatum	being	CNS	targets,	which	is	reflected	in	several	inhibited	

functions	(i.e.,	with	negative	sign)	shown	in	the	network	in	Figure	S4	(Activation	of	spinal	

neuron,	Cell	viability	of	striatal	neurons,	Survival	of	trigeminal	ganglion	neurons,	Chemotaxis	

of	axons,	Synaptic	transmission	of	hippocampal	neurons,	Metabolism	of	acetylcholine).	Other	

functions	present	in	the	network	are	Amyloidosis,	Aggregation	of	filaments,	and	Quantity	of	

proteoglycan	(abnormal	amyloid	peptide	aggregation	is	a	histopathological	hallmark	of	

AD),	decrease	of	Spatial	learning	(reflecting	cognitive	impairment),	Inflammation	of	vessel	

(one	of	the	hallmarks	of	AD	is	modification	of	the	cerebral	vasculature	[4]),	inhibition	of	

Metabolism	of	D-glucose	(evidence	suggests	that	glucose	hypometabolism	may	be	a	key	

player	in	dementia	pathology	[5]),	and	Acidification	of	lysosome	(AD	is	associated	with	

autophagy	anomalies,	and	defective	lysosomal	acidification	contributes	to	proteolytic	

failure	[6]).	The	network	contains	a	number	of	genes	that	have	been	implicated	in	AD	and	

are	represented	in	the	QKB	(APOE,	APP,	BDNF,	HMGCR,	INS,	NGF,	PSEN1,	PSEN2),	as	well	

as	others	that	are	predicted	(CUX2,	FBXL7,	HRG,	LOX,	PRR5,	SLITRK5,	Slfn1).		Among	the	

predicted	genes,	SLITRK5	has	no	known	association	with	AD	per	se,	but	may	participate	in	

disease	progression	through	intermediate	connections.	In	fact,	SLITRK5	indirectly	

modulates	BDNF,	and	has	a	known	role	in	other	neurological	disorders	[7].	Another	

predicted	gene,	LOX	(lipoxygenase)	is	known	to	promote	neuroinflammation,	and	is	

regarded	as	a	promising	therapeutic	target	for	AD	[4].	
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Figure	S4.	Alzheimer's	disease	network.	Bipartite	graph	connecting	the	15	top-scoring	genes,	and	

20	top-scoring	functions	through	edges	with	high	absolute	gene-function	scores	(|z-score|	>	3).	The	

network	shows	a	number	of	disease-underlying	biological	functions	and	known	disease	genes,	as	

well	as	genes	that	are	predicted	to	be	implicated	in	AD	based	on	QKB	content	(see	detailed	

discussion	in	main	text).	Each	node	carries	a	color-coded	sign	(positive:	orange,	negative:	blue)	

depending	on	whether	that	gene	or	function	is	positively-	or	anti-correlated	with	Alzheimer's	

disease.	The	edge	style	indicates	whether	gene-function	relationships	are	supported	by	content	of	

the	QKB	(solid),	or	purely	inferred	(dashed).	Genes	marked	with	an	asterisk	(*)	have	known	

associations	with	Alzheimer's	disease	in	the	QKB.	

	

	

	

	

	

	

	

	

	

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.07.463598doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.07.463598
http://creativecommons.org/licenses/by-nd/4.0/


	 6	

4.2.	Pulmonary	hypertension	

Pulmonary	hypertension	(PH),	especially	pulmonary	arterial	hypertension	develops	after	

the	resting	threshold	pressure	in	pulmonary	arteries	is	exceeded,	typically	resulting	in	

right	ventricular	dysfunction	and	failure,	and	often	leading	to	death	[8].	PH	induces	

vascular	remodeling	characterized	by	production	of	new	endothelial	cells,	myofibroblasts,	

vascular	smooth	cells,	extracellular	matrix	changes	and	fibrosis	induction.	The	network	

shown	in	Figure	S5	reflects	this	through	appearance	of	the	functions	Systolic	pressure	of	

right	ventricle,	Muscularization	of	artery,	and	Pulmonary	fibrosis.	We	also	observe	roles	of	

immune	cells	(bone	marrow-derived	dendritic	cells,	T	lymphocytes,	mast	cells,	

macrophages,	and	others)	which	are	present	in	vascular	lesions	in	patients	with	PH	[9].	In	

particular,	the	recruitment	of	macrophages	in	perivascular	regions	of	pulmonary	arteries	

has	been	observed	[10].	A	number	of	genes	present	in	the	network	have	a	known	

association	with	PH	as	represented	in	the	QKB	(ADA,	ADORA2B,	APOE,	ARG1,	BMPR2,	IL18,	

IL1RN,	PTGDR2,	RPTOR).	Among	these	is	ADORA2B,	which	through	its	effect	on	the	

Pulmonary	fibrosis	or	aplastic	anemia	appears	to	mediate	the	development	of	PH,	and	

which	is	regarded	as	a	potential	therapeutic	target	[11,	12].	BMPR2	is	also	a	major	player	in	

PH	[13],	as	mutations	in	the	gene	have	been	identified	as	the	main	genetic	cause	[14,	15].	

The	network	indicates	the	contribution	of	these	two	proteins	towards	increasing	the	

systolic	pressure	of	the	right	ventricle.	The	network	also	contains	several	predicted	genes	

(ACVR2A,	AKNA,	AQP11,	CCR3,	IL15,	P4HTM)	that	are	not	associated	with	PH	in	the	QKB.	

An	independent	literature	search	found	that	aquaporins	(AQP0-12)	may	be	involved	in	PH	

under	hypoxic	conditions	[16],	and	ACVR2A	is	a	type	2	BMP	receptor	like	BMPR2.	
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Figure	S5.	Pulmonary	hypertension	network.	Bipartite	graph	connecting	the	15	top-scoring	genes,	

and	20	top-scoring	functions	through	edges	with	high	absolute	gene-function	scores	(|z-score|	>	3).	

The	network	shows	a	number	of	disease-underlying	biological	functions	and	known	disease	genes,	

as	well	as	genes	that	are	predicted	to	be	implicated	in	PH	based	on	QKB	content	(see	detailed	

discussion	in	main	text).	Each	node	(gene	or	function)	carries	a	color-coded	sign	(positive:	orange,	

negative:	blue)	depending	on	whether	that	gene	or	function	is	positively-	or	anti-correlated	with	

pulmonary	hypertension.	The	edge	style	indicates	whether	gene-function	relationships	are	

supported	by	content	of	the	QKB	(solid),	or	purely	inferred	(dashed).	Genes	marked	with	an	

asterisk	(*)	have	known	associations	with	pulmonary	hypertension	in	the	QKB.	
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5.	Comparison	to	gene	embeddings	based	on	other	information	

	
In	order	to	compare	our	causal	expression-based	gene	embeddings	to	other	gene	

embedding	approaches,	we	downloaded	pre-trained	gene	embedding	vectors	generated	

with	both,	the	gene2vec	algorithm	(https://github.com/jingcheng-du/Gene2vec),	and	

Mashup	(http://cb.csail.mit.edu/cb/mashup).	Gene2vec	(Du	et	al.,	2019)	uses	gene	co-

expression	patterns	from	984	GEO	datasets	to	construct	200-dimesional	vector	

representations	of	human	genes	by	training	a	3-layer	neural	network	with	gene	pairs	that	

are	highly	co-expressed.	Mashup	(Cho	et	al.,	2016)	is	based	on	a	network	diffusion	

approach	that	performs	random	walks	with	restart,	and	computes	a	lower-dimensional	

approximation	of	diffusion	states.	Here,	we	used	the	pre-computed,	800-dimensional	

embedding	vectors	for	human	genes	based	on	protein-protein	interactions	from	the	

STRING	database	[20].	We	tested	the	gene2vec	and	Mashup	embedding	vectors	on	the	

same	gene-function	prediction	tasks	and	cross-validated	as	described	in	Section	3.	These	

tests	were	performed	on	the	intersection	of	genes	included	in	gene2vec	(or	Mashup)	and	

our	spectral	model	(gene2vec:	6,187,	Mashup:	5,689),	and	for	comparison	we	also	reran	

tests	for	our	model	only	including	genes	in	the	intersection.		

	

For	the	absolute	prediction	task	gene2vec	reaches	an	AUC	of	0.536	and	precision	at	5%	

recall	of	0.647	compared	to	values	of	0.677	and	0.934	in	our	model.	The	superior	

performance	of	our	model	shows	that	gene	encodings	based	on	causal	expression	

responses	likely	contain	more	information	about	gene	function	than	encodings	based	on	

co-expression.	For	Mashup	we	obtain	an	AUC	of	0.663	and	precision	at	5%	recall	of	0.972,	

i.e.	a	performance	similar	to	our	model	(AUC=0.672,	precision	at	5%	recall=0.927).	

Performance	for	the	sign	prediction	task	was	almost	identical	for	both	models.	This	

indicates	that	causal	gene	expression	and	protein-protein	interactions	are	on	the	average	

equally	informative	for	gene-function	prediction	when	tested	on	the	same	set	of	genes.	

To	further	compare	the	causal	expression-based	approach	with	Mashup	(in	this	case	

including	all	18,362	genes	covered	by	Mashup)	we	determined	the	top-scoring	genes	for	all	

three	diseases	discussed	in	Section	3.3	with	both	methods,	focusing	only	on	genes	that	are	

predicted,	i.e.,	not	already	associated	with	the	disease	in	the	QKB.	Results	are	presented	as	

heat	map	plots	in	Figure	S6,	showing	that	top-scoring	gene	sets	computed	for	both	methods	

are	mostly	disjoint.	For	psoriasis	a	number	of	top	genes	obtained	with	Mashup	(CXCR2,	

MMP9,	FLT4,	IL12B)	are	also	picked	up	(with	lower	scores)	by	our	approach,	however	

some	with	the	opposite	sign.	There	is	also	some	overlap	for	pulmonary	hypertension	where	

the	causal	approach	also	gives	high	scores	for	Mashup’s	top	scoring	genes	ACVR2A	and	

IL15.	In	the	network	discussions	in	Section	3.3	(main	text)	and	Section	4		(here)	we	showed	

that	some	of	our	predicted	genes	could	be	verified	through	an	independent	literature	

search	(AD:	SLITRK5,	LOX;	PH:	AQP11,	ACVR2A;	psoriasis:	BANF1,	KLK5,	TNIP1).	Likewise,	

some	genes	predicted	by	Mashup	have	been	associated	with	the	respective	disease	(AD:	

GSAP	[17],	APH1A	[18];	PH:	TGFPR1	[19]).	By	and	large	both	approaches	appear	to	be	

mostly	complementary,	highlighting	the	crucial	difference	in	the	underlying	information	

used	to	encode	genes,	on	one	side	relationships	between	indirect	causal	effects	on	
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expression	signatures,	and	on	the	other	local	molecular	interactions.	This	suggests	a	

possible	integration	of	both	approaches	in	future	work.	

	

 

 

 

Figure	S6.	Comparison	to	Mashup.	Top-scoring	predicted	genes	obtained	with	the	spectral	model	

and	Mashup	for	the	diseases	Alzheimer’s	disease,	pulmonary	hypertension,	and	psoriasis	discussed	

in	Section	3.3.	Results	are	presented	as	heat	map	plots	showing	that	top-scoring	gene	sets	

computed	for	both	methods	are	mostly	disjoint.	For	psoriasis,	several	top	genes	obtained	with	

Mashup	(CXCR2,	MMP9,	FLT4,	IL12B)	are	also	picked	up	(with	lower	scores)	by	our	approach,	

however	some	with	the	opposite	sign.	There	is	also	some	overlap	for	pulmonary	hypertension	

where	the	causal	approach	also	gives	high	scores	for	Mashup’s	top	scoring	genes	ACVR2A	and	IL15.	

(Red:	activated,	blue:	inhibited) 
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Supplementary	Tables	

	

Table	S1	(a).	Included	cell	type	contexts.	

Adhesion	vs.	Proliferation	(see	Figure	3a)	

mononuclear	leukocytes	 lymphoid	cells	

monocytes	 neutrophils	

dermal	cells	 lymphocytes	

granulocytes	 myeloid	cells	

PBMCs	 leukemia	cell	lines	

fibroblast	cell	lines	 bone	marrow	cell	lines	

immune	cells	 lymphatic	system	cells	

keratinocytes	 cancer	cells	

microvascular	endothelial	cells	 endothelial	cells	

peripheral	blood	leukocytes	 smooth	muscle	cells	

kidney	cells	 macrophages	

epithelial	cells	 muscle	cells	

embryonic	cells	 tumor	cells	

mast	cells	 peripheral	blood	lymphocytes	

embryonic	cell	lines	 epithelial	cell	lines	

B	lymphocytes	 lung	cancer	cell	lines	

gonadal	cell	lines	 phagocytes	

prostate	cancer	cell	lines	 	

antigen	presenting	cells	 	

red	blood	cells	 	

blood	cells	 	

epithelial	tissue	 	

endothelial	cell	lines	 	

connective	tissue	cells	 	

epidermal	cells	 	
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Table	S1	(b).	Included	cell	type	contexts.	

Cell	movement	vs.	Differentiation	(see	Figure	3b)	

lymphoma	cell	lines	 B	lymphocytes	 bone	marrow	cells	

mononuclear	leukocytes	 antigen	presenting	cells	 cerebral	cortex	cells	

neuroblastoma	cell	lines	 helper	T	lymphocytes	 cytotoxic	T	cells	

dermal	cells	 sarcoma	cell	lines	 liver	cells	

bone	marrow-derived	macrophages	 plasma	cells	 fibroblasts	

peripheral	blood	monocytes	 central	nervous	system	cells	 endothelial	cells	

PBMCs	 natural	killer	cells	 effector	T	lymphocytes	

macrophage	cancer	cell	lines	 neurons	 naive	lymphocytes	

fibroblast	cell	lines	 thymocytes	 astrocytes	

brain	cells	 neural	stem	cells	 monocyte-derived	dendritic	cells	

keratinocytes	 vascular	smooth	muscle	cells	 carcinoma	cell	lines	

gonadal	cells	 epidermal	cells	 osteoclasts	

B-lymphocyte	derived	cell	lines	 monocyte-derived	macrophages	 smooth	muscle	cells	

peripheral	blood	leukocytes	 connective	tissue	cells	 hematopoietic	cells	

memory	T	lymphocytes	 eosinophils	 leukemia	cells	

leukocyte	cell	lines	 neutrophils	 tumor	cells	

epithelial	cells	 leukemia	cell	lines	 T	lymphocytes	

embryonic	cells	 Th2	cells	 macrophages	

neuroglia	 hematopoietic	progenitor	cells	 cancer	cells	

mast	cells	 stem	cells	 muscle	cells	

nervous	tissue	cell	lines	 Schwann	cells	 epithelial	cell	lines	

embryonic	cell	lines	 breast	cell	lines	 phagocytes	

CD4+	T-lymphocytes	 heart	cells	 	

neuroblasts	 regulatory	T	lymphocytes	 	

Th1	cells	 tumor	cell	lines	 	
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Table	S2.	Alzheimer’s	disease:	top-scoring	functions.	

function	 cosine	

similarity	

function	 cosine	

similarity	

Metabolism	of	acetylcholine	 -0.427	 Cell	death	of	sensory	neurons	 0.240	

Synaptic	transmission	of	hippocampal	neurons	 -0.417	 Quantity	of	linoleic	acid	 -0.237	

Quantity	of	Cajal-Retzius	neurons	 0.417	 Object	recognition	memory	 -0.234	

Enlargement	of	lateral	cerebral	ventricle	 -0.409	 Function	of	brain	 -0.229	

Removal	of	Ca2+	 0.387	 Working	memory	 -0.228	

Acidification	of	lysosome	 0.353	 Cell	viability	of	sympathetic	neuron	 -0.227	

Quantity	of	mesenchymal	cells	 0.345	 Deposition	of	amyloid	fibrils	 0.223	

Amyloidosis	 0.330	 Proliferation	of	adrenal	gland	cells	 -0.221	

Activation	of	spinal	neuron	 -0.323	 Contextual	fear	memory	 -0.219	

Cell	viability	of	striatal	neurons	 -0.305	 Quantity	of	secondary	ovarian	follicle	 -0.217	

Inflammation	of	vessel	 -0.302	 Synthesis	of	phosphatidylinositol	diphosphate	 -0.216	

Patterning	of	embryonic	tissue	 0.288	 Recruitment	of	microglia	 0.216	

Synapsis	 -0.283	 Formation	of	membrane	processes	 -0.213	

Apoptosis	of	Schwann	cells	 -0.282	 Extension	of	neurites	 -0.211	

Quantity	of	proteoglycan	 0.281	 Protection	of	cortical	neurons	 -0.211	

Aggregation	of	filaments	 0.276	 Exocytosis	of	vesicles	 -0.209	

Spatial	learning	 -0.265	 Disassembly	of	microtubules	 0.208	

Survival	of	trigeminal	ganglion	neurons	 -0.262	 Formation	of	blastocyst	 -0.206	

Metabolism	of	D-glucose	 -0.260	 Release	of	L-glutamic	acid	 -0.203	

Chemotaxis	of	axons	 -0.255	 Branching	of	blood	vessel	 -0.201	

Survival	of	dorsal	root	ganglion	cells	 -0.252	 Concentration	of	GABA	 -0.201	

Activation	of	ganglion	cells	 -0.247	 Cell	movement	of	astrocytes	 -0.201	

Density	of	nerve	ending	 -0.246	 Differentiation	of	neuroepithelial	cells	 -0.200	

Differentiation	of	cholinergic	neurons	 -0.245	 	 	

Protection	of	interneurons	 -0.242	 	 	
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Table	S3.	Alzheimer’s	disease:	top-scoring	genes.	

gene	 z-score	 gene	 z-score	 gene	 z-score	 gene	 z-score	

PSEN1*	 13.970	 SLC17A6	 4.459	 YOD1	 3.722	 HTR1A	 3.291	

PSEN2*	 13.545	 NREP	 4.438	 WNT2B	 3.674	 CLASP2	 -3.279	

NGF*	 -9.819	 CFI	 -4.417	 FBXO2	 3.673	 NTF4	 -3.268	

Slfn1	 -7.192	 ALB*	 -4.387	 EIF4E2	 3.648	 Atg5	 3.225	

APOE*	 7.096	 NEUROG2	 -4.274	 IGSF1	 3.641	 ZNF76	 -3.223	

PRR5	 7.023	 CASP2	 -4.161	 REST	 3.615	 ICMT	 -3.219	

APP*	 6.482	 MARCHF5	 4.063	 DAPK3	 3.597	 AIPL1	 -3.211	

INS*	 -6.423	 PLOD1	 4.055	 CDH5	 -3.555	 IRF8	 -3.201	

HMGCR*	 6.390	 DLX5	 -4.052	 MAML2	 3.441	 CYP11B2	 -3.198	

BDNF*	 -6.165	 INTS11	 -4.051	 MAML3	 3.441	 LRRN1	 3.188	

CUX2	 5.992	 SRSF10	 4.014	 GH2	 3.434	 AGT	 -3.182	

SLITRK5	 -5.611	 DLX6	 -4.012	 ZSCAN21	 3.431	 PDCD5	 -3.176	

LOX	 5.509	 PHF5A	 -3.987	 CREM	 -3.423	 GUCY2F	 -3.175	

FBXL7	 -5.342	 CPEB3	 -3.972	 PAQR3	 3.422	 EIF2B2	 -3.172	

HRG	 -5.089	 GAB1	 -3.948	 IFT20	 3.402	 PTGIS	 3.165	

BAIAP2	 5.019	 SIM1	 -3.920	 HCK	 -3.390	 LLGL2	 3.158	

BID	 -4.931	 APPL1	 -3.886	 ADAM19	 -3.386	 PIM1	 -3.133	

PSENEN*	 4.894	 TTYH1	 3.842	 NFIC	 -3.378	 CFB	 -3.125	

HSPE1	 -4.824	 SLC8A1	 -3.823	 MIB1	 3.371	 BAX	 -3.111	

SLC30A3	 -4.670	 SV2A	 -3.811	 HSP90AA1	 3.363	 RELN	 3.081	

Csl	 4.592	 NEURL1	 -3.802	 ATP2A1	 -3.348	 ALOX12	 -3.069	

B4GALNT1	 4.518	 CST7	 -3.790	 PLAU*	 -3.342	 FZD8	 3.068	

AMOT	 -4.484	 ARNT2	 -3.760	 RHBDF1	 -3.327	 WNT16	 3.062	

AMOTL2	 -4.484	 BATF2	 -3.756	 SCGB3A2	 3.326	 PLEKHM1	 3.059	

AMOTL1	 -4.484	 HLA-B	 -3.745	 ATF6	 -3.305	 NSF	 -3.048	

	

Genes	marked	with	(*)	are	associated	with	Alzheimer’s	disease	in	the	QKB.	Genes	not	

marked	with	(*)	are	predicted	to	be	causally	associated.	
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Table	S4.	Pulmonary	hypertension:	top-scoring	functions.	

function	 cosine	

similarity	

function	 cosine	

similarity	

Recruitment	of	eosinophils	 0.337	 Proliferation	of	effector	memory	T	lymphocytes	 0.210	

Muscularization	of	artery	 0.312	 Differentiation	of	naive	lymphocytes	 0.209	

Proliferation	of	cytotoxic	T	cells	 0.293	 Binding	of	stromal	cells	 0.208	

Secretion	of	mucus	 0.285	 Synthesis	of	leukotriene	C4	 0.207	

Systolic	pressure	of	right	ventricle	
0.284	

Cell	viability	of	monocyte-derived	dendritic	

cells	
0.202	

Function	of	helper	T	lymphocytes	 0.272	 Remodeling	of	vascular	tissue	 0.201	

Transmigration	of	macrophages	 0.268	 Synthesis	of	prostaglandin	 0.201	

Proliferation	of	invariant	natural	killer	T	cells	 0.264	 	 	

Th2	immune	response	 0.257	 	 	

Generation	of	bone	marrow-derived	dendritic	cells	 0.252	 	 	

Stimulation	of	mast	cells	 0.252	 	 	

Activation	of	natural	killer	T	lymphocytes	 0.250	 	 	

Pulmonary	fibrosis	or	aplastic	anemia	 0.247	 	 	

Quantity	of	adenosine	 0.246	 	 	

Quantity	of	Th2	cells	 0.245	 	 	

Expansion	of	antigen	presenting	cells	 0.240	 	 	

Cell	movement	of	basophils	 0.236	 	 	

Proliferation	of	Th1	cells	 0.233	 	 	

NK	cell	proliferation	 0.233	 	 	

Production	of	superoxide	 0.223	 	 	

Quantity	of	phagocytes	 0.223	 	 	

Development	of	follicular	T	helper	cells	 0.219	 	 	

Maturation	of	natural	killer	cells	 0.218	 	 	

Effector	phase	 0.217	 	 	

Stimulation	of	monocytes	 0.216	 	 	
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Table	S5.	Pulmonary	hypertension:	top-scoring	genes.	

gene	 z-score	 gene	 z-score	 gene	 z-score	 gene	 z-score	

ADORA2B*	 9.536	 PAK2	 4.334	 CEBPZ	 3.620	 PLAT*	 -3.293	

ADA*	 -7.493	 ZNF668	 -4.288	 NAGLU	 3.599	 NCR3LG1	 3.283	

IL18*	 7.135	 NOS3*	 -4.204	 NT5E	 -3.577	 SMAD5	 -3.271	

PTGDR2*	 6.693	 LOC290071	 -4.184	 Havcr1	 -3.551	 CD82	 3.244	

ACVR2A	 -6.193	 JAG2	 -4.143	 IL3	 3.550	 CD180	 3.237	

AKNA	 6.056	 VIP*	 -4.082	 HSPB2	 -3.547	 ACVR1	 -3.237	

BMPR2*	 -6.043	 PTGIR	 -4.064	 MOV10L1	 3.542	 MXD3	 -3.231	

RPTOR*	 5.773	 HJV	 -4.024	 MS4A1	 -3.532	 EPAS1*	 3.231	

APOE*	 -4.927	 CSF1	 4.017	 ADORA1	 -3.492	 NAA30	 -3.205	

CCR3	 4.846	 CAV1*	 -3.999	 GRB10	 -3.489	 IL33	 3.200	

AQP11	 -4.839	 CD83	 -3.967	 IL17RB	 3.483	 STOX1	 -3.194	

IL15	 4.838	 POU2AF1	 3.951	 IFITM3	 -3.474	 TRAF4	 3.193	

ARG1*	 4.813	 CCR6	 3.930	 ALPL	 -3.474	 ANXA13	 -3.178	

P4HTM	 -4.765	 BID	 3.918	 IL5	 3.413	 SRFBP1	 -3.171	

IL1RN*	 -4.741	 CHRNA1	 -3.912	 TMPRSS6	 3.410	 SETDB1	 3.165	

CSF2*	 4.724	 FBXO11	 -3.905	 Til1	 3.384	 P2RY1	 -3.160	

EGLN1*	 -4.678	 BIRC5*	 3.896	 DAZAP2	 -3.373	 TNFRSF4	 3.119	

TNFSF4*	 4.636	 ARNT	 3.863	 BLVRA	 -3.352	 PRMT7	 -3.100	

KDR*	 -4.514	 GDF2*	 -3.856	 CD48	 3.351	 SPI1	 3.069	

CXCR4*	 4.494	 TNFSF10*	 3.818	 IL2RA	 -3.339	 CD2	 3.050	

KIF17	 -4.481	 ENDOG	 -3.765	 ICOS	 3.331	 TFR2	 -3.045	

GREB1	 4.444	 Pln	 -3.706	 WNT2	 3.324	 CFB	 3.036	

ZNF613	 4.441	 Adora3/LOC100911796	 3.676	 IL9R	 3.315	 IRF8	 3.020	

NOS2*	 4.438	 CAMTA1	 3.676	 STAT1	 3.305	 HIF1AN	 -3.016	

CLSTN1	 4.391	 ZNF260	 3.676	 FOSL2*	 3.298	 USP22	 3.013	

	

Genes	marked	with	(*)	are	associated	with	pulmonary	hypertension	in	the	QKB.	Genes	not	

marked	with	(*)	are	predicted	to	be	causally	associated.	
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Table	S6.	Psoriasis:	top-scoring	functions.	

function	 cosine	

similarity	

function	 cosine	

similarity	

function	 cosine	

similarity	

function	 cosine	

similarity	

Influx	of	

neutrophils	
0.414	

Activation	of	

synovial	fibroblasts	
0.306	

Accumulation	of	

pyruvic	acid	
-0.275	

Proliferation	of	

colony-forming	

granulocyte-

macrophages	

0.253	

Activation	of	

Th17	cells	
0.394	

Adhesion	of	

mesenchymal	stem	

cells	
0.304	

Necroptosis	of	

bone	marrow-

derived	

macrophages	

0.274	

I-kappaB	

kinase/NF-kappaB	

cascade	
0.253	

Migration	of	

Langerhans	cells	
0.393	

Synthesis	of	5,6,7,8-

tetrahydrobiopterin	
0.303	

Permeability	of	

tight	junctions	
0.273	

Neurogenesis	of	

neural	stem	cells	
0.253	

Th17	immune	

response	 0.386	

Fever	

0.302	

Activation	of	

mesangial	cells	 0.272	

Proliferation	of	

fibroblast-like	

synoviocytes	

0.253	

Quantity	of	IL-1a	

in	blood	
0.371	

Immune	response	

of	brain	
0.302	

Release	of	L-

cysteine	
0.272	

Generation	of	Th9	

cells	
-0.253	

Activation	of	Th1	

cells	
0.370	

Killing	of	

Haemophilus	

influenzae	
0.295	

Inflammation	of	

absolute	

anatomical	

region	

0.272	

Binding	of	Sertoli	

cells	
0.252	

Loss	of	

proteoglycan	 0.368	

Killing	of	Listeria	

monocytogenes	

10403S	

0.295	

Binding	of	E.	

coli	 0.271	

Trafficking	of	B	

lymphocytes	 0.252	

Production	of	

anti-DNA	

antibody	

0.357	

Polarization	of	T-

cell	hybrid	cells	 0.295	

Clearance	of	

Pseudomonas	

aeruginosa	

0.270	

Binding	of	

microvessel	 0.251	

Quantity	of	nitric	

oxide	 0.354	

Release	of	

prostaglandin	E2	 0.293	

Growth	of	

Mycobacterium	

tuberculosis	

-0.269	

Acute	phase	

reaction	 0.251	

Formation	of	

nitrite	 0.353	

Proinflammatory	

response	 0.293	

Dissemination	

of	Klebsiella	

pneumoniae	

-0.269	

Efflux	of	

sphingomyelin	 -0.250	

Apoptosis	of	

thyroid	cells	 0.337	

Fragmentation	of	

DNA	fragment	 0.292	

Formation	of	

PML	nuclear	

bodies	

0.269	

Activation	of	

alveolar	

macrophages	

0.250	

Synthesis	of	

leukotriene	B4	
0.336	

Clearance	of	

Staphylococcus	

aureus	
0.292	

Activation	of	

myeloid-

derived	

suppressor	cells	

0.268	

Induction	of	muscle	

cells	
0.250	
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Translocation	of	

granules	 0.335	

Cellular	infiltration	

by	CD4+	T-

lymphocytes	

0.292	

Induction	of	

follicular	T	

helper	cells	

0.267	

Increased	

localization	of	AST	 0.249	

Stimulation	of	

lung	cells	
0.335	

Stimulation	of	

hepatocytes	
0.287	

Activation	of	

bone	marrow-

derived	

dendritic	cells	

0.266	

Quantity	of	

enterobacteriaceae	
-0.249	

Cell	movement	of	

naive	B	cells	
0.334	

Apoptosis	of	

microglia	
0.286	

Stimulation	of	

chondrocytes	
0.264	

Apoptosis	of	

trophoblast	cells	
0.248	

Adhesion	of	

peripheral	blood	

monocytes	

0.332	

Proliferation	of	

endometriotic	

stromal	cells	

0.285	

Damage	of	

genitourinary	

system	

0.264	

Outgrowth	of	lymph	

vessel	 0.247	

Degradation	of	

connective	tissue	 0.323	

Release	of	

sphingolipid	 0.284	

Release	of	non-

esterified	fatty	

acid	

0.263	

Apoptosis	of	

effector	memory	T	

lymphocytes	

0.247	

Stimulation	of	

airway	smooth	

muscle	cells	

0.319	

Response	of	

skeletal	muscle	 0.282	

Induction	of	

histamine	 0.263	

Chemotaxis	of	Th2	

cells	 0.246	

Scaling	of	skin	

0.317	

Permeability	of	

microvasculature	 0.280	

Activation	of	

sensory	

neurons	

0.261	

Maturation	of	

myeloid	dendritic	

cells	

0.246	

Activation	of	

keratinocytes	
0.316	

Chemotaxis	of	

basophils	
0.280	

Release	of	cyclic	

GMP	
0.260	

Binding	of	C/ebp	

beta	binding	site	
0.243	

Induction	of	

prostaglandin	 0.312	

Quantity	of	

apoptotic	endocrine	

cell	lines	

0.280	

Writhing	

0.256	

Apoptosis	of	islets	

of	Langerhans	 0.243	

Cell	movement	of	

memory	B	cells	 0.310	

Response	of	

fibroblasts	 0.279	

Survival	of	

Francisella	

tularensis	

-0.255	

Stimulation	of	

vascular	endothelial	

cells	

0.242	

Concentration	of	

epoprostenol	 0.310	

Hematopoiesis	of	

myeloid	progenitor	

cells	

-0.279	

Activation	of	

natural	killer	T	

lymphocytes	

0.255	

Apoptosis	of	

placenta	 0.241	

Inflammatory	

infiltrate	
0.307	

Release	of	reactive	

oxygen	species	
0.278	

Killing	of	

Leishmania	
0.254	

Chemoattraction	of	

eosinophils	
0.241	

Cell	viability	of	

oligodendrocyte	

precursor	cells	
-0.307	

Stimulation	of	

hyaluronic	acid	
0.277	

Binding	of	

vascular	

smooth	muscle	

cells	

0.253	

Flux	of	Ca2+	

0.240	

	

	

Table	S7.	Psoriasis:	top-scoring	genes.	

gene	 z-score	 gene	 z-score	 gene	 z-score	 gene	 z-score	

KLK5	 9.014	 GABRA2	 5.358	 FILIP1	 -3.917	 STAT1	 3.634	

DTL*	 -8.339	 ACKR2*	 -5.264	 SIGIRR*	 -3.891	 CCL20*	 3.609	

IL36A*	 8.312	 IL1B	 5.150	 ARRB1	 3.884	 S100A4	 3.607	

IL17C*	 8.289	 IL10*	 -5.130	 TGFB1*	 3.880	 AGER	 3.603	

TEK*	 7.871	 IL22RA2*	 -5.038	 IL12RB2	 -3.862	 IFNL1	 3.564	

BANF1	 -7.736	 IL22*	 4.824	 PRKCA	 3.831	 CCR2	 3.558	

NFKBIZ	 7.492	 TCL1A	 4.761	 PLAUR	 3.823	 TNFSF12	 3.547	

PLA2G2D*	 -7.490	 IL4*	 -4.713	 S100A8	 3.822	 IFNL3	 3.513	

IL17A*	 7.329	 CNPY3	 4.676	 Tcrd	 3.818	 CYFIP2	 -3.500	

IL23A*	 7.180	 CXCL8*	 4.535	 Rcan1	 3.818	 NPC1	 -3.493	

IL1RL2	 6.931	 CFP	 4.534	 PNPT1	 -3.789	 CD200	 -3.486	
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TNF*	 6.862	 IRF7	 4.482	 IL1A	 3.771	 IL12B	 3.481	

TNIP1	 -6.362	 CXCR5	 4.471	 IL20*	 3.754	 PF4	 3.470	

HSD17B14	 -6.263	 SCGB1A1	 -4.411	 SWAP70	 3.751	 TNFAIP3	 -3.445	

IL1RN*	 -6.240	 NPS	 4.385	 IL1RL1	 -3.740	 TRHR	 3.445	

ADAMTS12	 -5.942	 Wfdc17	 -4.383	 CSF3R	 -3.738	 GLIS1	 3.415	

CXCL5*	 5.931	 TRAIP	 -4.364	 IL36G	 3.726	 HSP90B1	 3.414	

CXCL17	 -5.741	 ZFP36	 -4.339	 CXCL1*	 3.718	 RBBP4	 3.402	

Ccl2*	 5.738	 TRU-TCA1-1	 -4.261	 OPA1	 -3.712	 Usp17la	 3.392	

CAMP	 5.652	 CCR1	 4.205	 C7	 3.669	 RGS10	 -3.375	

KDR	 -5.582	 IRF3	 4.113	 STAT6	 -3.663	 ZBTB46	 -3.373	

GPR34	 5.424	 PTPN22	 -4.100	 PTPRT	 -3.653	 TRAF3IP2*	 3.372	

IFNG	 5.396	 CEBPE	 4.048	 Saa3	 3.650	 IL23R	 3.333	

Ctf2	 5.393	 CXCL2	 3.965	 APOA1	 -3.646	 ANKRD17	 3.330	

REG3A	 5.393	 MFAP2	 -3.941	 APP	 3.643	 PGRMC1	 3.318	

	

Genes	marked	with	(*)	are	associated	with	psoriasis	in	the	QKB.	Genes	not	marked	with	(*)	

are	predicted	to	be	causally	associated.	
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