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Abstract 18 

Rhizophagus irregularis is one of the most extensively studied arbuscular mycorrhizal fungi (AMF) 19 

that forms symbioses with and improves the performance of many crops. Lack of transformation 20 

protocol for R. irregularis renders it challenging to investigate molecular mechanisms that shape 21 

the physiology and interactions of this AMF with plants. Here we used all published genomics, 22 

transcriptomics, and metabolomics resources to gain insights in the metabolic functionalities of R. 23 

irregularis by reconstructing its high-quality genome-scale metabolic network that considers 24 

enzyme constraints. Extensive validation tests with the enzyme-constrained metabolic model 25 

demonstrated that it can be used to: (1) accurately predict increased growth of R. irregularis on 26 

myristate with minimal medium; (2) integrate enzyme abundances and carbon source 27 

concentrations that yield growth predictions with high and significant Spearman correlation (𝜌𝑆 = 28 

0.74) to measured hyphal dry weight; and (3) simulated growth rate increases with tighter 29 

association of this AMF with the host plant across three fungal structures. Based on the validated 30 

model and system-level analyses that integrate data from transcriptomics studies, we predicted 31 

that differences in flux distributions between intraradical mycelium and arbuscles are linked to 32 

changes in amino acid and cofactor biosynthesis. Therefore, our results demonstrated that the 33 

enzyme-constrained metabolic model can be employed to pinpoint mechanisms driving 34 

developmental and physiological responses of R. irregularis to different environmental cues. In 35 

conclusion, this model can serve as a template for other AMF and paves the way to identify 36 

metabolic engineering strategies to modulate fungal metabolic traits that directly affect plant 37 

performance. 38 

  39 
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Importance 40 

Mounting evidence points at the benefits of the symbiotic interactions between the arbuscular 41 

mycorrhiza fungus Rhizophagus irregularis and crops; yet, the molecular mechanisms underlying 42 

the physiological responses of this fungus to different host plants and environments remain largely 43 

unknown. We present a manually curated, enzyme-constrained genome-scale metabolic model of 44 

R. irregularis that can accurately predict experimentally observed phenotypes. We show that this 45 

high-quality model provides an entry point into better understanding the metabolic and physiological 46 

responses of this fungus to changing environments due to the availability of different nutrients. The 47 

model can be used to design metabolic engineering strategies to tailor R. irregularis metabolism 48 

towards improving the performance of host plants. 49 

 50 
Main Text 51 
 52 
Introduction 53 
 54 
More than two thirds of all land plants are involved in symbiotic relationships with arbuscular 55 

mycorrhizal fungi (AMF) (1). AMF are members of a monophyletic group within the early diverging 56 

fungi. Arbuscular mycorrhizal symbiosis is established by fungal hyphae entering cortical root cells 57 

of the host plant to form subcellular structures, termed arbuscles (ARB), where nutrients are 58 

exchanged between the symbiotic partners (2, 3). Rhizophagus irregularis (previously wrongly 59 

ascribed to Glomus intraradices (4)) is one of the most extensively studied AMF, shown to form 60 

symbioses with a variety of agriculturally relevant plants. Soil inoculation with R. irregularis leads 61 

to improved overall plant growth (5–8), fruit quality (9, 10), and yield (11–14). Further, R. irregularis 62 

confers robustness against multiple abiotic stress conditions (15–22). These qualities thus make it 63 

a valuable contributor to plant fitness, which is widely exploited for plant cultivation.  64 

Spores of R. irregularis grow into a network of coenocytic hyphae, which can be separated into 65 

three major structures: the extraradical mycelium (ERM), the intraradical mycelium (IRM), and ARB 66 

(2). The ERM is comprised of hyphae located in soil, whereas hyphae of the two apoplastic 67 

structures, IRM and ARB, grow between or penetrate cortical root cells. R. irregularis mainly 68 

provides inorganic phosphate (Pi) and nitrogen (N) to the host plant as its extensive hyphae 69 

network bridges the nutrient depletion zone surrounding the roots (23–27); in return, it receives 70 

carbohydrates and lipids from the host plant (28–35). Pi is one of the key nutrients that limits plant 71 

growth, and under Pi-limiting conditions, most plants rely on additional Pi supplied by a fungal 72 

symbiotic partner (3). To this end, the external hyphae of the fungus either take up Pi directly from 73 

the soil or obtain it from hydrolysis of complex organic phosphates, such as phytate (36). According 74 

to the current evidence in R. irregularis, assimilated Pi is polymerized into polyphosphate (PolyP), 75 

which is translocated through the ERM towards IRM (27). Finally, Pi is released from arbuscles into 76 
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the periarbuscular space. Several Pi transporters have been identified in R. irregularis which could 77 

be involved in Pi translocation from fungus to plant (26, 37, 38). 78 

Moreover, N is another key nutrient for plant growth, comprising up to 5% of their dry weight. 79 

However, the availability of N sources to the plant is restricted due to the limited range of roots and 80 

its inhomogeneous distribution in soil. Hence, many plants depend on interactions with microbes 81 

which can provide additional nitrogen assimilated from the surrounding soil (39). R. irregularis takes 82 

up N in the form of ammonia (NH4
+) and nitrate (NO3

-) as well as amino acids and small peptides 83 

via designated transporters. Three NH4
+ transporters, GintAMT1-3, and a NO3

- transporter, GiNT, 84 

have been identified in R. irregularis (40–43). Intracellular NH4
+ is then used to synthesize L-85 

arginine from L-glutamate (25, 43). Arginine is assumed to be the major transport form of nitrogen 86 

from the ERM to IRM, where it is catabolized to NH4
+ and excreted into the periarbuscular space 87 

(3, 43). 88 

The fungus, in turn, is dependent on carbohydrates and lipids obtained from the plant host. 89 

Multiple sugar transporters have been found, which are likely involved in hexose transfer from the 90 

host plant to R. irregularis (31, 44). However, the sugars obtained from the plant are not sufficient 91 

for the fungus to complete its life cycle (i.e. formation of fertile spores). R. irregularis cannot 92 

synthesize fatty acids with chain length greater than eight due to the absence of the fatty acid 93 

synthase (FASI), and thus depends on fatty acids provided by the host plant (32, 33, 35, 45, 46). 94 

Most likely, lipid is transported as 2-monopalmitin; however, it has also been shown that R. 95 

irregularis is able to grow on myristate (47). These findings have been exploited to develop an 96 

axenic culture medium on which the obligate biotroph can grow up to the production of fertile spores 97 

(48). 98 

The availability of an assembled genome for R. irregularis (49–52) largely facilitated the 99 

characterization of transporters and its lipid metabolism (45, 53), allowing us to draw conclusions 100 

about the metabolic capabilities of the obligate biotrophic fungus. Multiple studies performed gene 101 

expression profiling under various conditions, facilitating a deeper understanding of the R. 102 

irregularis metabolism and arbuscular mycorrhiza (5, 54–56). An annotated genome of an organism 103 

is also the basis for the generation of genome-scale metabolic models (GEMs) that offer the means 104 

to in silico probe the functional capabilities and physiological responses of the organism (57). GEMs 105 

have already been developed to analyze the interaction of a N-fixing bacterium Sinorhizobium 106 

meliloti and its host plant Medicago truncatula (58, 59). As a result, important features of the N 107 

exchange and co-dependent growth were revealed, leading to a better understanding of this 108 

symbiotic relationship. Such analyses for R. irregularis cannot be performed due to the lack of a 109 

high-quality GEM for this organism. 110 
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Availability of a GEM for R. irregularis can be particularly useful to dissect mechanisms 111 

underlying arbuscular mycorrhiza and to predict fungal nutrient conversions and exchange, directly 112 

affecting growth of the host plant. Here, we present a compartmentalized enzyme-constrained GEM 113 

for R. irregularis, termed iRi1574, which allows the integration and prediction of transcript and 114 

protein abundances for different growth scenarios. We then used the enzyme-constrained GEM of 115 

R. irregularis to predict protein abundances across four carbohydrate sources and three feeding 116 

concentrations; we also examined the predictions of growth and pathways that affect this complex 117 

phenotype based on experimental measurements of hyphal dry weight and protein content from 118 

Hildebrandt et al. (60). We show that the enzyme-constrained iRi1574 model results in predictions 119 

that correlate well with experimentally measured dry weight (as well as calculated growth rates) 120 

and allows us to probe the flux redistributions across three fungal structures using re-analysed 121 

published gene expression data (5). Thus, we lay the foundation for further in-depth analysis of R. 122 

irregularis metabolism, hypothesis testing regarding mechanism essential for arbuscular 123 

mycorrhiza, and metabolic engineering of this fungus to improve the effect on agriculturally relevant 124 

plant traits. 125 

Results and Discussion 126 
 127 
Reconstruction of the genome-scale metabolic model of R. irregularis 128 

Our first contribution is the generation of a GEM for R. irregularis encompassing all enzymatic 129 

functions annotated for this agronomically relevant fungus. The metabolic model can be used in 130 

combination with computational approaches from the constraint-based modelling framework to 131 

predict variety of metabolic phenotypes, including growth, in different scenarios (61, 62). The 132 

genome of R. irregularis (49, 51) was used as a starting point for the generation of the GEM using 133 

the KBase fungal reconstruction pipeline (63). The resulting draft model was first translated to a 134 

common namespace, based on augmenting a database of biochemical reactions, ModelSEED 135 

(34), since there were reaction and metabolite identifiers from published fungal models without 136 

cross references. We then added 198 transport reactions from the Saccharomyces cerevisiae 137 

iMM904 GEM (64) to improve the network connectivity (Suppl. Tab 8). We further expanded the list 138 

of reactions based on literature evidence for R. irregularis (Suppl. Tab 1). After these steps, the 139 

model was manually curated to ensure mass- and charge balancing. Finally, stoichiometrically 140 

balanced cycles were removed from the model to avoid simulations in which growth without 141 

available carbon source is possible (Supp. Note 1). 142 

The manually curated GEM of R. irregularis, named iRi1574, consists of 1286 metabolites and 143 

1574 reactions in eight sub-cellular compartments, i.e. the cytosol, mitochondrion, peroxisome, the 144 

Golgi apparatus, Endoplasmic Reticulum, nucleus, vacuole, and an extracellular compartment. In 145 

total, 687 enzyme-coding genes are associated with 1054 (67%) reactions via gene-protein-146 
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reaction (GPR) rules (Fig. 1A). Further, we cross-referenced both metabolites and reactions to 147 

commonly used biochemical databases to increase the comparability to other GEMs and to 148 

facilitate its future usage. A published cost-efficient medium, that is used in dual-compartment 149 

culture systems and includes: glycine, myo-Inositol, pyridoxine hydrochloride, thiamine 150 

hydrochloride, nicotinic acid, and essential minerals, is the default medium for simulations (65). The 151 

dependence of the growth of R. irregularis on lipid transferred from the host (most likely 16:0 β-152 

monoacylglycerol (32, 33)) was modelled by adding an exchange reaction for palmitate, which is 153 

added to the default medium. 154 

Altogether, the iRi1574 model includes 13 metabolic subsystems (Fig. 1B). In total, 24% and 155 

13% of reactions take part in lipid and amino acid metabolism subsystems, respectively, which 156 

dominate the reconstruction (Fig. 1B). To model the lipid metabolism of R. irregularis, we relied on 157 

the gene annotations supported by literature (45, 66) . Moreover, to incorporate experimentally 158 

measured lipid abundances (45, 67) into the biomass reaction, we used the SLIMEr method (68), 159 

whereby specific lipid species are split into their fatty acyl chains and backbone which are then 160 

combined using respective pseudoreactions. Hence, the number of lipid-related reactions and 161 

pseudoreactions is high compared to that of the remaining 11 metabolic subsystems. Based on 162 

literature evidence, we further added reactions that allow the production of ethylen (69), short-chain 163 

lipochitooligosaccharides (LCO) (70, 71) and vacuolar polyphosphate (72, 73). The respective end-164 

products of these reactions are exported via sink reactions. Moreover, we added extracellular sink 165 

reactions for organic phosphate and ammonia as these molecules are known to be transported 166 

from the fungus to the host plant.  167 

As only a small proportion of metabolites is annotated by the KEGG BRITE hierarchy (74), we 168 

used the ChEBI metabolite ontology (75) to structurally classify the considered metabolites. Due to 169 

the large number of reactions from lipid metabolism included in iRi1574, the proportions of lipids 170 

and fatty acyls are high (34%), followed by peptides/amino acids, organic-, and nucleic acids (Fig. 171 

1C). The class of ‘Other’ metabolites is dominated by carbonyl compounds, heterocyclic 172 

compounds and phospho sugars. Quality assessment tests with the iRi1574 model were performed 173 

employing the MEMOTE test suite (76), yielding an overall score of 72% (Suppl. Note 1, Suppl. File 174 

2). 175 

Comparison of iRi1574 to other fungal models 176 

As R. irregularis is phylogenetically distant from other fungi for which GEMs have been published, 177 

we next asked whether the phylogenetic relationship among these fungi is represented in the 178 

enzyme sets included in the respective GEMs. To this end, we assigned pathway information to the 179 

reaction in nine fungal models according to the classification contained in the YeastGEM v8.3.5 180 

(77) model (Suppl. Tab 2). To determine the overall similarity between two fungal models, we 181 
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determined the overlap in E.C. numbers per subsystem by using the Jaccard Index (JI). We 182 

observed that, in comparison to the nine compared fungal models, the iRi1574 showed the lowest 183 

JI, i.e. lowest overlap of E.C. numbers, for fatty acid metabolism (including synthesis and 184 

elongation), thiamine metabolism, glycerolopid, and nicotinate and nicotinamide metabolism 185 

(Figure S1). In contrast, the largest overlap was found for the pentose phosphate pathway, one 186 

carbon pool by folate, pantothenate and CoA biosynthesis as well as amino sugar and nucleotide 187 

sugar metabolism, to name a few (Figure S1). Further, we identified that are some fungal GEMs 188 

showing differences in comparison to iRi1574 with respect to particular metabolic subsystems; for 189 

instance, the model of N. crassa showed particular differences in the tricarboxylic acid (TCA) cycle 190 

and pyruvate metabolism, the model of A. terreus displays particular differences in purine 191 

metabolism, steroid biosynthesis, sphingolipid, and pyrimidine metabolism, and lipid metabolism, 192 

while the model of P. chrysogenum  differed in sphingolipid metabolism and fatty acid elongation 193 

(Figure S1). 194 

The previous comparison between the fungal models was conducted only with respect to 195 

overlap of E.C. numbers present in particular metabolic subsystems, and does not point at 196 

differences in the activity of these pathways and their contribution to the physiology of the modelled 197 

fungi. To address this issue, we employed Flux Balance Analysis (FBA)(78, 79), that facilitates 198 

simulation of growth at steady state in each of the fungal models by optimizing of the flux, 𝑣𝑏𝑖𝑜, 199 

through a biomass reaction that integrates the biomass precursors. This results in a linear 200 

optimization problem that imposes metabolic steady state and physiologically relevant bounds on 201 

reaction fluxes, i.e. 202 

max 𝑣𝑏𝑖𝑜 203 

s.t. 204 

𝑺𝒗 = 𝟎 205 

𝑣𝑖
𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑅, 206 

with 𝑺 representing the stoichiometric matrix, including the molarity with which each substrate and 207 

product enter a reaction of the metabolic model, 𝒗 stands for the flux distribution, and 𝑅 denoting 208 

the set of reactions in the model. Since it is well-known that there are, often, multiple steady-state 209 

flux distributions, 𝒗, that achieve the same growth (80), to characterize the activity of a metabolic 210 

subsystem, we next determined the minimum and maximum values that the sum of fluxes of the 211 

reactions participating in a given subsystem attain at optimal growth (see Methods). Similarly, we 212 

determined the sums of fluxes from parsimonious FBA (pFBA) for each of the subsystems (see 213 

Suppl. Methods).  214 
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Following this analysis, we observed that the ranges between the maximal and minimal sums 215 

of fluxes are largely overlapping and are of similar widths across most of the compared models 216 

(Figure S2). Interestingly, the model for P. Chrysogenum, iAL1006, and the iRi1574 model showed 217 

narrower ranges compared to the remaining models, except for fatty acid metabolism. Moreover, 218 

we observed that the maximum sum of fluxes is similar across all fungal models (coefficient of 219 

variation, 𝐶𝑉̅̅ ̅̅ = 0.6), while minimal sums and sums from pFBA fluxes showed larger differences 220 

(𝐶𝑉̅̅ ̅̅ = 2.3 and 𝐶𝑉̅̅ ̅̅ = 2.6). This suggests that these pathways are of differential importance for the 221 

models, since the minimal sum of fluxes provides an indication of how much flux must at least pass 222 

through these reactions to guarantee optimal growth. In conclusion, we find differences in both E.C. 223 

number overlap as well as in the pathway activities between the iRi1574 and other fungal models, 224 

indicating that iRi1574 is both structurally and functionally distinct from other fungal GEMs. 225 

iRi1574 can predict phenotypes of R. irregularis in line with experimental observations 226 

We employed the assembled GEM to predict physiological traits for which there exists sufficient 227 

evidence and, thus, can be used to validate the performance of the model. A first question is how 228 

many of the reactions in the assembled model can carry flux. For these simulations, the M-229 

medium(65, 81) was used, which was enriched with palmitate, D-glucose, and D-fructose, assumed 230 

to be supplied by the plant (Table S11). Using this default medium, 658 (42%) reactions were 231 

blocked (i.e. could not carry flux in any steady state supported by the model) of which 105 are 232 

transport reactions for extracellular metabolites. This is in line with the percentage of blocked 233 

reactions in the fungal models used in the comparison above (from 11.9% in iJL1454 to 49.9% in 234 

iRL766). 235 

An important characteristic of the symbiotic relationships formed by R. irregularis is its 236 

dependence on association with the plant host to ultimately form fertile spores (46). According to 237 

recent findings, lipids are supplied by the plant symbiont, as R. irregularis does not possess the 238 

required enzyme set for de novo synthesis of long-chain fatty acids from hexoses (35, 45). More 239 

specifically, 2-monopalmitate was proposed as a likely candidate for the lipid exchange from plant 240 

to fungus (32, 33). Concordantly, axenic growth of this fungus is only possible when fatty acids are 241 

supplied in the medium (47, 82). Hence, the default medium used in the study includes palmitate 242 

as a lipid source. Indeed, simulations in which palmitate influx is blocked lead to no growth with or 243 

without consideration of other carbon sources.  244 

It has been shown that R. irregularis is able to utilize additional carbon sources (30, 47, 83). The 245 

ability of the model to reproduce these finding was assessed by growth simulations on single 246 

carbon sources in the default medium, while restricting the uptake of palmitate to a minimal value 247 

that still guarantees optimal growth (8.46 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1ℎ−1). As a result, we simulated growth on 248 
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11 carbon sources by using FBA (see above), resulting in different growth rates (Figure S3). Here, 249 

we observed the highest growth rates for trehalose, followed by D-glucose, D-fructose, melibiose, 250 

and raffinose. The observed high growth rate with trehalose as a carbon source is not surprising, 251 

given that it directly enters the biomass reaction. The equal growth rates obtained upon adding D-252 

glucose, D-fructose, raffinose, and melibiose indicated that D-glucose, D-fructose, as well as D-253 

galactose as a breakdown product from raffinose can be used with equal efficiency. The efficiency 254 

of the remaining carbon sources differed due to the differences in their breakdown pathway and 255 

additional modifications (e.g. phosphorylation, reduction). 256 

 257 

Moreover, it has been reported that the addition of myristate to the medium leads to enhanced 258 

growth of R. irregularis (47). We found that optimum growth is, as expected, associated with a fixed 259 

value of palmitate influx of 8.46 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1ℎ−1. Further, myristate is not utilized if additional 260 

carbon sources are unlimitedly available in the medium, which is in contrast to the experimental 261 

findings of Sugiura and co-workers, who found that the addition of myristate lead to an increment 262 

in growth irrespective an additional carbon source (47). Therefore, we asked if the reduced growth, 263 

due to the suboptimal scenario of fixing the palmitate influx to 10% of the minimum at optimal 264 

growth, can be complemented by adding myristate. Indeed, the model predicted that growth 265 

increased by 1.5% in comparison to the suboptimal scenario. When additional carbon sources (i.e. 266 

D-glucose, D-fructose, glycine, and myo-inositol) are allowed, with uptake rates restricted to their 267 

minimal fluxes at optimal growth, this increase in growth amounts to 9.7% (see below for the 268 

predictions from the enzyme-constrained model). 269 

Another important transport process described for this symbiosis is the transport of Pi from 270 

fungus to the host plant (38). We found that the reconstructed model predicts export of Pi at optimal 271 

growth (Suppl. Tab 3 for FVA), in line with evidence (38). These results corroborate the quality of 272 

the functionally relevant predictions based on the developed iRi1574 model.  273 

Protein usage with different carbon sources 274 

Enzyme-constrained GEMs have been developed for S. cerevisiae and E. coli (68, 84, 85), 275 

demonstrating improved prediction of metabolic phenotypes in contrast to the classical FBA-based 276 

models. In enzyme-constrained GEMs, the fluxes of reactions are bounded by the catalytic 277 

efficiency (𝑘𝑐𝑎𝑡 parameters) and the abundance of the respective enzyme(s) (86); these models 278 

also include constraints on the total enzyme content, borrowing from the initial idea proposed in 279 

FBA with molecular crowding (87, 88). An enzyme-constrained GEM can be used to predict not 280 

only growth, but also distribution of the total enzyme content across the different reactions and 281 

pathways. To generate an enzyme-constrained GEM for R. irregularis, we made use of 1214 𝑘𝑐𝑎𝑡 282 
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parameters, of which 430 were measured for fungi, that covered 57.4% of reactions included in the 283 

model (with all irreversible reactions, see Methods). We then employed an extension of MOMENT 284 

(84), a constraint-based approach that facilitates the integration and prediction of protein 285 

abundance by considering data on the 𝑘𝑐𝑎𝑡 values. In addition to a molecular crowding constraint 286 

(Eq. 5, Methods) (84, 87, 88) similar to GECKO (68), we introduced a constraint to model enzyme 287 

promiscuity (Eq. 4), resulting in the extended method we refer to as eMOMENT. Missing turnover 288 

numbers were accounted for by assigning the median of the assigned 𝑘𝑐𝑎𝑡values. 289 

Here, we first revisit the results based on FBA with respect to growth on myristate and export of 290 

Pi. Without additional constraints in the enzyme constrained iRi1574 model, the positive effect of 291 

myristate uptake on growth could not be reproduced, since myristate is catabolized via peroxisomal 292 

-oxidation and the expression of the required enzymes is not outweighed by the benefit of 293 

generating acetyl-CoA from myristate. However, when the allocation of total protein is shifted from 294 

the optimal ratio towards increased abundances of peroxisomal proteins (suppl. Methods), the 295 

addition of myristate can increase growth compared to the suboptimal scenario (Figure S4). 296 

Further, we found that using the default medium, like in the FBA model above, the enzyme-297 

constrained model predicts export of Pi at optimal growth in the range [0, 171.9] 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1ℎ−1 298 

(Suppl. Tab 4). Therefore, the observations made for the FBA model with these important 299 

phenotypes also hold for the enzyme-constrained model. 300 

To test the performance of the enzyme-constrained variant of the iRi1574 model, we made use 301 

of published dry weight and protein content available for 12 combinations of four carbon sources 302 

(i.e. D-glucose, D-fructose, raffinose, and melibiose) at three different concentrations (i.e. 10 mM, 303 

100 mM, 1 M) (60). These data were generated by using the G. intraradices strain Sy167 (60), 304 

which is the closest species to R. irregularis for which this kind of measurements are available to 305 

date. The different media conditions were modelled by adding each carbohydrate to the default 306 

medium as a single carbon source, while the respective concentrations were modelled as 307 

proportional uptake fluxes considering kinetic parameters of the respective transport reactions (for 308 

more detail see Methods section). Like in the findings based on FBA, above, palmitate was present 309 

in the default medium since growth without palmitate is not possible, irrespective of additional 310 

supply of carbohydrates (45, 47). To avoid compensation of lower carbohydrate supply by β-311 

oxidation of palmitic acid, we limited its uptake to the flux value obtained at optimal growth predicted 312 

by FBA.  313 

We next compared the predictions of growth from the eMOMENT approach with those from FBA 314 

(i.e. without considering enzyme constraints), with the same restrictions on palmitate uptake (Suppl. 315 

Tab 5). We observed that the additional constraints on protein abundances largely improved the 316 

quality of the prediction (Fig. 2) and resulted in values of the same order as growth rates calculated 317 
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from dry weights and grow duration (suppl. Methods). We found that the predicted growth rates 318 

were significantly correlated with the measured values for hyphae dry weight (Spearman correlation 319 

coefficient, 𝜌𝑆  =  0.74, 𝑃 < 0.01, Fig. 2) and were collinear (𝜌𝑆 =  1.0) with the protein content. In 320 

contrast, FBA predicted a statistically significant, negative correlation (𝜌𝑆  =  −0.69, 𝑃 < 0.05) 321 

demonstrating that the predictions from this approach are not in line with the experimental 322 

observations. The respective values for Pearson correlation were 𝜌𝑃 = 0.80 (𝑃 < 0.01), for the 323 

enzyme-constrained models, and 𝜌𝑃 = −0.62 (𝑃 < 0.05), for the FBA model. Using FBA, we 324 

observed that growth increased with the concentration of the respective carbon source despite 325 

rescaling of biomass coefficients, while this was not the case when using the eMOMENT approach. 326 

In fact, this relationship was only observed for D-glucose and raffinose, which is broken down to 327 

sucrose and D-galactose extracellularly. Hence, the iRi1574 model can reliably predict growth 328 

based on different carbon sources when protein content and protein-reaction associations are 329 

considered. 330 

The applied approach to integrate total protein content allowed us to predict not only optimal 331 

growth, but also abundances of individual proteins for the 12 combinations of carbon source and 332 

concentrations considered. Since multiple allocations of proteins to enzyme complexes and 333 

reactions can lead to optimal growth, we sampled the set of feasible enzyme abundances 334 

(Methods) at 99% of the respective optima. The resulting predictions on alternative enzyme 335 

allocation at optimal growth were used to investigate the plasticity of enzyme allocation under the 336 

different conditions. We quantified the plasticity in the abundance of each protein by the coefficient 337 

of variation (CV) across the simulated conditions. The CV was calculated for predicted protein 338 

abundance and reaction flux across the 12 growth scenarios (Suppl. Tab 6 and 7). To illustrate the 339 

findings, we represented the distribution of CVs across the 13 metabolic subsystems (Fig. 3A-B). 340 

The highest median CV was found for enzymes within the amino sugar and nucleotide sugar 341 

metabolism (𝐶�̃� = 16.65), carbohydrate metabolism (𝐶�̃� = 9.71), and nucleotide metabolism (𝐶�̃� =342 

9.35). In contrast, metabolism of cofactors and vitamins and transport reactions showed the lowest 343 

plasticity in protein abundance (𝐶�̃� < 0.3). Regarding reaction fluxes, the subsystems containing 344 

the most plastic reactions were found within sink reactions (𝐶�̃� = 13.77) and amino sugar and 345 

nucleotide sugar metabolism (𝐶�̃� = 12.55). 346 

To assess whether the plasticity in flux is dependent on the variability in enzyme abundance of 347 

the catalysing enzymes, we compared the respective sets at the extreme ends of CV distribution 348 

(10% and 90% quantiles) between protein abundance and reaction fluxes (Figure 3C). Among the 349 

89 reactions associated to enzymes with variable abundance (𝐶𝑉 ≥ 49.38), 28 were found to be 350 

also highly plastic in flux. Conversely, we found six reactions with low flux CV associated with seven 351 

high abundance CV proteins. Four out of these genes were not promiscuous, and were associated 352 
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with single reactions of high CV. The associated reactions are involved in terpenoid backbone 353 

biosynthesis and nucleotide metabolism. Hence, variation in enzyme abundance cannot fully 354 

explain the plasticity in flux. Since pH differences (affecting enzyme activity) are expected to lead 355 

to systemic changes, we conclude that the plasticity in flux for these selected reactions is largely 356 

driven by metabolite concentration, rather than enzyme abundance. 357 

Among the 78 reactions with highly variable fluxes (𝐶𝑉 ≥ 39.79), the majority lies within the lipid 358 

and fatty acid metabolism (47) and transport reactions (10). The subset of reactions in lipid 359 

metabolism were found to act mainly in in lipid degradation but also in the synthesis of very long 360 

chain fatty acids. This result indicates a trade-off between lipid synthesis and 𝛽-oxidation depending 361 

on the type and concentration of the carbon source. 362 

Prediction of growth for three fungal structures 363 

As obligate biotrophs, AMF are dependent on the association with a host plant for carbohydrates 364 

and lipids (2, 3). Three major fungal structures are discriminated for the fungus: extraradical 365 

mycelium (ERM), intraradical mycelium (IRM) and arbuscles (ARB), which differ from each other in 366 

the proximity of association with the host plant. Thus, we investigated growth and underlying flux 367 

distributions comparing these three structures of R. irregularis. To this end, we used published 368 

expression data from (5) to examine growth and differential reaction fluxes between these three 369 

structures. 370 

We observed an increase in growth upon association of the fungus with the host plant (Fig. 4A), 371 

which was expected since a tighter association with the host plant and hence increased nutrient 372 

uptake allows faster growth. Since the total protein content remained the same over the simulations 373 

for all three structures, the changes in growth likely result from increased flux through a subset of 374 

reactions responsible for growth, due to larger upper bounds of these reactions. One reason for 375 

this could be changes in the relative abundances of individual proteins due to changes in transcript 376 

abundances that were used to calculate the upper bounds. To determine differential reactions, we 377 

sampled 5000 flux distributions for each structure and compared the resulting flux values for each 378 

reaction using the non-parametric common-language effect size (𝐴𝑤 (89), Suppl. Tab 8). We used 379 

three different thresholds for 𝐴𝑤 (i.e. 0.6, 0.7, 0.8) to find differentially activated reactions between 380 

each pair of structures. By using 0.6 as a threshold, we found that mainly reactions of the amino 381 

acid metabolism exhibited differential fluxes between each pair of structures, followed by reactions 382 

in metabolism of cofactors and vitamins, carbohydrate, lipid, and nucleotide metabolism (Fig. 4B). 383 

Upon increasing the threshold to 0.7, we found only two reactions to be differentially activated 384 

between the ERM compared IRM and ARB, which were both involved in riboflavin biosynthesis 385 

(KEGG M00911) (Fig. 4B). Moreover, eight reactions from metabolism of cofactors and vitamins 386 

were differential between IRM and ARB. When the threshold was increased to 0.8, only one 387 
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reaction was found to differ between IRM and ARB, namely the coproporphyrinogen:oxygen 388 

oxidoreductase (E.C. 1.3.3.3). These results suggest that substantial rerouting of fluxes within 389 

these pathways might occur upon establishing the fungal-plant interface. However, differences in 390 

predicted growth may not exclusively result from large changes in for few reactions. It is likely, that 391 

small changes in a number of other reactions also contribute to an increased growth rate.  392 

 393 
Conclusion 394 

Although R. irregularis is one of the most extensively studied AMF that forms symbioses with major 395 

crops, insights from the annotation of its enzymatic genes, the extensive body of evidence about 396 

its physiological and molecular responses to different environmental stimuli, and mutual effects on 397 

plants with which it interacts have not yet been systematically investigated in the context of 398 

metabolic modelling. The constraint-based modelling framework allows us to dissect the molecular 399 

mechanisms that underpin these responses and also to suggest targets for future metabolic 400 

engineering in order to boost the beneficial effects of this AMF. However, achieving this aim 401 

requires the assembly of a high-quality large-scale model that leads to accurate quantitative 402 

predictions of multiple traits in different scenarios. 403 

Here, we presented the enzyme-constrained iRi1574 GEM of R. irregularis based on the KBase 404 

fungal reconstruction pipeline followed by consideration and inclusion of exhaustive literature 405 

research as well as manual curation for consistency, mass- and charge balance. One possible 406 

caveat of using fungal reconstruction pipelines is that the resulting model may be very similar to 407 

the employed templates. Nevertheless, by conducting comparative analysed of the enzyme set of 408 

iRi1574 and that of published fungal models, we demonstrated the specificity of iRi1574 and its 409 

ability to capture the particularities of R. irregularis metabolism. More importantly, validation tests 410 

demonstrated that iRi1574 can: (1) accurately predict increased growth on myristate with minimal 411 

medium with the FBA model as well as, under additional constrains on enzyme distribution, in the 412 

enzyme-constrained model, (2) predict growth that is highly correlated with hyphal dry weight 413 

measured in a close relative (Glomus intraradices Sy167, neighbouring clade), when considering 414 

enzyme constraints, and (3) growth rate increases with tighter association with the host plant, 415 

based on integration of relative transcriptomics data. The extensively validated model was used to 416 

show that the transition from IRM to ARB could be linked with changes in amino acid and cofactor 417 

biosynthesis.  418 

This first model of an AMF can be coupled with root-specific models of model plants to 419 

investigate the effects of symbiosis. Further, a 2D growth simulation approach (62) can be 420 

employed to obtain a realistic growth measure for hyphal spread. In addition, the iRi1574 model 421 

can be used to mechanistically dissect the interactions of species in fungal and bacterial 422 

communities that jointly affect plant performance (90). Most importantly, one can begin to design 423 
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metabolic engineering strategies to improve desired traits in R. irregularis, study the effect of the 424 

modifications on plant performance by coupling metabolic models of the symbionts, and to further 425 

refine the model based on integration of heterogeneous molecular data. Altogether these modelling 426 

efforts can guide future reverse genetics tools used to understand the functional relevance of 427 

metabolic genes in R. irregularis in shaping plant traits. 428 

 429 

  430 
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Materials and Methods 431 
 432 
Draft model generation. The genome of Rhizophagus irregularis DAOM 181602=DAOM 197198 433 

(GCF_000439145.3) (49, 51) served as the basis for the genome-scale metabolic reconstruction. 434 

The initial draft model was obtained from KBase (63) using the 'Build Fungal Model' app (Oct 15, 435 

2018; narrative ID 36938). The resulting model was gap-filled with the help of the KBase app 'Gapfill 436 

Metabolic Model' app using the complete medium. A set of 35 additional reactions was required to 437 

simulate growth. This set of added reactions was manually curated in the next step of model 438 

refinement. The gap-filled model was then downloaded in SBML format and further modified within 439 

MATLAB (91) using functions of the COBRA toolbox (92). 440 

Model curation. To enhance connectivity between the cellular compartments, 198 transport 441 

reactions were added from the yeast iMM904 metabolic model (64). The imported transport 442 

reactions were validated during the next curation steps. Out of all added transport reactions, 71 443 

were kept in the model despite missing literature evidence (Suppl. Tab 9). Next, the metabolite and 444 

reaction identifiers were translated, whenever possible, to the ModelSEED namespace (34). This 445 

step was necessary since the identifiers resulted from 14 different models and the catalyzed 446 

reactions mostly could not be identified. Moreover, this led to a higher connectivity of the network 447 

as identical metabolites and reactions were reconciled. Further, cross-references were added to 448 

BiGG (93), MetaCyc (94), KEGG (74), MetaNetX (95), PubChem (96), and E.C. numbers. 449 

Metabolite formulas were added from PubChem and adapted to the net charge at the average 450 

cytosolic pH of 6.2 (97) using the ChemAxon Marvin software (Marvin 17.21.0, 2017, 451 

http://www.chemaxon.com). With elemental compositions and metabolite charges available, the 452 

model was manually mass- and charge balanced. 453 

After these steps, additional reactions were added from various literature sources. Most of the 454 

lipid metabolism is based on the results from (45), including: Sterol metabolism, Fatty acid 455 

synthesis, -elongation, and -degradation, glycerolipid metabolism, sphingolipid metabolism. 456 

Plasma membrane transporters were added with literature evidence from multiple sources (38, 44, 457 

53, 98). Furthermore, important dead-end metabolites were resolved manually by adding incident 458 

reactions with genetic evidence or transport reactions. 459 

The biomass reaction was adapted from the default fungal biomass reaction added during the 460 

automated reconstruction process (Suppl. Tab 10). Subsequently, the unknown coefficients in the 461 

biomass reaction were re-scaled such that the sum of coefficients multiplied with the respective 462 

molecular weight equals 1 𝑔 𝑔𝐷𝑊−1 (99). Due to missing experimental data, we set the growth-463 

associated ATP maintenance reaction (GAM) to 60 molecules ATP 𝑔𝐷𝑊−1 as taken from the 464 

KBase default fungal biomass, which is in line with the average value from seven published fungal 465 
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models (68.87 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1ℎ−1, Suppl. Tab 11). The non-growth associated ATP maintenance 466 

reaction (NGAM) was fixed to the average of from seven published fungal models (3.21 467 

𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1ℎ−1, Suppl. Tab 11). For the lipid component in the biomass reactions, the SLIMEr 468 

formalism was used (100) and coefficients of tail and backbone pseudometabolites were adjusted 469 

to render the model feasible for simulations by running a quadratic program to minimize factors to 470 

be added to the respective coefficients.  471 

Stoichiometrically-balanced cycles (SBC) were then removed by repeatedly applying Flux 472 

Variability Analysis (FVA) and correcting reaction reversibility or adding additional reactions as 473 

suggested in (101). For the following analyses, all reversible reactions were split into two 474 

irreversible reactions. 475 

Short-chain chitooligosaccharides (CO) and lipochitooligosaccharides (LCO). Synthesis 476 

reactions for LCOs were added by first modelling the synthesis of COs with chain lengths 3-6 with 477 

subsequent acetylation reactions adding 16: 0, 16: 1𝛥9(𝜔7), 18: 0, and 18: 1𝛥9(𝜔9) fatty acids 478 

leading to 16 different LCO species (70, 71). 479 

Transcriptomic data. Structure-dependent RNA-seq data were obtained as raw sequence reads 480 

(GSE99655) (5). The reads were quality trimmed using Trimmomatic-0.39 (102) and mapped to 481 

the R. irregularis genome using STAR 2.7.3a (103). The read quantification was performed using 482 

HTSeq count (104). The average over the three replicates was used for further analysis. The 483 

protein identifiers from the original study were translated to the identifiers of the genome annotation 484 

that was used for the metabolic reconstruction using local tblastn (105, 106) using the BLOSUM90 485 

scoring matrix and a cutoff E-value of 10E-90. The average Spearman correlation between the 486 

published and re-analysed values for the secreted proteins (SP) was 0.8, which confirms the 487 

previous results given different analysis software and possible mapping errors using tblastn. 488 

Turnover numbers. For the assignment of 𝑘𝑐𝑎𝑡 values to reactions, a similar approach as in 489 

GECKO (68) was applied. First, turnover values for all E.C. numbers in the model across all 490 

organisms and according lineages were obtained from BRENDA (107), SABIO-RK (108) and 491 

UniProt (109), respectively. For each E.C. number assigned to a reaction, all matching 𝑘𝑐𝑎𝑡 values 492 

were obtained and, if possible, filtered for substrate matches and enzymes from the fungi kingdom. 493 

If no match for the complete E.C. number was found the same procedure was applied to the same 494 

E.C. number pruned to a lower level. Among the obtained values, the maximum 𝑘𝑐𝑎𝑡 value was 495 

assigned to the respective reaction. The distribution and numbers of matched 𝑘𝑐𝑎𝑡 values per 496 

subsystem, as well as a comparison to 𝑘𝑐𝑎𝑡 values in the YestGEM v8.3.4 are shown in Figures 497 

S5A and B. The median of all non-zero values was used for metabolic reactions without a matched 498 

𝑘𝑐𝑎𝑡 value. To arrive at units of ℎ−1, all turnover numbers were multiplied by 3600. 499 
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Enzyme usage under different growth conditions. To predict the enzyme abundances with 500 

different media conditions, four different carbon sources (i.e. D-glucose, D-fructose, raffinose, 501 

melibiose) were added to the minimal medium (65) (Suppl. Tab 12) as single carbon sources. 502 

These carbohydrates were selected, as hyphal weight and protein content were available for them 503 

at three different concentrations (i.e. 10, 100, and 1000 𝑚𝑀) (60). As an exception, palmitate was 504 

retained in the medium as it must be supplied to the fungus in order to allow for growth (45, 47). 505 

We used kinetic parameters (i.e. 𝑉𝑚𝑎𝑥 and 𝐾𝑚) of S. cerevisiae monosaccharide transporters to 506 

model the influx of D-glucose, D-fructose, and D-galactose (results from breakdown of both 507 

raffinose and melibiose, Suppl. Tab 13) (110, 111). The respective upper bound for the transporters 508 

was calculated as 509 

𝑣 =
𝑉𝑚𝑎𝑥 ⋅ [𝑆]

𝐾𝑚 + [𝑆]
. (1) 510 

Further, the import of palmitate was restricted to the flux value of 8.46 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1 ℎ−1at optimal 511 

growth as predicted by FBA. 512 

The following MILP, which we termed eMOMENT, imposes constraints which were adopted from 513 

the MOMENT approach (84), which were extended by an additional constraint (Eq. 4): 514 

max 𝑣𝑏𝑖𝑜 515 

s.t. 516 

𝑺𝒗 = 𝟎 (2) 517 

0 ≤ 𝑣𝑖 ≤ 𝐸𝑖
𝑟 ⋅ 𝑘𝑐𝑎𝑡𝑖

𝑚𝑎𝑥 , ∀𝑖 ∈ 𝑅 (3) 518 

∑ 𝐸𝑘,𝑖
𝑟

𝑖∈𝐺𝑃𝑅𝑘

= 𝐸𝑘
𝑔

, ∀𝑘 ∈ 𝐺 (4) 519 

 ∑ 𝐸𝑘
𝑔

⋅ 𝑀𝑊𝑘

𝑘

≤ 𝐶, ∀𝑘 ∈ 𝐺 (5) 520 

𝛼 ⋅ 𝑦𝑘 ≤ 𝐸𝑘
𝑔

≤ 𝛽 ⋅ 𝑦𝑘 , ∀𝑘 ∈ 𝐺 (6) 521 

𝑦𝑘 ∈ {0,1} (7) 522 

𝛼 = 10−10 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1, 𝛽 = 1 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1 (8) 523 

*constraints on 𝐸𝑟
𝑗imposed by the GPR rules* 524 

𝑅 and 𝐺 represent the sets of reactions and genes. The molecular weight in 𝑔 𝑚𝑚𝑜𝑙−1 of a protein 525 

𝑘 is given by 𝑀𝑊𝑘. The constraint in Eq. (3) imposes an upper limit on the flux through reaction 𝑖 526 

which is the product of the reaction-specific turnover rate and the enzyme abundance 𝐸𝑟
𝑖 available 527 
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for this reaction. Further, binary variables 𝑦 were introduced to indicate that the respective genes 528 

are expressed (𝑦 = 1) or not (𝑦 = 0). This was done to enforce a lower bound 𝛼 for the abundance 529 

of expressed genes to avoid numerical problems. The value for 𝐸𝑟
𝑖 is determined by the GPR rules. 530 

To model the GPR rules, the following constraints were applied recursively in case of complex 531 

rules: 532 

1) A AND B → 𝐸𝑟
𝑖 = 𝑚𝑖𝑛(𝐸𝑔

𝐴, 𝐸𝑔
𝐵) 533 

𝐸𝑟
𝑖 ≤ 𝐸𝑔

𝐴 534 

𝐸𝑟
𝑖 ≤ 𝐸𝑔

𝐵 535 

2) A OR B → 𝐸𝑟
𝑖 = 𝐸𝑔

𝐴 + 𝐸𝑔
𝐵  536 

𝐸𝑟
𝑖 ≤ 𝐸𝑔

𝐴 + 𝐸𝑔
𝐵 537 

Further, the total protein content 𝐶 was determined by the experimentally-measured protein 538 

contents at the given concentrations (60). To account for changing protein contents, the coefficients 539 

of the biomass reaction were rescaled to the respective values for 𝐶. The proportions of the 540 

remaining biomass components were conserved when they were adapted to the new residual mass 541 

fraction (1 𝑔 𝑔𝐷𝑊−1 − 𝐶). 542 

We extended the constraints we borrowed from the MOMENT approach by one additional 543 

constraint (Eq. (4)), which takes the promiscuity of proteins for multiple reactions into account. 544 

Hence, the abundance of protein 𝑘 is smaller than or equal to the sum of enzyme abundances 545 

across all reactions with which it is associated. 546 

The feasible abundance ranges for all proteins were determined by individual minimization and 547 

maximization for 𝐸𝑔
𝑖 at optimal growth, similar to FVA. Using these, we sampled 1000 abundances 548 

compatible with the constraints above, by finding the closest vector of abundances to a randomly 549 

created set of abundances 𝐸𝑔∗ within the feasible ranges determined in the step before: 550 

min  |𝐸𝑔∗ − 𝐸𝑔| 551 

s.t. 552 

𝑣𝑏𝑖𝑜 ≥ 0.99 ⋅ 𝑣𝑏𝑖𝑜
𝑜𝑝𝑡 (9) 553 

*constraints Eq 2 - Eq 8* 554 

Metabolic changes between fungal structures 555 

For this experiment, all four carbon sources that were used in the analysis above, were added to 556 

the same minimal medium. Similarly, the upper bounds on monosaccharide import were calculated 557 
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using transporter kinetics from S. cerevisiae, considering only the maximum concentration of 1 𝑀. 558 

Across the calculated values, the maximum possible influx for each monosaccharide was selected. 559 

For this experiment, palmitate was also retained in the medium with the same upper limit as 560 

described before. For each of the three structures (ERM, IRM, ARB), the abundance of each protein 561 

𝑡𝑐𝑝
𝑖 was calculated from the relative transcriptomic counts per gene 𝑡𝑐𝑔

𝑖 (not considering 562 

alternative splicing and post-translational modifications): 563 

𝑡𝑐𝑘
𝑔′

=
𝑡𝑐𝑘

𝑔

∑ 𝑡𝑐𝑔
𝑘

, (10) 564 

tc𝑘
𝑝

=
 𝑡𝑐𝑘

𝑔′

 ⋅  𝐶

𝑀𝑊𝑘

. (11) 565 

The total protein content 𝐶 was set to the maximum value measured across all growth conditions 566 

used in the experiment before (𝐶 = 0.106 𝑔 𝑔𝐷𝑊−1). By applying this transformation, we assume 567 

that transcript levels correlate with protein abundances, which is not necessarily true and can lead 568 

to over- or underestimation of protein levels. However, this represents the closest approximation of 569 

protein levels in the absence of quantitative proteomics data. 570 

To conduct FBA, the transformed transcript count 𝑡𝑐𝑟
𝑖 for the reaction was first calculated by 571 

applying the GPR rules taking the minimum 𝑡𝑐𝑝 value for complexes (AND) and the maximum for 572 

isozymes (OR). Finally, the upper limit for a reaction 𝑖 was defined as the product of estimated 573 

enzyme abundance and the respective turnover value: 574 

𝑣𝑖 ≤ 𝑘𝑐𝑎𝑡,𝑖 ⋅ 𝑡𝑐𝑟
𝑖 . (12) 575 

Growth was predicted for each of the three structures by FBA using the adapted reaction limits. 576 

After this, FVA was used to determine the feasible ranges for each reaction while keeping the 577 

growth at 99% of the optimum. These ranges were used as the limits for the sampling procedure 578 

which attempts to find an optimal solution with minimal distance to a random flux vector 𝑣∗: 579 

𝑚𝑖𝑛 |𝑣∗ − 𝑣| 580 

s.t. 581 

𝑺𝒗 = 𝟎 582 

𝑣𝑖 ≤ 𝑘𝑐𝑎𝑡,𝑖 ⋅ 𝑡𝑐𝑟
𝑖 , ∀𝑗 ∈ 𝑅 (13) 583 

𝑣𝑏𝑖𝑜 ≥ 𝑣𝑏𝑖𝑜
𝑜𝑝𝑡 584 

 585 
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Like this, 5000 points were sampled and used for a reaction-wise comparison between the three 586 

structures. To this end, the non-parametric estimate for common language 𝐴𝑤 (89) was used to 587 

determine substantial changes of reaction flux between each pair of structures: 588 

𝐴𝑤 =
(#(𝑝 > 𝑞) + 0.5 ⋅ (𝑝 = 𝑞))

(𝑛1    ⋅ 𝑛2)
. (14) 589 

The variables 𝑝 and 𝑞 represent the vectors of sampled fluxes for the same reaction at two different 590 

structures. 591 

Data and code availability 592 

All procedures, data, and approaches used are available at 593 

https://github.com/pwendering/RhiirGEM. 594 
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Figures and Tables 947 
 948 

 949 
Figure 1. Properties of the R. irregularis genome-scale metabolic model iRi1574. (A) The 950 
iRi1574 includes 13 metabolic subsystems, primarily defined by KEGG pathways with manual 951 
refinement. The pie chart illustrates the percentage of reactions participating in these metabolic 952 
subsystems. (B) metabolite classification using KEGG BRITE with manual refinement with help of 953 
the ChEBI ontology. (C) binary classification of reactions based on eight criteria, including: 954 
assignment of Enzyme Classification (E.C.) number, involvement in transport, association to genes 955 
via GPR rules, mass- and charge-balancing, available value for standard Gibbs free energy and 956 
catalytic constants of associated proteins, and ability to support steady-state flux. 957 
 958 
  959 
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 960 
Figure 2. Prediction of growth for iRi1574 using eMOMENT and FBA. Scatter plot of growth 961 
rates predicted by eMOMENT (red) compared with FBA without constraints on enzyme 962 
abundances (blue). The predicted growth rates were compared with experimental data obtained 963 
for Glomus intraradices Sy167 (60), which is the phylogenetically closest species with this kind of 964 
data available. The concordance of predicted growth rates and experimentally measured hyphae 965 
dry weight was quantified by the Spearman correlation 𝜌𝑆. 966 
  967 
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 968 
Figure 3. Plasticity of protein abundance and reaction fluxes across 12 simulated media 969 
conditions. The coefficient of variation (CV) was calculated across all media conditions (i.e. 970 
glucose, fructose, raffinose, and melibiose at 10, 100, and 1000 mM each) for protein abundances 971 
(A) and reaction fluxes (B). The boxes are ordered by median of the log10-transformed data. (C) 972 
The CV of fluxes is plotted against the CV of abundance of their associated proteins. 973 
  974 
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Figure 4. Growth simulation of R. irregularis for three fungal structures. The upper limit for 975 

reaction flux was calculated as 𝑘𝑐𝑎𝑡 ⋅  [𝐸]. Values for turnover constants associated to reaction was 976 

done similarly as in GECKO (68). Structure-specific expression data were used as proxy for protein 977 

concentrations. This was done by multiplying relative transcript abundances with the maximum total 978 

protein content measured with the available carbon source (𝐶 = 0.106 𝑔 𝑔𝐷𝑊−1) (60) (see 979 

Methods section for more detail). (A) predicted growth for the three fungal structures. The error 980 

bars represent predicted growth rates at 𝐶 ± 𝜎, where 𝜎 represents the standard deviation 981 

determined for the experimentally measured protein content. (B) Distribution of subsystems for 982 

reactions that show non-parametric common language effect sizes (𝐴𝑤) above selected thresholds 983 

for each pairwise comparison of flux distributions between the three fungal structures. The total 984 

numbers of reactions with 𝐴𝑤 greater than the threshold are shown below each of the pie charts. 985 

No chart is shown if no reaction was found to have an 𝐴𝑤 above the threshold. 986 

  987 
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Supplementary Information Legends 988 

 989 

Supplementary File S1: iRi1574 model in Systems Biology Markup Language (SBML) format. 990 

Supplementary File S2: Quality assessment report from the MEMOTE test suite (76). 991 

Supplementary Table S1: iRi1574 model in Excel format. 992 

Supplementary Table S2: Characteristics of published fungal models selected for comparison 993 

with iRi1574. 994 

Supplementary Table S3: FBA solution and feasible ranges and of all reactions in the iRi1574 995 

model determined by FVA. 996 

Supplementary Table S4: eMOMENT solution and feasible ranges and of all reactions in the 997 

enzyme-constraint iRi1574 model. 998 

Supplementary Table S5: Experimentally measured hyphal dry weight and protein content as 999 

well as growth predictions by FBA and eMOMENT with different saccharides and their 1000 

concentrations (60). 1001 

Supplementary Table S6: Coefficients of variation (CV) of abundances for each protein across 1002 
all simulated conditions (carbon source x concentration). 1003 

Supplementary Table S7: Coefficients of variation (CV) of fluxes for each reaction across all 1004 
simulated conditions (carbon source x concentration). 1005 

Supplementary Table S8: Non-parametric common language effect sizes between fluxes at 1006 
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Supplementary Table S9: Transport reactions in the iRi1574 model that were introduced from 1008 
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Supplementary Table S10: Biomass composition of the iRi1574 model. 1010 

Supplementary Table S11: Flux limits for the (non-)growth associated ATP maintenance 1011 
reactions (NGAM, GAM) from fungal models. 1012 

Supplementary Table S12: Minimal medium used for simulations. 1013 
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Supplementary Table S14: Influence of reported SBC reactions on predicted growth. 1016 
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