










 303 

Figure 3 – Example segmentations comparison for T2*w images from one mouse 
in D1 (a) and from two mice with auditory stimulation (b) and two mice with 
somatosensory stimulation (c) in D2; b_1, c_1 represent EPI01, and b_2, c_2
represent EPI02. Red lines show the contours of ground truth; yellow lines show 
automatically computed brain masks by RATS, SHERM, and the 3D U-Net 
model. White arrows point to the rough boundary, where 3D U-Net models 
performed better than RATS and SHERM. 
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Tables 1 and Table 2 show the quantitative assessment of RATS, SHERM, and 304 

3D U-Net models for T2w images and T2*w images, respectively. The 3D U-Net 305 

models yielded highest mean values of the Dice and Jaccard index, and lowest mean 306 

values of the Hausdorff distance in both T2w and T2*w images. In addition, the 307 

standard deviations of all three metrics were lowest for the 3D U-Net models in most 308 

cases, except for the Hausdorff distance on T2w images of D2_PART2, and the Dice 309 

and Jaccard index on T2*w images of both D1 and D2_PART2_EPI01, which were 310 

slightly higher than those of RATS. The above quantitative results indicate that the 3D 311 

U-Net models exhibit a high accuracy and stability. 312 

Figure 4 compares the results of seed-based analysis from one mouse in the test 313 

data of D1 with automatic skull stripping by the 3D U-Net models and manual brain 314 

extraction. The seeds (2 �× �2 voxels) were positioned in the dorsal striatum (dStr), 315 

somatosensory barrel field cortex (S1BF), secondary somatosensory cortex (S2), and 316 

ventral striatum (vStr). The CC maps with our model were similar to those with 317 

manual brain extraction. We also plotted scatter plots, where the horizontal axis 318 

represents the values of CC maps with predicted masks, and the vertical axis 319 

represents the values of CC maps with the manual mask. Each point represents a pair 320 

of the two values at the same pixel location. All points were concentrated on the 321 

diagonal with R2 = 1. The above results indicate that the CC maps with automatic 322 

skull stripping by 3D U-Net models were identical to those with manual brain 323 

extraction. 324 

Figure 5 compared the four components of group ICA analysis with automatic  325 
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 326 

Table 1 – Mean and standard deviation of Dice, Jaccard index, and Hausdorff distance 327 

evaluating the RATS, SHERM, and 3D U-Net model for T2w images in different 328 

datasets. Bold values indicate the best results. 329 

Dataset Method Dice Jaccard 

index 

Hausdoff 

distance 

D1 RATs 0.9377±0.0036 0.8826±0.0064 8.97±0.99 

Sherm 0.9767±0.0028 0.9545±0.0054 6.02±1.32 

Proposed 0.9898±0.0013 0.9800±0.0025 3.53±0.86 

D2_PART1 

(auditory) 

RATs 0.9404±0.0038 0.8875±0.0068 8.77±1.61 

Sherm 0.9686±0.0079 0.9392±0.0147 20.28±8.55 

Proposed 0.9842±0.0014 0.9690±0.0027 6.04±1.08 

D2_PART2 

(somatosensory) 

RATs 0.9442±0.0049 0.8943±0.0087 9.69±1.61 

Sherm 0.9735±0.0048 0.9484±0.0091 16.17±6.04 

Proposed 0.9845±0.0023 0.9696±0.0044 6.95±1.96 

 330 

skull stripping by the 3D U-Net models and manual brain extraction. The presented 331 

four components in Figure 5 correspond to the same regions used in the 332 

seed-based analysis (S1BF, S2, dStr, vStr). The component maps with 3D U-Net 333 

models for skull stripping were visually similar to those with manual brain extraction. 334 

The points in the scatter plots were concentrated on the diagonal with R2 = 1. These 335 

results indicate that the component maps of group ICA with automatic skull stripping 336 

by 3D U-Net models are highly consistent with those with manual brain extraction. 337 

Group ICA analysis with 3D U-Net models generated the same 32 independent 338 

components as those with manual brain extraction. The regions corresponding to each 339 

component are shown in Supplementary Table S1. 340 

 341 

 342 

 343 
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Table 2 – Mean and standard deviation of Dice, Jaccard index, and Hausdorff distance 344 

evaluating the RATS, SHERM, and 3D U-Net model for T2*w images in different 345 

datasets. Bold values indicate the best results. 346 

Dataset Method Dice Jaccard index Hausdoff 

distance  

D1 RATs 0.9467±0.0028 0.8989±0.0051 2.98±0.48 

SHERM 0.9070±0.0125 0.8301±0.0211 5.17±1.82 

Proposed 0.9644±0.0044 0.9313±0.0083 2.95±0.56 

D2_PART1_EPI01 

(auditory) 

RATs 0.9504±0.0031 0.9057±0.0056 4.49±0.78 

SHERM 0.8306±0.1108 0.7260±0.1665 17.18±9.04 

Proposed 0.9644±0.0044 0.9313±0.0083 2.95±0.56 

D2_PART1_EPI02 

(auditory) 

RATs 0.9453±0.0206 0.8969±0.0353 3.56±1.54 

SHERM 0.8887±0.0388 0.8018±0.0609 9.90±3.53 

Proposed 0.9663±0.0078 0.9350±0.0144 2.57±0.94 

D2_PART2_EPI01 

(somatosensory) 

RATs 0.9484±0.0064 0.9019±0.0116 5.52±1.06 

SHERM 0.8939±0.1040 0.8226±0.1538 12.21±7.63 

Proposed 0.9694±0.0037 0.9406±0.0070 3.30±0.59 

D2_PART2_EPI02 RATs 0.9516±0.0076 0.9077±0.0139 3.74±0.75 

SHERM 0.9284±0.0241 0.8674±0.0411 6.70±1.87 

Proposed 0.9650±0.0068 0.9326±0.0126 2.83±0.75 

 347 

Figure 6 shows the functional network connectivity (FNC) correlations for one 348 

mouse and the average FNC correlation across 10 mice between each pair of 32 349 

regions extracted from group ICA analysis. Each correlation value in FNC matrixes 350 
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Figure 4 – Exemplary results of seed-based analysis for one mouse in the test data 
of D1. The selected seed regions were S1BF, S2, dStr, and vStr. The left column
illustrates the CC maps with manual brain extraction and automatic skull stripping 
by the 3D U-Net models for each seed region. The corresponding right column 
illustrates the scatters, where each point represents a pair of the two values from 
different CC maps with manual brain extraction and automatic skull stripping by 
the 3D U-Net models, at the same pixel location. 
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Figure 5 – Example results of ICA analysis for test data of D1. Four selected 
components extracted by group ICA matching the four seed regions in seed-based 
analysis are shown in each row. The left column illustrates the component maps with 
manual brain extraction and automatic skull stripping by 3D U-Net models. The right 
column illustrates the scatters, where each point represents a pair of the two values 
from different component maps with manual brain extraction and automatic skull 
stripping by the 3D U-Net models, respectively, at the same pixel location.  
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with automatic skull stripping by 3D U-Net models was identical to that obtained with 353 

manual brain extraction. The points in the scatter plots are concentrated on the 354 

diagonal with R2 = 1, which indicates that the use of the 3D U-Net models for skull 355 

stripping in the fMRI analysis pipeline does not affect the final results of group ICA 356 

based FC analysis. The FNC correlations of the other nine mice are shown in 357 

Supplementary Figure S1. 358 

4 Discussion 359 

To the best of our knowledge, this is the first study investigating the feasibility of 360 

3D U-Net for mouse skull stripping from brain functional (T2*w) images and the 361 

impact of automatic skull stripping on the final fMRI analysis. Results indicate that 362 

the 3D U-Net model performed well on both anatomical (T2w) and functional (T2*w) 363 

images and achieved state-of-the-art performance in mouse brain extraction. The 364 

fMRI results with automatic brain extraction using 3D U-Net models are nearly 365 

identical with those with manual brain extraction. Thus, the manual brain extraction in 366 

the fMRI pre-processing pipeline can be replaced by the proposed automatic 367 

skull-stripping method. 368 

The 3D U-Net models were tested on not only interior but also exterior datasets. 369 

Notably, the exterior datasets were acquired with different acquisition parameters on a 370 

scanner with different field strength from another MRI center. The results show that 371 

3D U-Net models had high segmentation accuracy that is comparable between interior 372 

and exterior datasets. This demonstrates that the developed method has high reliability 373 

 374 
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Figure 6 –Functional connectivity between the independent components extracted 
from group ICA analysis for the test data of D1. The left column illustrates the 
FNC matrixes from one mouse, and the right column illustrates the average FNC 
matrixes across 10 mice. Scatter plots are shown in the bottom row, where each 
point represents the difference between two values from two FNC matrixes with 
manual brain extraction and automatic skull stripping by the 3D U-Net models, at 
the same pixel location. 
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and excellent generalization ability. The 3D U-Net models also outperformed two 376 

widely used brain extractions for rodent (SHERM and RATS). SHERM has the 377 

second best performance in T2w images (Figure 2), while it has the worst 378 

performance in T2*w images (Figure 3). The reason for this is that the poor quality of 379 

T2*w images makes it difficult to match the shape of the brain template. Although 380 

RATS has stable performance across different datasets and modalities, its 381 

segmentation accuracy (Dice < 0.945 in T2w images and Dice < 0.952 in T2*w 382 

images) is consistently lower than in our method (Dice > 0.984 in T2w images and 383 

Dice > 0.964 in T2*w images). 384 

There are several related reports on using U-Net for mouse skull stripping (De 385 

Feo et al., 2021; Hsu et al., 2020; Thai et al., 2019). Compared with the model 386 

adopted by Hsu et al. (2020), the segmentation accuracy of our models is relatively 387 

higher in both T2w and T2*w images. The first reason is that we used 3D U-Net for 388 

mouse skull stripping, while Hsu et al. used 2D U-Net. The second reason is that we 389 

trained the U-Net models separately for T2- and T2*w images. The performance of 390 

our 3D U-Net model is comparable to that of the 3D model adopted by De Feo et al. 391 

(2021) on T2w anatomical images. We also applied the 3D U-Net for brain extraction 392 

from T2*w functional images. The multi-task U-Net developed by De Feo et al. can 393 

hardly be applied to functional images, because it is difficult to delineate different 394 

brain regions in functional images due to their low spatial resolution, contrast, 395 

signal-to-noise ratio, and severe distortion.  396 

It is essential to guarantee that automatic skull-stripping method does not alter 397 
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fMRI analysis results. Thus, we not only evaluated the segmentation accuracy, but 398 

also investigated the effect of automatic segmentation on fMRI analysis results. The 399 

fMRI analysis results with automatic skull stripping by 3D U-Net models are identical 400 

to those with manual skull stripping. This finding demonstrates that the 3D U-Net 401 

based method can replace manual skull stripping and facilitate the establishment of 402 

the automated fMRI analysis pipeline for the mouse model.  403 

With respect to the computational cost, the 3D U-Net based method proves to be 404 

time efficient. The computation time of the 3D U-Net method was approximately 3 s 405 

for a T2w volume data with a size of 256 � 256 � 20, and 0.5 s for T2*w volume 406 

data with a size of 64 � 64 � 20. In comparison, the computation time of SHERM 407 

is 780 s and 3 s for T2w and T2*w images, respectively; the computation time of 408 

RATS is 10 s for T2w images and 3 s for T2*w images. All test procedures were run 409 

on a server with a Linux 4.15.0 system, an Intel(R) Xeon(R) E5-2667 8-core CPU, 410 

and 256 GB RAM. 411 

There are two limitations in our current work. First, the segmentation accuracy of 412 

the developed 3D U-Net model on functional images is still relatively lower than that 413 

on anatomical images, because of the poor image quality of the functional images. 414 

Utilizing the cross-modality information between anatomical and functional images 415 

may further improve the accuracy of skull stripping on functional images. Second, the 416 

developed 3D U-Net model was only trained and validated on adult C57BL/6 mice, 417 

and cannot be directly applied to brain MR images from different mouse types and 418 

ages. To address this problem, the model need to be retrained by including more 419 
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manually labeled data from mice with varying types and ages. Labeling data is 420 

time-consuming and labor-intensive, and another potential approach to reduce the 421 

amount of labeled data is to utilize transfer learning (Long et al., 2015; Yu et al., 2019; 422 

Zhu et al., 2021).  423 

 424 

5 Conclusion 425 

We investigated an automatic skull-stripping method based on 3D U-Net for 426 

mouse fMRI analysis. The 3D U-Net based method achieves state-of-the-art 427 

performance on both T2w and T2*w images in terms of the segmentation accuracy. 428 

Identical results between mouse fMRI analysis using manual and automatic skull 429 

stripping demonstrates that the 3D U-Net model has a great potential to replace 430 

manual labeling in the mouse fMRI analysis pipeline. Hence, skull stripping by the 431 

3D U-Net model will facilitate the establishment of an automatic pipeline of mouse 432 

fMRI data processing. 433 

 434 

 435 
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