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Abstract 

The resolution of 3D Ultrasound Localization Microscopy (ULM) is determined by acquisition parameters such as frequency and 

transducer geometry but also by microbubble (MB) concentration, which is also linked to the total acquisition time needed to 

sample the vascular tree at different scales. In this study, we introduce a novel 3D anatomically- and physiologically-realistic 

ULM simulation framework based on two-photon microscopy (2PM) and in-vivo MB perfusion dynamics. As a proof of concept, 

using metrics such as MB localization error, MB count and network filling, we could quantify the effect of MB concentration and 

PSF volume by varying probe transmit frequency (3-15 MHz). We find that while low frequencies can achieve sub-wavelength 

resolution as predicted by theory, they are also associated with prolonged acquisition times to map smaller vessels, thus limiting 

effective resolution. A linear relationship was found between maximal MB concentration and inverse point spread function (PSF) 

volume. Since inverse PSF volume roughly scales cubically with frequency, the reconstruction of the equivalent of 10 minutes at 

15 MHz would require hours at 3 MHz. We expect that these findings can be leveraged to achieve effective reconstruction and 

serve as a guide for choosing optimal MB concentrations in ULM. 
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I. INTRODUCTION 

OR long, we were bound by the limit of diffraction stated by 

Rayleigh’s criterion [1] in conventional ultrasound imaging. 

Diffraction causes the point-spread function (PSF) to have a 

specific size in the order of the wavelength, which increases with the 

penetration depth: larger depths can be achieved at the cost of larger 

wavelength and thus degraded resolution.  Wavelength thus dictates 

the compromise between limiting factors of resolution and 

penetration depth in conventional ultrasound [2]. The concept of 

isolated source localization from optical imaging [3], used in 

ultrasound localization microscopy (ULM) [2], [4], [5] challenges 

this compromise.  

Microbubbles (MB) injected into the bloodstream are used as small, 

highly echogenic unique scatterers that can be tracked through 

vascular networks in large vessels down to, in principle, the smallest 

capillaries. It is by finding the exact centroid of each MB in 

reconstructed images or by fitting a paraboloid in RF data that we can 

obtain micrometer-scale resolution. This resolution is no longer 

dependent on wavelength, but rather on arrival time variance, number 

of elements, array apertures, distance between the array and MB, and 

sound speed [6].  

The gain in spatial resolution comes at the cost of temporal resolution 

(in the order of a few minutes depending on the vascular network 

density) since sampling the vascular network requires localization 

and tracking of millions of MB in tens of thousands of images [7]. 

In [2], Couture et al. defined four conditions that are required to 

perform ULM, namely 1) being sensitive to the contrast agent, 2) 

being able to localize that contrast agent, 3) record at a high 

framerate and 4) maintain isolated sources in a spatiotemporal 

referential. Our ability to respect the latter condition depends mainly 

on two factors: 1) acquisition parameters such as frequency and 

transducer geometry [6], and 2) microbubble concentration [7].  

To quantify ULM limitations, studies have been performed in in-vitro 

phantoms with various materials, configurations, and scale. 

Viessmann et al.  [8] conducted four experiments at 2-2.5 MHz with 

the last one using two touching cellulose tubes with inner diameters 

(ID) of 200 μm. Two sets of MB could be distinguished with a sub-

diffraction limit with a measured center-to-center distance of 197 μm 

(wavelength of 616-770 μm), but this setup was limited to relatively 

large mono-diameter tubes. Similarly, in [9], O’Reilly and Hynynen 

conducted an experiment at 612 kHz using a PTFE tube with 255 μm 

of ID spiraled around a 2.5 mm rod. The estimated localization 

uncertainty was again sub-diffraction limit with approximately 1/120 

and 1/60 of the wavelength, but the limiting factor was the size of the 

phantom. In [10], Couture et al. succeeded in localizing MB in 100 

μm sized microfluidic systems at 5 MHz. Similarly, in [11], Desailly 

et al. succeeded in localizing MB in rectangular 40-100 μm by 80 μm 

PDMS channels out of printed SLA  molds separated by 50 to 200 

μm at 1.75 MHz. However, none of the above setups’ scale, 

complexity and realism reflects in-vivo challenges. In mice, brain 

vascular networks typically exhibit large vessels with diameters in 

the 50-200 μm range [12] down to very small vessels in the <10-

micrometer range [13]. As for how close vessels are to each other, 

vascular density varies from 161-391 sections per mm2, or 51-79 

micrometers between them [14]. Furthermore, the size of the vessel 

intrinsically dictates the number of flowing MB and their velocities, 

which affects effective resolution [7]. To our knowledge, there is no 

validation framework for ULM image formation algorithms based on 

anatomically-realistic MB flow to assess ULM limitations. 
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To overcome this problem, a highly resolved ground truth of brain 

vasculature is needed. Pulsed laser systems [15], [16], e.g., two-

photon microscopy (2PM), can image in-vivo and ex-vivo brain tissue 

at micrometer scale. This approach can also be scaled by stacking ex-

vivo slices to reconstruct whole brain anatomy with micrometer scale 

resolution [17], [18]. Cerebral vascular networks that can therefore be 

leveraged as virtual phantoms [19]. We developed a three-

dimensional particle flow simulator based on highly resolved 2PM 

data from mice brain vasculature to conduct anatomically-realistic 

simulations. It was first implemented in 2D as part of a deep learning 

framework [20] and as part of a sparse channel sampling study for 

ULM [21]. 

 
In this work, we introduce a novel 3D simulation framework for the 

validation of ULM image formation algorithms. From a vascular 

model obtained using 2PM, we generate a MB flow with known MB 

positions in time and where dynamics mimic MB behavior from in-

vivo data [7]. These MB positions at controlled concentrations are 

then used to position scatterers in a medium that are used to simulate 

ultrasound raw data, which can then be input in a ULM image 

formation algorithm.  This setup allows to evaluate the performance 

of MB localization frameworks with various imaging parameters, by 

comparing the output MB positions with the provided reference MBs. 

As an example application, we studied the effect of MB 

concentration and transmit frequency by computing metrics such as 

localization error and network filling. We provide new investigations 

that link maximal MB concentration with the inverse of the PSF 

volume. Such investigations are essential in optimizing MB 

concentration to obtain a more complete and accurate vascular 

reconstruction.

 
Figure 1: Simulation framework. All sub-figures are scaled to match the same scalebar. A) Two-photon microscopy (2PM) of in-vivo mouse brain is acquired. 
Colormap represents fluorescence intensity. B) From the 2PM data, a graph model is generated in 3 stages described in [22]. Colormap represents nodes’ 

corresponding vessel size. C) Particle trajectories are generated using the graph model and in-vivo diameter-velocity dependency. Colormap represents MB 

velocity. D) Using a GPU-based US simulator, RF signals are generated and reconstructed to obtain 3D+t US data, on which a correlation-based localization 
algorithm is applied. Colormap represents the correlation obtained using a spatial convolution of the beamformed PSF and reconstructed IQ data. 

 

I. METHODS 

A. In-vitro two-photon microscopy 

The framework starts with a highly resolved mouse brain vasculature 

acquired using 2PM [23] (Figure 1 A.). Prior imaging, C57BL/6 mice 

(25–30 g males, n = 6) were anesthetized by isoflurane (1–2% in a 

mixture of O2 and air) at a temperature of 37°C. The imaging 

apparatus consisted of a custom-built two-photon microscope with 

components listed in [24]. Imaging was performed through a cranial 

window with removed dura and a 150 μm-thick microscope coverslip 

for sealing purposes. Anesthesia was reduced to 0.7-1.2% isoflurane 

during the acquisition. Structural images of cortical vasculature were 

obtained by labelling blood plasma with dextran-conjugated 

fluorescein at 500 nM. Using angiograms acquired with a 20X 

Olympus objective (Numerical Aperture = 0.95), 6 stacks of 

vasculature (Figure 5) were prepared with voxel sizes of 1.2×1.2×2.0 

μm and total volume of 600×600×662 μm. 

B. Graph model 

Using a modeling framework from [22], [25], a graph model of 2PM 

data was generated (Figure 1B). In this framework, vascular 

segmentation was performed using fully-convolutional neural 

network based on densely connected layers [22]. The 

graphing/skeletonization step was achieved by generating a 3D grid-

graph model followed by a geometric graph contraction and 

refinement algorithms. Training the segmentation model was done 

using the Theano framework [26]. As for 3D modeling and geometric 

contraction processes [25], they are based on the VascGraph Python 

package [25]. Using this framework, a file containing vessel network 

geometry and topology (nodes and edges), with their corresponding 

inlet and outlet vessels is generated. The corresponding vessel radii 

are assigned as features to the nodes of the vascular network. Vessels 

ranged from 2 to 57.2 micrometers in diameter, their spatial position 

span was 500×500×650 μm and vessel volumetric density (VD) was 

calculated at 4%, using the ratio of vessels-containing voxels and 

total voxels in segmented volumes. 

C. Particle trajectory generation 

Before generating a steady state flow simulation where MB 

concentration is always kept constant, MB trajectories were 

computed using the graph model source nodes, target nodes and 

vessels radii. For each trajectory, the shortest path between a source 

node and a random extremity node was calculated using vessels radii 

squared as weights. Since original nodes are arbitrarily spaced, a 

cubic spline fitting was then applied to allow for the generation MB 

positions with a controlled time-dependent spacing. In Hingot et al. 

[7], MB were followed for 5 minutes in a rat model with a continuous 

injection of the equivalent of 0.8 mL/kg of Sonovue MBs. MB 

velocities were calculated, and a log-log fit of velocity (y) as a 
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function of vessel diameter (x) was performed on a 150 vessels 

sample with ln (𝑦)  =  𝑝1ln (𝑥)  + 𝑝2 with parameters p1 = 1.9 mm 

μm-1s-1, p2 = -6 mm.s-1. Another log-log fit was computed on MB 

count (y) as a function of diameter (x) with parameters p1 = 3.7 MB 

μm-1, p2 = -8.2 MB, which is used in the following section (steady-

state flow) for trajectory selection. All node-node distances (𝑑𝑖) were 

computed according to (1), where 𝑣𝑖 is the velocity from the velocity-

diameter relationship of in-vivo data, d𝑡  is the timestamp and 𝑃  a 

random normalized Poiseuille coefficient. The Poiseuille coefficient 

dictates the distance from the center of the vessel. The higher the 

coefficient, the faster is the MB and closer it is to the center of the 

vessel. 

𝑑𝑖  =  𝑣i ∙ d𝑡 ∙ 𝑃   (1) 

 

𝑣𝑖 was calculated using the relationship with the diameter from [7]. 

Vessels in our network ranged from 2 to 57.2 micrometers in 

diameter, therefore velocities ranged from 0.01 mm/s to 5.4 mm/s. A 

MB trajectory is terminated if the trajectory reaches an end node or if 

the MB can no longer flow in the vessel due to a size constraint. In 

our simulations, we modelled the MBs to be of 2 micrometers in 

diameter, therefore all trajectories reached their maximum length. 

After the computation of all node-node distances (𝑑𝑖), the trajectory 

at the center of vessels (i.e., a centerline trajectory) was then used to 

generate other parallel trajectories to span the entire vessel. To do so, 

two orthogonal perpendicular vectors were calculated for each 

trajectory. Using a linear combination of those vectors, all 

orientations were created to span all possible trajectories. This step 

allowed for the generation of multiple trajectories at different radial 

positions in a specific vessel, according to their Poiseuille coefficient. 

Trajectories were modelled parallel to the vessel wall, i.e., being 

laminar as an approximation of the normal physiological state [27]. 

 
Figure 2: Unique microbubbles positions were randomly distributed in a 10×10×10 pattern to span over 5×5×6.5 mm. This example shows 1 million MB 
distributed in 1000 sub-regions, which results in 1000 MB in each sub-region. Even though fewer small vessels are present in each sub-region, this step is 

essential since the PSF is not uniform in the field of view and it also allows to span a usable MB concentration range. After the ULM framework and metrics 

computation, MB positions in sub-regions can be added back together in the original size volume to emulate a longer acquisition time for visualization purposes. 

 

D. Steady-state flow  

Using computed microbubbles trajectories, a steady-state flow was 

generated using a constant concentration of MBs (Figure 1 C). The 

selection of microbubbles trajectories was made according to their 

mean diameter to match in-vivo data from [7]. To match this model, 

microbubble trajectories were sorted according to their mean 

diameter and a probability density function generated according to 

the model was applied for trajectories selection. To populate the 

steady-state flow volume, a first population of particles was 

generated at random positions in their respective trajectory to match a 

desired concentration, then, a new microbubble was added each time 

a microbubble reached the end of its trajectory. After this process, we 

were left with sets of constant number of microbubbles positions 

(𝑋i, 𝑌i, 𝑍i)  at each time frame. 

E. Scatterers’ arrangement  

Unique microbubbles positions from a vascular network were 

randomly distributed in a 10×10×10 pattern to span over 5×5×6.5 

mm (Figure 2). Since the volume of the original vascular network 

was minute, this setup allowed to increase the usage of the field of 

view and to better assess the performance of the imaging system, 

since the PSF is not uniform throughout the field of view. Moreover, 

this arrangement allowed to span a usable range of MB 

concentrations. For example, in the original configuration, only one 

MB flowing in the network corresponded to more than 5 MB/mm3, 

which is considerably high. Therefore, in this configuration, we have 

a 1000-fold discretization on the original MB concentration range. 

After ultrasound simulation, reconstruction, localization, and metrics 

computation, MB positions from the 1000 sub-regions were added 

into one original small volume to emulate a longer acquisition time 

only for visualization purposes (Figure 2).  This step facilitated the 

qualitative comparison between density maps shown in Figure 7.
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TABLE I 

ACQUISITION PARAMETERS 

PROBE ARRAY TRANSMIT FREQUENCY 

(MHZ) 

CENTER FREQUENCY (𝐶𝑓) 

(MHZ) 

BANDWIDTH 

(MHZ) 

128x1 15.625 15.625 14-22 

32x32 3 3.47 Cf ∙ [0.7, 1.3] 

32x32 3.5 3.47 Cf ∙ [0.7, 1.3] 

32x32 6 7.81 Cf ∙ [0.7, 1.3] 

32x32 7 7.81 Cf ∙ [0.7, 1.3] 

32x32 9 7.81 Cf ∙ [0.7, 1.3] 

32x32 12 12 Cf ∙ [0.7, 1.3] 

32x32 15 15 8-22 

 

F. Ultrasound Simulation 

For 2D imaging, probe parameters matched a L22-14 linear array of 

128 elements, central frequency of 15.6 MHz, pitch of 0.1 mm and 

element width of 0.08 mm (Vermon, France). For 3D imaging, probe 

parameters were set to match 32x32 matrix arrays 1024 EL 3 MHz 

[28], 1024 EL 8 MHz [29], [30] and the custom 1024-element 15 

MHz as used by Brunner et al. [31]. The theoretical 12 MHz probe 

parameters were set to match the 3- and 8-MHz probes’ 

specifications. Bandwidths and transmit frequencies are depicted in 

TABLE I. Pitch and element width were set to 0.3 and 0.275 mm, 

respectively, the transmit pulse was a 0-degree plane wave of 4 

cycles, and the effective framerate was equal to the PRF of 1 kHz. 

To simulate the acoustic response of the microbubbles, an in-

house GPU implementation of the SIMUS simulation software was 

performed as described in [32], [33]. Gaussian white noise was added 

to the acoustic response to obtain a signal to noise ratio (SNR) of 

15 dB in 2D and 10 dB in 3D. 

G. ULM image formation algorithm 

In-phase-quadrature complex (IQ) volumes were generated from the 

RF data using a fast GPU-based delay-and-sum beamformer [34]. 

Individual MB were then identified as local maxima on correlation 

maps, resulting from the correlation of the reconstructed IQ volumes 

with the IQ spatial impulse response (PSF) of the imaging system. 

MB were precisely located using a 3D subpixel gaussian fitting on IQ 

local maxima. Localized MB were sorted as a function of their 

correlation from the correlation map. Only MB exceeding a certain 

correlation threshold were kept. Thresholding using correlation 

allows to screen interacting MBs. This is essential to meet the 

condition stated by [2], which requires isolated sources. To establish 

optimal threshold, tests were conducted on various concentrations at 

specific transmit frequencies. After finding concentration that yielded 

most localized MBs, localization error was plotted against correlation 

threshold (Figure 3). Threshold was selected to maximize MB count 

while preventing excessive localization error. 

  
Figure 3: Example of a simulation conducted with the linear array at 15.625 
MHz at different MB concentrations. Localization error was calculated as a 

function of correlation threshold. Only MB with correlation higher than the 

threshold were selected. In this specific case, final threshold for further 

simulations would be 0.6 to prevent a surge in localization error from 

interacting MBs. 

 
For visualization purposes and for reconstruction times calculations, 

density maps were generated. MB subpixel positions were 

accumulated over time on a 3D sampled volume, where each voxel is 

approximately one fiftieth of the wavelength in size, to generate a 

micro vasculature density map. On a density map, each voxel 

intensity represents the number of microbubbles in that specific 

voxel.  

H. MB simulator metrics 

To validate MB behavior, 5000 MB trajectories were simulated to 

replicate similar MB count as in [7]. The two dependencies from in-

vivo data are 1) the MB count as a function of vessel diameter and 2) 

MB velocity as a function of vessel diameter. To assess the first 

dependency, a histogram was computed based on the occurrences of 

the different diameters of all MBs at all positions. The number of 

histogram bins was selected as the number of integer values of the 

MBs radii. Natural logarithm (ln) was applied on both dependencies 

to generate a linear fit as in [7]. As for the second dependency, MB 

velocity was simply plotted against its corresponding vessel diameter. 

I. ULM metrics 

To quantify the effect of concentration on the localization itself, 

localization error was computed using highly correlated MB 

positions. First, each localized MB was paired with the closest 

reference MB using Euclidian distance. In 2D, only in-plane 

distances were considered. For a specific concentration, localization 

error was calculated as the average distance between localized MBs 

and their corresponding closest reference MB. Concentration was 

calculated as the number of MB in a cartesian volume. This process 
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was performed in 2D at 15.625 MHz and in 3D for different transmit 

frequencies spanning current usable range: 3, 3.5, 6, 7, 9 12 and 15 

MHz. 

 

Since the MB count is directly linked to reconstruction time [7], it 

was used as a metric to quantify the latter. After correlation 

thresholding, the MB count was measured at the mentioned transmit 

frequencies and at various concentrations. Concentrations were 

chosen iteratively to span a range where the MB count naturally 

increases with an increase in concentration and decreases when 

concentration is high enough that MB interactions become more 

important, and less MB are selected due to a lower correlation with 

the PSF. This allowed to find a maximum in the MB count, which 

was later linked to the PSF volume. 

 

To assess effective reconstruction, density maps were generated 

using accumulated MB positions over different acquisition times. 

Selected MB concentrations corresponded to 10% of the 

concentrations where MB count was maximal for each transmit 

frequency. A reference density map with a fully populated network 

was generated by simulating all possible MB trajectories without a 

constraint on MB count (N) vs diameter. A quantitative comparison 

with the reference density map was made at different acquisition 

times using the Sørensen–Dice coefficient [35], [36]: a similarity 

index quantifying the network filling. 

 

To establish the link between PSF size and MB concentration, the 

PSF volume was calculated for each of the different transmit 

frequencies and concentration at which MB count is maximal was 

considered as optimal. PSF was modelled as an ellipsoid with semi-

axes calculated using half of the full height at maximum width 

(FWMH) in each dimension. For 2D imaging, ellipsoid semi-axis in 

the elevation plane was calculated as half of the elevation focus.  

II. RESULTS 

A. Simulated MB trajectories statistics match in-vivo data 

Figure 4 displays the two dependencies that were originally 

extracted from in-vivo data [7]. The black lines represent the 

reference dependencies, colored dots represent the statistics of 

simulated MBs, and the blue dashed lines represent the linear fits on 

the simulated data. Each dot color corresponds to one of six vascular 

networks. Results show that the MB count increases with vessel 

diameter with a slope of 4.15 compared to 3.7 in reference. MB 

velocity also increases with vessel diameter with a slope of 1.77 

compared to 1.9 in reference. Figure 5 shows the different MB flow 

simulations from 6 vascular networks. Each of the simulations 

contains an accumulated 1 million MB positions. In Figure 5, the top 

section depicts simulations where MB flow was constrained to follow 

the dependencies mentioned above. The bottom section in Figure 5 

shows MB flow simulations without the constraint on MB count vs 

the vessel diameter. The latter simulates a random MB distribution. 

 
Figure 4: The MB flow simulator is based on two dependencies from [7], 

namely MB count vs vessel diameter and MB velocity vs vessel diameter. 
Both dependencies are in a logarithmic scale as in [7]. A number of 5000 MB 

trajectories were generated to match the sample statistics from [7]. (Left) A 

histogram of the occurrences of MB mean diameters was computed. Dots 
corresponds to the MB count in each histogram bin vs corresponding vessel 

diameter. Each dot color corresponds to one of six vascular networks. The 

dashed blue line represents a log-log fit as ln (𝑦) = p1ln ) + p2 with p1 = 

3.56 and p2 = -7.4, R2 = 0.59. Diameter 𝑥  is in mm and MB count 𝑦  is 

unitless. Black line represents reference relationship with p1 = 3.7 and p2 =-

8.2. (Right) Dots corresponds to MB velocities vs their corresponding vessel 

diameter. Each dot color corresponds to one of six vascular networks. The 

dashed blue line represents a log-log fit as ln(𝑦) = p1ln(𝑥)  with p1 = 1.75 and 

p2 = -5.4, R2 = 0.98. Diameter 𝑥 is in mm and velocity 𝑦 is in mm/s. Black 

line represents reference relationship with p1 = 1.9 and p2 =-6 

 
Figure 5: MB positions in 6 vascular networks of a mouse brain. (Top) MB flow was simulated with constraints to follow in-vivo dependencies: MB count and 

velocity with respect to the vessel diameter. (Bottom) MB flow was simulated without the MB count (N) vs vessel diameter (d) constraint. 
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B. Localization error is more sensitive to concentration at lower 

transmit frequency 

In Figure 6, localization error is depicted as a function of 

microbubble concentration for the different transmit frequencies. For 

a given transmit frequency, the bold line represents the average (μ) 

localization error of all localized microbubbles, and the shaded area 

covers the average ± the standard deviation (σ) of those localization 

errors. Only the in-plane distances were considered when computing 

2D localization error of the linear array, i.e., the error in the elevation 

direction was ignored. 

    

 
Figure 6: (Top left) 2D localization error is depicted as a function of 

microbubble concentration for the 15.625 MHz linear array. (Bottom left) 3D 
localization error is depicted as a function of microbubble concentration for 

matrix arrays at various transmit frequencies. The bold curve represents the 

average localization error between a localized MB and the closest reference 
MB. The shaded area covers the average ± standard deviation. (Top right). 

MB count resulting from localization as a function of concentration is 

depicted for the 15.625 MHz linear array. The shaded area covers the average 
± standard deviation of the 6 vascular networks.  (Bottom right) MB count 

resulting from localization as a function of concentration is depicted for 

different transmit frequencies using matrix arrays. Again, the shaded area 
covers the average ± standard deviation of the 6 vascular networks.   

C. Acquisition time is drastically reduced at higher transmit 

frequency 

Figure 6 also shows the count of localized MB as a function of 

concentration. At lower frequencies, MB count increases until 

reaching a maximum and decreases at higher concentrations. 

However, from 9 MHz, MB count reaches a plateau at higher 

concentrations. We see that at 3-3.5 MHz, the number of detected 

MB is approximately 10 000 MB/s or 10 MB per frame. If we double 

the transmit frequency (6-7 MHz), the MB count increases with an 

order magnitude with approximately 100 000 to 200 000 MB/s. The 

rate at which the number of MB events increases seems to decrease 

with higher frequencies.  

D. Higher concentrations reduce reconstruction fidelity 

Figure 7 shows the effect of concentration on vascular reconstruction. 

We applied the simulation framework in 3D using a transmit 

frequency of 6 MHz at four different concentrations: 0.16, 0.4, 0.8 

and 1.6 MB/mm3. They correspond to 20, 50, 100 and 200 MB in the 

field of view and to 10%, 25%, 50% and 100% of the maximal MB 

concentration derived from Figure 6. The four concentrations were 

chosen iteratively, using localization error and number of localized 

MBs as guidelines to span a usable concentration range and to depict 

differences in resulting vasculature reconstruction. Top of Figure 7 

shows the density maps of sub-regions of reference and localized 

microbubbles at increasing concentrations from left to right. Bottom 

of Figure 7 shows density maps acquired at different transmit 

frequencies, increasing from left to right. MB concentration was 

selected as 50% of maximal concentration (0.12 MB/mm3) for a 3 

MHz transmit frequency. 

 
Figure 7: Sub-volumes of density maps of vascular network #5 corresponding 
to localized MB at different concentrations compared to known MB positions 

(ref) using a 32x32 matrix array at 6 MHz. (Top) Concentrations from low to 

high: 0.16, 0.4, 0.8 and 1.6 MB/mm3, which correspond to 20, 50, 100 and 
200 MB in the field of view and to 10%, 25%, 50% and 100% of the maximal 

MB concentration derived from Figure 7 for a 6 MHz transmit frequency. 

(Bottom) For a concentration of the equivalent of 50% of the MB 
concentration associated with the largest number of detected MB above 

threshold for a 3-MHz probe (0.12 MB/mm3), density maps of sub-regions of 

simulations with transmit frequencies of 3, 6 ,12 and 15 MHz respectively are 
shown. 

E. Maximal MB concentration is PSF size dependent 

Figure 8 shows the link between maximal MB concentration and PSF 

volume, where maximal MB concentration is proportional to the 

inverse of PSF volume. The uncertainty bars span the mean ± the 

standard deviation of the maximal MB concentration from the 6 

available vascular networks. 

 
Figure 8:  Concentration at which MB count is maximal (optimal 

concentration) is depicted as a function of the inverse of the beamformed PSF 

volume. From left to right in blue, inverse PSF volumes correspond to 
transmit frequencies of 3, 3.5, 6, 7, 9, 12 and 15 MHz of the matrix arrays. 

The dashed orange line represents a linear fit as 𝑦 = 0.043𝑥 + 0.51, R2 = 0.94. 

The inverse PSF volume 𝑥 is in mm-3 and maximal MB concentration 𝑦 is in 

MB/mm3. The uncertainty bars span the mean ± the standard deviation of the 

maximal MB concentration from the 6 vascular networks. 

F. PSF volume dictates effective reconstruction time 

  Figure 9 shows the network filling using the Sørensen-Dice 

similarity index over time for the optimal concentrations 

corresponding to each transmit frequency.  
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Figure 9: Network filling is shown using the similarity index between density 

maps at different acquisition times compared to a reference density map of a 

fully populated vascular network. MB concentrations correspond to maximal 

MB concentration at each transmit frequency. Time is computed considering a 

framerate of 1000 frames per second, where each frame corresponds to an 

imaging volume. MB concentration corresponds to 10% of the concentration 
where MB count is maximal for each transmit frequency. 

III. DISCUSSION 

In this study, we took advantage of a novel 3D anatomically-realistic 

framework, where mice brain vasculature obtained from 2PM was 

used to propagate virtual MBs with velocities and MB distribution 

replicating behavior from in-vivo data. Having access to known MB 

positions at all times allowed for quantitative measurements to 

determine ULM capabilities as well as reference qualitative imaging. 

2D and 3D localization error could be computed as well as MB count 

for different MB concentrations and transmit frequencies.  A link 

between maximal MB concentration and PSF volume was found and 

network filling as a function of time was calculated. Results allow to 

answer fundamental questions related to in-vivo imaging such as 

whether the vasculature is accurately or fully depicted as imaging 

parameters such as the probe or concentrations used are varied.  

Simulations were conducted on the 6 vascular networks separately. 

The variety of vascular morphologies allowed to generalize the link 

between MB concentration and acquisition parameters while 

reducing potential overfitting. 

A. MB simulation 

Figure 4 shows that our MB simulation framework was successful 

at replicating observed MB behavior from in-vivo dependencies, 

namely the MB count and velocity vs vessel diameter. Due to these 

dependencies, realistic MB flow and MB distribution are possible in 

subsequent ultrasound simulations. 

Figure 5 shows that constraints on MB flow favor MB distribution 

towards larger vessels. Visually, fewer small vessels are mapped for a 

set amount of MBs, but large vessels appear fuller. This means that 

for a set acquisition time and a set MB concentration, some small 

vessels will not or will not be fully mapped in the final density map 

regardless of imaging resolution.  

B. MB localization 

In Figure 7, we see that as concentration increases, even though 

most vessels are preserved, they appear blurred, are missing, or are 

inaccurately depicted from the reference density map. This is in 

accordance with theory since ULM requires isolated MB signals. The 

higher the concentration, the more likely MBs will interact with each 

other. However, relative concentration around 10% of the 

concentration at maximal MB count allows to depict most of the 

original vasculature. Furthermore, reference density map shows that 

because of realistic MB count vs diameter, some small vessels are not 

present. Probability of a MB flowing in vessels of only a few 

micrometers is so low that it would require a longer acquisition time 

than the equivalent of 10 minutes at 15 MHz, according to results in 

Figure 9. This means that in current in-vivo imaging, some vessels 

of only a few micrometers are most likely not mapped if the transmit 

frequency is not high enough or the acquisition time not long enough.  

 

In Figure 6, the decrease in MB count at high MB concentrations 

shows that thresholding MBs using their correlation with 

beamformed PSF allows to screen for intensely interacting MBs. 

Localization error increases with concentration as predicted by theory 

and is in conjunction with vessels blurring or missing. Localization 

error can reach a plateau at higher frequencies when selected MBs 

becomes constant due to correlation thresholding. Higher transmit 

frequencies are associated with lower localization errors as predicted 

by theory [37]. Higher frequencies are associated with smaller PSFs; 

hence a higher concentration is possible while maintaining isolated 

sources.  

 

In Figure 6, the rate at which MB count increases eventually slows 

down with higher frequencies. This is mainly due to the size of the 

PSF only decreasing in the axial direction because of a constant 

element pitch and width. This is due to current manufacturing 

capabilities that limit piezoelectric element size.  

 
The dependency in Figure 8 shows that PSF volume can be used 

predict maximal MB concentration. In theory, to reduce MB 

interactions, MB concentration must be decreased. We see here that 

reducing PSF size also reduces MB interactions. Since MB 

concentration should be as high as possible to reduce acquisition 

time, this dependency can be used for choosing optimal concentration 

for a specific probe’s acquisition parameters.  

 
In Figure 9, the network filling represents the intersection between 

reference density maps and density maps resulting from MB 

localization at different transmit frequencies. The higher the network 

filling index, the more of reference vessels are present in the mapped 

vasculature from the imaging setup. Results in Figure 9 show that 

acquisition time is drastically reduced using smaller PSF volumes (or 

higher inverse PSF volumes). This means that a higher transmit 

frequency should be prioritized over a lower transmit frequency if the 

required penetration depth allows for it. Also, for a set acquisition 

time, depending on MB concentration and PSF volume, only a 

portion of total vasculature is mapped. 

C. Limitations 

This study set forth some limitations of the proposed simulation 

framework. 

• A graph model was generated from 2PM, through 

automated segmentation, surface modeling and 

contraction. From that, MB trajectories were generated 

using MB velocities and number of MB as a function of 

diameter from two models derived from in-vivo data. 

This approach guarantees anatomically-realistic 

modelling since vasculature is derived from an ex-vivo 

model. Another avenue would consist of generating a 

fully synthetic fluid flow-driven graph model as in [38], 

where vasculature is generated using constraining 

parameters, namely vascular resistance, diameter, 

pressure, and bifurcation position. Whole cortical 

circulation can be generated while distinguishing 

between arterial and venal flow. This framework 

combines anatomical data with artificial construction 

laws to overcome limitations in coverage and resolution 

in reference anatomical data. 

• In ultrasound localization microscopy, there are many 

parameters that can influence SNR, contrast, resolution, 
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network filling and so forth, hence influencing the 

accuracy of the vascular reconstruction. In this study, we 

chose parameters that are most closely linked to our 

ability to maintain isolated sources in a spatiotemporal 

referential as stated in [2]. For that reason, we focused 

primarily on MB concentration [7] and transmit 

frequency [6].  

• In Figure 4, variability in the MB count vs vessel 

diameter is due to the specificity of the vascular 

network. The smaller the vascular network, the more 

significant this variability is. Variability in MB 

velocities vs vessel diameter can be due to abrupt vessel 

diameter change due to rough vascular segmentation, 

which can affect the accuracy of a MB’s corresponding 

vessel diameter prediction. 

• As for ultrasound signals, they were generated using 

either readily available or realistic ultrasound probes 

acquisition parameters. The rationale behind this was to 

assess current limitations and seek for optimal ULM 

parameters. White Gaussian noise was added in radio 

frequency data to improve realism, but no tissue was 

modeled. Since PSF size and shape greatly influences 

our ability to precisely detect single MB events, any 

alteration to the PSF from higher noise or lower contrast 

from neighboring tissue could have an impact on MB 

localization and ultimately maximal MB concentration. 

Other studies with tissue modelling are therefore to be 

conducted with tissue modelling as in [39], [40]. 

• In Figure 6, we can see that thresholding does not 

completely prevent MB interactions, as depicted in the 

increasing localization error as a function of 

concentration. Therefore, correlation threshold must be 

selected wisely to maximize MB detection events for a 

fuller network while minimizing strongly interreacting 

MBs which is depicted as blurred vasculature in density 

maps. 

• All simulations were conducted on networks of brain 

mice vasculature where MB flow reflected behavior 

from in-vivo data. However, the vascular networks were 

relatively small in terms of field of view. This means 

that MB trajectories are limited to a small range of 

vessel sizes (mainly small vessels). This reduced vessel 

size range increases inter-network variability which can 

be seen through results from Figure 8, where MB count 

variability is not proportional to the inverse of PSF 

volume. In the medium, MBs were spread uniformly to 

artificially cover a large portion of space, but realism 

could be improved by having access to a larger network 

and ultimately a whole brain or whole organ vasculature, 

where the vascular network is closer to real-life vascular 

size distribution, which will increase metrics 

repeatability. 

• In subsequent studies, acquisition parameters such as 

number of compound angles [34], number of pulse 

cycles, pulse frequency modulation (chirp) [41], SNR, 

probe elements geometry, MB size distribution just to 

name a few could be interesting to better understand the 

underlying limitations of ULM and progress towards 

finding optimal imaging parameters.  

IV. CONCLUSION 

In conclusion, we have developed a framework capable of 

characterizing ULM image formation algorithms. We described how 

to obtain virtual anatomically-realistic MB positions from 2PM data. 

We have shown and quantified the impact of concentration on MB 

localization and acquisition time. We quantified the link between 

maximal MB concentration and PSF volume. Standardized 

anatomically-realistic MB simulations could become a useful tool in 

the validation of an ULM imaging setup and the PSF volume a 

straightforward metric for a specific probe’s acquisition parameters 

since it would define the appropriate MB concentration. In practice, 

we hope that these results can be used to achieve optimal vasculature 

reconstruction at lowest acquisition time for a specific imaging setup. 
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