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Abstract

Clonal  genome evolution  is  a  key  aspect  for  parthenogenetic  species  and cancer.

While many studies describe precise landscapes of clonal evolution in cancer, few

studies determine the underlying evolutionary parameters from molecular data, and

fewer integrate theory with data. We derived theoretical results linking mutation rate,

time,  expansion  dynamics,  transition  to  recurrence,  and  survival.  With  this,  we

inferred  time-resolved  estimates  of  evolutionary  parameters  from  mutation

accumulation, mutational signatures and selection. Using this framework we traced

the  speciation  of  the  rapidly  emerging  and  invasive  marbled  crayfish  to  a  time

window between  1947  and  1996,  which  is  consistent  with  biological  records.  In

glioblastoma  samples,  we  determined  tumor  expansion  patterns,  and  tumor  cell

survival ratio at resection. Interestingly, our results suggest that the expansion pattern

in the primary tumor is predictive of the progress and time to recurrence. In addition,

tumor cell  survival was always higher  after  resection and was associated with the

expansion pattern and time to recurrence. We further observed selection events in a

subset of tumors, with longer and purifying-only selection phases in recurrent tumors.

In  conclusion,  our  framework allowed a  time-resolved,  integrated  analysis  of  key

parameters  in  clonally  evolving  genomes,  and  provided  novel  insights  into  the

evolutionary age of marbled crayfish and the progression of glioblastoma.
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1  Introduction

The  evolution  of  genomes  is  shaped  by  many  factors,  among  which  the  random

accumulation of mutations over time plays a fundamental role [1, 2]. Far from being

homogeneous,  the probability  of a mutation depends on many factors  such as the

genomic location [3], mutator alleles, local nucleotide context or mutagenic exposures

[4]. Other genomic modifications include recombination in sexual reproduction, copy

number variants and genomic rearrangements, gene transfers and hybridization. The

capacity of any genomic modification to be inherited is partly stochastic, for instance

through genetic drift [5], but can be favored or disfavored by positive or negative

selection. Genome evolution could be observed historically via the mere measurement

of  phenotypes  [6],  and  can  now  be  determined  precisely  using  high-throughput

sequencing  in  parallel  with  experimental  or  cohort  settings,  such  as  mutation

accumulation experiments, or the analysis of genetic trios [7, 8].

Clonal genome evolution is shaped by a more limited set of mechanisms. Mutation

rate, selection and variant frequencies are key parameters, which determine the speed

of evolution, and which function under the influence of selection pressure. While truly

clonal  genome  evolution  is  rare  in  animals,  it  is  recognized  as  a  necessary

diversification  mechanism  within  an  organism.  Prominent  examples  include

hematopoiesis  and  the  immune  response,  which  involves  a  large  number  of

antibodies. Selection has also been studied in clonally evolving genomes [9,  10,  11,

12]. In the context of tumor genome evolution, some studies have claimed that there

can be a fully neutral evolution, at least in an established tumor [13, 9]. However, this

is discussed controversially [9,  14, 15,  16, 17]. In particular, the usefulness of allele
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frequency data to infer selection is still unclear. A limited number of studies addresses

the  inference  of  the  timeline,  using  coalescent  approaches  [18],  or  using  a

probabilistic framework [19]. Few studies bring together the interplay of the mutation

rate, selection and timeline in clonal genome evolution.

Cancer constitutes a disease based on clonal genome evolution, defined by somatic

mutations,  copy number variants,  large-scale chromosome anomalies  and germline

risk variants. Recently, multiple-region sampling and emerging single-cell sequencing

have  provided  an  unprecedented  view  on  tumor  heterogeneity  and  cancer  cell

phylogenies [20,  21,  22,  23,  24,  25], while evolutionary game theory models shed

light  on  the  interaction  of  treatment  with  cancer  evolution  and  allow  treatment

adaptation [26, 27]. In glioblastoma, a detailed analysis of tumor trajectories revealed

a common tumorigenesis onset via specific chromosome gains or losses, while driver

mutations  occurred later  and led to  rapid growth [19].  Furthermore,  mathematical

modeling yielded time estimates for tumorigenesis ranging from 2 to 7 years before

diagnosis [19].

Animal  models  have played a key role in  understanding various  aspects of tumor

formation [28,  29,  30,  31]. Due to its particular mode of asexual reproduction, the

marbled crayfish (Procambarus virginalis) represents an ideal animal model to study

clonal genome evolution [32]. The animals are currently colonizing diverse habitats in

a process that is associated with emerging genetic differentiation [33]. Interestingly,

marbled crayfish appears to be an evolutionary young species, as their first emergence

can be traced back to a specific event in 1995 [34]. If confirmed, this exceptionally

young evolutionary  age would  represent  a  highly  distinctive  feature  of  the model

system. 
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In this study, we aimed to establish a novel framework for analyzing clonal genome

evolution  in  marbled  crayfish  and  in  cancer.  To  this  end,  we  reformulated  the

dependence  of  mutation  accumulation  on  variant  allele  frequency.  We  used  the

resulting equation to prove that selection is undecidable using variant allele frequency

only, and to determine the links between the various parameters. We enriched this

framework by integrating the non-synonymous to synonymous ratio and mutational

signatures,  in  order  to  estimate  selection,  time  course  and  tumor  expansion

parameters. We took care to evaluate uncertainties, using bootstrap. We applied our

approach to the clonally evolving marbled crayfish and to recently published samples

of primary and recurrent glioblastoma tumors [19]. For both, we provided a detailed

view  of  mutation  accumulation,  selection,  and  time.  For  marbled  crayfish,  this

resulted  in  a  time  estimate  for  its  origin.  In  glioblastoma  samples,  we  further

determined  tumor  expansion  parameters  and  tumor  cell  survival  at  the  transition

between the primary and recurrent tumors.
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2  Results

Theoretical results on the mutation rate, allele frequency, growth and survival

To gain insights on the mutation rate in a clonal genome, we studied the theoretical

properties of mutation accumulation dM, in relation to mutation frequency f. We first

used the expression of dM:

dM ( t )=μ (t ) ⋅π ( t )⋅G ⋅2 ⋅ω ( t )⋅ γ ( t ) ⋅N ( t ) ⋅dt , (1)

where t is the time, μ is the mutation rate, π is the ploidy, G is the genome size, ω is

the growth rate, γ is the survival rate and N is the number of animals, or cells in the

context  of  cancer  (for  a  detailed  description  of  this  expression,  and  for  the

demonstration of the following equations, see the Supplementary Demonstration). We

stratified this expression to each subclone, since animal or cell lineages are likely to

have different evolutionary parameters. Then, we introduced the observed mutation

frequency f i (t ; tr ). This is because f was observed not at occurrence, but at the time of

retrieval  or  resection  of  a  genomic  DNA  sample,  t r,  and  because  a  mutation  in

subclone  i was  then  diluted  among  all  subclones  present  at  t r.  We  obtained  the

following expression (2) for f i (t ; tr ):

f i (t ; tr )=
K i , r

N i (t )⋅ π i (t ) . (2)

Equation (2) means that f is inversely proportional to N and to ploidy. The term K i , r is

a constant for subclone  i, which accounts for the actual time of appearance of the

mutation  and  for  the  dilution  of  subclone  i  in  the  sample  (see  assumptions  in

Supplementary Demonstration).
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Next,  we  needed  intermediate  results  about  the  increment  of  1/f,  d(1/f) and  the

increment of N, dN. Note that we used the inverse allele frequency because this leads

to simpler equations, and stays equivalent. Using calculus (see mathematical proof in

Supplementary Demonstration), this led to expressions (3) and (4):

dN i=ωi ( t )⋅ γi ( t ) ⋅N i ( t ) ⋅dt (3)

and

d (1/ f i (t ; tr ))=ωi ( t ) ⋅γ i (t )⋅N i ( t )⋅ dt ⋅π i. (4)

Notably,  we have made the  assumption  that  ploidy is  constant  in  order  to  obtain

equation (4). As a result, using equations (1), (3) and (4), it was possible to obtain the

dependence (5) of mutation accumulation on frequency f, in each subclone i:

dM i (t )=μ i (t )⋅G ⋅K i , r⋅ d (1 / f i (t ; t r )). (5)

Finally, mutation accumulation overall was simply obtained as the sum of (5) in all

subclones  i.  Because  the  observed  frequencies  f i (t ; tr ) are  comparable  between

subclones, we used f in the following, while K i , r continued to account for the time and

proportion  differences  between  subclones  among  the  sample.  This  yielded  the

following equation (Supplementary Demonstration):

dM (t )=(∑i
μi (t )⋅K i , r )⋅G ⋅d (1 / f ). (6)

Equation  (6)  states  that  mutation  accumulation  dM is  proportional  to  d(1/f).

Furthermore, dM/d(1/f) can be constant, meaning that M(1/f) is linear, if the mutation

rates  μi are constant. Conversely, when M(1/f) is linear, then the mutation rates are

certainly, but not automatically, constant (Supplementary Demonstration). Equation

7

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.10.08.463633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463633


(6) also excludes any role of selection on  M (1 / f ), in agreement  with [11,  12], and

within the frame of assumptions (Supplementary Demonstration). 

These  theoretical  results  provided  the  foundation  for  calculating  mutation  rate

variations from the curve M(1/f), and time-resolved estimates, in P. virginalis and in

glioblastoma samples in the following. In addition, these results allowed to derive the

expressions between time, mutation rate, survival rate and growth rate in glioblastoma

samples.

Mutation rate estimates and a timed coalescent tree for P. virginalis

In  order  to  infer  evolutionary  parameters  of  the  P.  virginalis  genome,  we  first

assessed the mutation rate.  We used whole-genome sequencing of a line of direct

descendants from our laboratory colony of  P. virginalis, that were sampled over a

period of seven years (Fig.  1A).  The mutation  rate  was calculated  as the average

number of de novo mutations in animals 34 and 35 as compared to animal 1, per

nucleotide and per year. From these samples, we obtained a mutation rate equal to

μ=3.51⋅10− 8/n t / y (95%  confidence  interval  (CI):  [1.67 ⋅10− 8;5.35 ⋅10− 8 ] /n t / y,

range: [1.45 ⋅10−10 ;5.47⋅ 10−6 ] /n t / y).  The  mutation  rate  of  P.  virginalis is

comparable  to  known mutation  rates  from other  arthropods  and falls  between the

human germline mutation rate and the somatic mutation rate of human cancers (Fig.

1B).
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Figure 1. Mutation rate of P. virginalis and coalescent. (A) Genealogy of laboratory

animals, with sequenced animals marked in grey. (B) Comparison of the calculated

mutation rate for  P. virginalis  with mutation rates for other arthropods and for  H.

sapiens.  Where  available,  standard  deviations  (red)  and  range  (orange)  are  also

indicated.  (C) Coalescent tree based on a constant mutation rate and sequences of

sampled animals. The posterior probability of each branch is indicated in red.

We also made a first evaluation of the evolutionary age of  P. virginalis, using the

Bayesian evolutionary analysis software BEAST [35] for the sequences of 13 animals

(Fig.  1C),  using  10  million  states  (see  Methods  for  details).  The  convergence  is

attained  and  effective  sample  sizes  were  adequately  large  (2984  or  higher).  The

results  showed that  animals  1,  34  and 35 correctly  clustered  together,  as  well  as

animals from German wild populations (Hannover, Reilingen, Moosweiher) and from

the  likely  foundational  laboratory  lineage  of  the  German  wild  populations
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(Heidelberg).  Furthermore,  samples  from  Madagascar  formed  a  separate  branch.

Interestingly, Petshop 2 [32] was nested in the branch of animals from Madagascar.

This is consistent with the notion that the Malagasy population was founded by an

animal that was originally obtained from a German pet shop. Posterior probabilities

(Fig.  1C,  red  annotations)  indicate  highly  probable  branching  for  all  but  the  top

coalescent  event,  which  has  0.5206  probability.  From  this  tree,  the  most  recent

common ancestor of the 13 animals occured in 1988 (95% CI: [ 1986.1;1989.8 ]). This

is broadly consistent with the first documented appearance of  P. virginalis in 1995

[34].

Dynamics of mutation accumulation in P. virginalis

Knowing from theoretical results that mutation accumulation M as a function of (1/f)

informs on the mutation rate, we looked at the dynamics of M (1 / f ) in P. virginalis.

The curve suggested that the mutation rate changed over time, with 4 phases defined

by  segmented  regression  (Fig.  2A;  p=0.06).  For  example,  the  mutation  rate  was

reduced in phase 3, and increased in phase 4 (Fig. 2A).

Since selection (denoted s) is not observable using M(1/f), according to equation (6),

we used the ratio of non-synonymous to synonymous mutations as a proxy for s (Fig.

2B). This profile showed values close to 1 for phases 1 and 2, suggesting the absence

of  selection  (Fig.  2B).  During  phases  3 and 4,  we detected  s values  >1,  and <1,

respectively  (Fig.  2B),  suggesting  phases  of  positive  and  negative  selection

respectively.
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We  then  used  previously  established  clock-like  mutational  single-base  signatures

(SBS1  and  SBS5)  [36,  37,  18]  as  a  proxy  for  the  time  course  of  mutation

accumulation  (Fig.  2C).  We further  assumed that  the  arrow of  time  from past  to

present corresponds with the arrow of increasing 1/f. We calculated the integral of the

clock-like components of mutation accumulation (see Methods for the details), which

yielded  a  time  course  in  arbitrary  units  (Fig.  2D).  The  slope  of  this  curve  is

proportional to the mutation rate as a function of time. According to Fig. 2D, this

mutation  rate  exhibited  little  variation. As  a  result,  our  framework  allowed  the

analysis  of mutations  and selection dynamics  at  allele  frequency resolution and at

time resolution.

Figure 2. Mutation accumulation, selection and time course of P. virginalis genome 

evolution. (A) Mutation accumulation as a function of the inverse allele frequency 1/ f
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(black) and phases from automated segmentation (breakpoints in grey,  segments in 

blue). (B) Non-synonymous to synonymous ratio (dNdS). The smoothed ratio is 

shown in red. (C) Comparison of clock-like and non-clock-like mutational signatures. 

(D) Mutation accumulation as a function of time. Smoothened mutation accumulation 

is shown in red.

Integrated analysis of P. virginalis genome evolution

Since we had obtained two complementary sources of information on the time course

of mutation accumulation in  P. virginalis (coalescent and mutation rate profile), we

integrated both approaches. Assuming that the mutation rate of the most recent past

corresponded to the mutation rate calculated for animals 1, 34 and 35, we recalculated

the coalescent times and thus obtained a consolidated coalescent tree (Fig. 3). The

resulting  time  estimate  for  the  most  recent  common  ancestor  was  1971

[ 1946.9 ;1996.2 ] (95%  CI)  which  is  again  consistent  with  the  first  report  of  the

appearance of P. virginalis in 1995 [34].
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Figure 3. Coalescent tree of P. virginalis evolution after integration of the mutation 

rate profile. The tree, branch posterior probabilities, and coalescence times of animals 

1, 34 and 35 are unchanged, while the coalescence times of other animals were 

matched to the relative mutation rate profile derived from Fig.2D.

Clonal evolution landscape in glioblastoma tumors

Since glioblastoma is a high-grade glioma with systematic recurrence and poor patient

survival, a better understanding of evolutionary parameters in this context would be of

considerable importance. We therefore sought to apply our framework to a published

set of whole-genome sequencing data of primary and recurrent glioblastoma tumors

[19].  This  study estimated  in  particular  the  age  of  primary  tumors  [19],  allowing

further  integration  in  the  following.  Based  on  the  curve  M (1 / f ),  we  generated

mutation rate profiles (Fig. 4A, see Suppl. Fig. 1A for individual samples), which we

further segmented into phases (Fig. 4A, p<2.2 ⋅10−16). The results indicated distinct

variations  in  the mutation  rate  (Standard Deviation  SD=63%, Inter-Quartile-Range

IQR=133% relative  to  the  mean  mutation  rate;  Fig.  4A).  Considering  all  primary

tumor samples, SD varied from 54% to 141% (IQR: 71%-178%; Suppl. Table 2), and

recurrent samples showed comparable variations (SD: 29%-139%, IQR: 29%-172%).

We  next  analyzed  mutation  selection  using  the  dN/dS  ratio.  Taking  confidence

bounds  into  account,  the  results  were  compatible  with  neutral  selection  for  most

tumors (Fig. 4B, Suppl. Fig. 1B per sample). However, 11 primary tumor samples (2,

3,  6,  18,  22,  24,  30,  31,  35,  40 and 42) showed evidence of negative  (purifying)

selection during brief intervals, for instance sample 35 (Suppl. Fig. 1B for sample 2,
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1/f in [1/0.5; 1/0.3]). We also observed evidence for positive selection in two primary

tumor samples (Samples 2 and 7, Suppl. Fig. 1B). Interestingly, 7 out of 9 recurrent

tumor samples (samples 3, 4, 13, 19, 27, 30 and 35) underwent prolonged phases of

negative selection (for example, sample 4, 1/f in [1/0.5; 1/0.1], Suppl. Fig. 1B), while

2 samples (31 and 38) still exhibited short phases of negative selection. No recurrent

tumor sample showed any significant phase of positive selection. 

As a first step to determine the timeline of tumor evolution, we analyzed canonical

tumor-associated single-base substitution (SBS) signatures [4]. More specifically, we

compared the prevalence of the stable, clock-like SBS1 signature to the other, non

clock-like SBS signatures (Fig. 4C, see Suppl. Fig. 1 for individual samples). This

includes SBS5, which is non clock-like in glioblastoma according to [36] (Table1).

This  was  confirmed  in  most  samples  analyzed,  since  there  was  little  correlation

between SBS1 and SBS5 (ρP=-0.060 with IQR=0.143 in primary tumors; ρP=0.067,

IQR=0.136 in recurrences). Surprisingly, the few samples under selection displayed

larger correlation coefficients, suggesting that SBS5 might also be clock-like in this

subset of samples (Suppl. Fig. 2, p=0.01916, ρP=0.32 in primary tumors; p=0.02188,

ρP=0.52 in recurrences). The non-clock like SBS signature prevalence was 3.334 (IQR

= 0.477) fold higher than the clock-like SBS1 signature in the primary tumors (4.049

fold higher, IQR= 1.074, in recurrences; Suppl. Table 2).

Using  the  information  on  the  clock-like  signature  SBS1,  and  using  equation  (9)

(Methods), we reconstructed M  as a function of time  (Fig. 4D, Suppl. Fig. 1D per

sample), in arbitrary units. The slope of this curve is proportional to the mutation rate

per time unit. Similar to the mutation rate per division in Fig. 4A, the mutation rate

per  time unit  exhibited large variations,  with SD in [22.8%; 117.9%] and IQR in
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[26.5%; 142.4%] in primary tumors, and SD in [28.1%; 466.4%] and IQR in [20.6%;

117.0%]  in  recurrent  tumors  (Suppl.  Table  2).  In  conclusion,  the  evolutionary

landscape of glioblastoma revealed notable variations in the mutation rate per division

and per unit of time in all samples. Some evidence for selection was also detectable,

with a putative association with the clock-like status of the SBS5 signature.

Figure 4. Mutation accumulation,  selection and time dynamics of a representative

glioblastoma  tumor  (patient  1,  primary  tumor).  (A)  Mutation  accumulation  as  a

function  of  the  inverse  allele  frequency  1/ f  (black)  and  phases  from  automated

segmentation  (breakpoints  are  indicated  as  dashed  vertical  lines,  segments  are

indicated in blue). (B) Non-synonymous to synonymous ratio dNdS. Purple and blue

stars  show  non-synonymous  and  synonymous  mutations,  respectively.  The

smoothened  ratio  is  shown  in  red.  (C)  Clock-like  and  non-clock-like  mutational

signatures. (D) Mutation accumulation as a function of time. 
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Expansion parameters of the primary and recurrent tumors

Using  mutation  accumulation  as  a  function  of  1/f  or  time  from Fig.  4A,  D  and

equation  (17)  (Methods),  we  could  reconstruct  the  product  ωγN  of  the  tumor

parameters growth rate ω, tumor cell survival rate γ and number of cells N  (Fig. 5A).

This product corresponds to the expansion parameters of the tumor, hence yielding

insights  into  the  way  how  the  tumor  develops  during  the  primary  and  recurrent

phases, respectively (left and right panels of Fig. 5A). The curves ωγN  for sample 1

and other  samples  (Fig.  5A,  Suppl.  Fig.  3A for  individual  samples)  displayed an

overall increase in the primary tumor, except for samples 5 and 16. This increase was

also observed in the recurrence phase for 29 samples out of 42, while 13 samples

displayed an overall decrease. A decrease might be attributed to a declining growth

rate  ω or  tumor  cell  survival  rate  γ,  while  a  decrease  of  N  can  be  excluded  in

principle (unobservable). Furthermore, ωγN  curves sometimes had a simple form with

one local  minimum,  and sometimes  a  more  complex pattern,  with  one  or  several

additional local maxima and minima (Fig. 5A, Suppl. Fig. 3A for individual samples).

We then looked at a possible association between the patterns of the ωγN  curve in the

primary tumors, and the time to the recurrence (Fig. 5C). We first sorted curves into

the  following  categories  1:  convex,  2:  stable,  then  convex,  3:  double  convex,  4:

increasing (Suppl. Fig. 4A-D). The pattern of these curves in the primary tumors was

associated to the differential time to recurrence, though this was non-significant after

p-values  adjustment  (p=0.04035,  padj=0.28245,  Suppl.  Fig.  4E,  F).  Further,  while

some  patterns  remained  identical  between  the  primary  tumor  and  the  recurrence,

curves of type 2 preferably led to types 1 or 3 (Suppl. Fig. 4G, n=42). Conversely,
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type 3 never led to type 2. We then sought to confirm this manual analysis with a

systematic approach, relying on segmentation and automatic detection of minima and

maxima.  Interestingly,  we  observed  an  association  of  the  variance  of  time  to

recurrence with the presence of one local maximum (p=0.0181, padj=0.0362, n=20). A

similar  trend,  non-significant  at  5% type  I  error  level,  appeared  for  the  count  of

maxima during recurrence (Fig. 5D,  p=0.0367,  padj=0.0734, n=20). The number of

local  maxima  of  ωγN  curves  was  correlated  between  the  primary  tumor  and

recurrence, in the whole set of 42 samples (ρP= 0.34). Hence, the patterns of  ωγN

curves in the primary tumor are indicative of the expansion pattern in the recurrence,

as well as the time to recurrence. The time to recurrence was 17.4 months (SD=12.9)

in  the  subgroup  with  no  maximum,  suggesting  a  more  favorable  prognosis  as

compared to the subgroup with at least 1 maximum (8.7 months, SD=3.1), although

this  did  not  reach  statistical  significance  (p=0.2485,  n=20).  The  possible  more

favorable prognosis for the subgroup with no maximum was better explained by a

larger variance (16.77 times higher if no maximum,  p=9.343×10-5,  padj=1.868×10-4,

95% CI= [4.04 ; 239.06] ) than in the subgroup with 1 maximum or more.

Tumor cell survival at the transition from primary to recurrent tumor

Since the time difference between the resection of the primary tumor and the resection

of the recurrence is known for a subset of samples [19], this allowed us to calibrate

the time course from arbitrary units into real units (Eq. 10 in Methods, Fig. 5B, and

Suppl.  Fig.  3B  per  sample).  Furthermore,  the  transition  from  the  primary  to  the
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recurrent tumor can be expressed formally (Eq. 11, Methods) and simplified using

continuity assumptions (Methods), resulting in the following equation:

( dM
dt )

P

=
(1/ f )P

(1/ f )R

⋅
γ P

γ R

⋅( dM
dt )

R

. (7)

Equation  (7) describes  how mutation accumulation  of primary tumors  at  resection

(index  P)  and  at  the  initiation  of  recurrence  (index  R),  are  linked  by  only  their

respective allele frequencies and tumor survival rate. An important assumption is that

the mutation rate (μ) and the growth rate (ω) are constant between the primary tumor

and the recurrence, based on the argument that these are intrinsic characteristics of the

tumor, which are unlikely to change notably over a short time span. Conversely, in

expression (7), the ratio for tumor survival rate in primary tumor to the recurrence,

γ R/γ P, cannot be taken as constant, since tumor cell survival changes drastically at

resection and following treatment [19]. The ratio was therefore set to 300:1, based on

the consideration that oxygen, room to expand and other resources supply might be

much higher after resection of the primary tumor. Using this value, and since other

parameters were known, we reconstructed the time course of mutation accumulation

for the primary tumor (Fig. 5B, Eqs. 14, 15 in Methods), determining a progression

time of 6 years for the primary tumor of sample 1, in agreement with published data

[19].  This suggested that  the chosen value for the tumor cell  survival ratio  was a

reasonable assumption for this sample.

Using equation (7) in the reverse way, we determined the tumor survival ratio from

time estimates. Previous analyses [19] indicated that the primary tumors could have

emerged from 2 to 7 years before diagnosis. Using the values of 2 years and 7 years as
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the lowest  and highest limits  for the time course of the primary tumor,  we could

determine a range for the value of the tumor survival ratio γ R/γ P for each individual

sample (Eq. 16 in Methods, Fig. 5E, Suppl. Table 3). As a result, the lowest value of

the ratio γ R/γ P, corresponding to a tumor emergence about 2 years before diagnosis,

was always higher than 1, and had a median value of 27.8 (95% CI=[17.4; 54.0],

n=20 samples). As for the upper bound for the range of γ R/γ P ratio, corresponding to

tumor emergence 7 years before diagnosis, the median  γ R/γ P ratio was 97.5 (95%

CI=[60.9; 189.0]). These results indicated that tumor cell survival was higher at the

start  of the recurrence  than at  the end of the primary tumor growth. Notably,  the

variability between samples was considerable, with some samples being close to the

unity ratio (samples 39, 40, 42), indicating similar tumor cell survival before and after

resection.  Not surprisingly,  γ R/γ P ratios  were associated  to the time to recurrence

(Fig.  5F,  adjusted-R²=0.44,  p=8.386×10-4,  padj=1.258×10-3 for  regression  line 1,

adjusted-R²=0.61,  p=2.883×10-5,  padj=8.649×10-4 for regression curve 2), with higher

γ R/γ P ratios  corresponding  to  shorter  time  to  recurrence.  Further,  the  variance  of

ratios γ R/γ P was also associated to the number of local maxima in the primary tumors

(p=0.01545,  padj=0.04635). This further suggested that the expansion pattern of the

primary tumor can predict the progression to recurrence.
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Figure 5. Transition of primary tumor to recurrent tumor for patient 1. (A) Dynamics

of growth rate ω times tumor cell survival rate γ times number of cells N , for (P) the

primary tumor and (R) the recurrence. (B) Time to recurrence dependence on ωγNN

characteristics in the primary tumor,  and (C) in the recurrence.  (D) Time-resolved

mutation accumulation for primary tumor and recurrence. (E) Neoplastic cell survival

in recurrence relative to the primary tumor, denoted γ R/γ P, for the lower and higher

limits where tumor emergence dates back to 2 years, or to 7 years. (F) Dependence of

time to recurrence on the γ R/γ P ratio. Fit1 corresponds to a linear regression of time

versus  log10(γ R/γ P),  with  intercept=19.511  (standard  error  SE=2.544)  and  slope=-

5.819 (SE=1.455), fit2 corresponds to a linear regression of time versus log10(log10(

γ R/γ P)), with intercept=18.922 (SE=1.806) and slope=-29.321 (SE=5.285).
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3 Discussion

Our study suggests a key role of evolution dynamics in the primary tumor and of

tumor cell survival at resection, in glioblastoma. This and other aspects examined in

this study were brought to light thanks to the intimate combination and integration of

theoretical  results  with  molecular  data,  in  order  to  determine  detailed  and  time-

resolved characteristics of clonal genome evolution. In that, our study is the first to

demonstrate the viability and strength of such a comprehensive approach. Replication

and extension studies should help complement our results with additional insights and

potential clinical applications.

Our study also validated the clonal genome model P. virginalis, with a base mutation

rate for this animal of 3.51 ⋅10−8/n t / y, close to the mutation rate observed in human

somatic evolution in healthy tissues and in cancer, though some discrepancies may

arise because of differentiation,  adaptation  timescales,  and environmental  switches

[38].  This  model  was  instrumental  in  developing  our  approach,  and  further

demonstrated the utility of integrating different sources of information, which yielded

a  refined  estimated  time  to  the  most  recent  common  ancestor  in  1971  (95%

confidence limits:  [ 1946.9 ;1996.2 ]), in agreement with first reports of this animal in

1995 [34], and consistent with a very young evolutionary age of the species.

The expansion profile in the primary tumors and also the tumor cell survival ratio

around  resection,  were  both  associated  with  the  time  to  recurrence,  and with  the

expansion profile during recurrence. This suggests a predictive value for evolutionary
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parameters in the primary tumor, with respect to timing and expansion characteristics

during recurrence. Logically, earlier diagnosis should in principle prevent the primary

tumor from reaching a complex expansion profile and hence lead to a more favorable

prognosis. Few studies have proposed biomarkers or a mechanistic explanation based

on clonal evolution [39, 40, 41, 42, 43, 44], so that a potential prognostic biomarker

based on the expansion profile would be valuable.

Interestingly,  tumor cell  survival was systematically higher in the recurrence.  This

supports the notion that tumor regrowth is more aggressive after surgical resection of

primary glioblastoma tumors [45,  46], possibly because resection-induced astrocyte

injury can support faster growth [46]. Additionally, space and oxygen can promote

tumor regrowth [47, 48, 49], while a stronger immune response after resection would

reduce it. In this regard, our large range of tumor cell survival rates might reflect the

different balances between these (and other) parameters.

The  impossibility  to  observe  selection  using  allele  frequency  alone  had  been

suggested before [11,  12], and is shown here, in the frame of minimal, reasonable

assumptions [50, 51, 52]. This prompted us to use the dNdS ratio instead. While most

glioblastoma samples showed no or little signs of selection, about 25% of samples did

exhibit short (in primary tumors) or longer (in recurrences) phases of selection. This

provides an important complement to recent studies, that have either claimed a major

role of selection [3] or its complete absence [13,  9]. These seemingly contradictory

findings  may  be  explained  by  the  pace  of  tumor  growth.  In  slowly  growing

populations, the genome is shaped by random drift and selection [50, 51]. Conversely,

faster  growth  rates  render  random  drift  negligible  [50,  51]  and  selection  less
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observable [53]. This indicates that the observed presence of selection in a subset of

samples might correspond to phases of slower tumor growth.

We  further  noted  variations  of  the  mutation  rate,  both  in  P.  virginalis and  in

glioblastoma.  This  supports  the  argument  that  the  mutation  rate  should  not  be

considered  constant  [1,  54,  55].  Known mechanisms can  explain  these variations,

including a temporarily more pronounced effect of error-prone mechanisms, hypoxia-

induced mutagenesis,  or transcription-associated mutagenesis  [1,  56].  Interestingly,

the  mutational  signature  SBS5  exhibited  a  correlation  with  the  clock-like,  m5C-

deamination  related  signature  SBS1,  in  a  subset  of  glioblastoma  samples  under

selection. While this could be a spurious finding, it could also help to understand the

etiology of SBS5.

It will be important to validate the prognostic value of evolution characteristics in

independent tumor datasets. In addition, since our characterization relies on the entire

tumor, with subclones inherently considered in the mathematical framework, it would

be interesting to complement  the analysis with local  biopsies or on the single-cell

level. Assuming that complex evolution patterns in the primary tumor are explained

by its adaptation,  this could shed light on the identity  of responsible subclones or

interaction of subclones, and possibly provide novel mechanistic explanations. Also,

integration  of  multi-omics  datasets  could  help  disentangle  the  individual  roles  of

tumor expansion parameters and the connections between genotypes and phenotypes.

In conclusion, our integrated analysis of theoretical results, mutation accumulation,

dNdS ratio  and mutational  signatures  revealed a detailed picture of the expansion
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dynamics,  time  course  and  survival  of  tumor  cells  in  glioblastoma  samples,  and

validated the marbled crayfish as a useful animal model for studying clonal genome

evolution. In particular, our results suggested that tumor dynamics as well as the time

to recurrence were predicted by the parameters of the primary tumor, with a longer

time to recurrence, and hence a longer patient survival in the subgroup with the least

complex  dynamics.  Remarkably,  survival  of  neoplastic  cells  was  shown  to  be

systematically higher after  resection than before resection,  and a lower survival of

neoplastic cells in the recurrence was associated with a longer time to recurrence. 
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4 Methods

Procambarus virginalis samples. Freshwater crayfish samples from [32] were used.

Additionally, samples from animal 1, Madagascar 1 sample and Moosweiher sample

were resequenced. Animal 1 corresponds to the lab strain, acquired from a pet shop

(Suppl. Table 1). New genomic DNA samples were taken from animal 34 and animal

35, which, as animal 1, also correspond to lab strains animals, and which are direct

offsprings of animal 1. These new samples were prepared and submitted for whole

genome  sequencing  following  the  protocol  already  described.  The  genealogy  and

birth date of animals were retrieved from laboratory records and field records (Suppl.

Table  1).  Sequence  data  was  trimmed  using  Trimmomatic  v0.32  (settings:

LEADING:3  TRAILING:3  SLIDINGWINDOW:4:20  MINLEN:40,  adapter

sequence: TruSeq3-PE). Next, trimmed data was mapped to Pvir genome assembly

v04, using bowtie2 (v2.2.6, setting: --sensitive). Aligned reads were sorted, cleared

from duplicates, sorted and indexed using samtools. Subsequently, variant calling was

performed  using  freebayes  v0.9.21-g7dd41db  (parameters:  --report-all-haplotype-

alleles -P 0.7 -p 3 --min-mapping-quality 30 --min-base-quality 20 --min-coverage 6

--report-genotype-likelihood-max).

Glioblastoma Multiforme samples. The glioblastoma primary and recurrent tumor

samples correspond to the WGS cohort already described in Koerber et al. (2019). In

particular, summary information can be found in supplementary table 1 of [19]. After

approval  of the research project,  access to the SNP data  of primary and recurrent

tumor samples, as well as time to recurrence when available, was granted.
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Study  of  mutation  accumulation. An  infinitesimal  increment  of  mutations  was

defined from the mutation rate, ploidy, cell survival, growth and number of cells:

dM ( t )=μ (t ) ⋅π ( t )⋅G ⋅2 ⋅ω ( t )⋅ γ ( t ) ⋅N ( t ) ⋅dt . (8)

We  have  stratified  this  expression  for  each  subclone  (see  Supplementary

Demonstration for details about this and for the proof of each of the following steps).

We have then determined the relationship between the observable allele frequency of

a  mutation,  which is  the  one obtained after  sequencing and SNP calling,  and the

features of the subclone where this mutation appeared. Next, we have determined a

formula for the increment of the number of cells dN and for the increment of inverse

allele frequency  d(1/f). For this latter increment, we have made the assumption that

ploidy  was  constant.  Using  intermediate  equations,  we  could  then  deduce  the

mutation accumulation  dM i as  a function of inverse allele  frequency  1/ f i,  in each

subclone i. Finally, the equation for mutation accumulation over all subclones dM was

obtained by summing the individual contributions dM i of each subclone.
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Mutation annotation and dNdS ratio. Mutations were annotated as synonymous or

non-synonymous (including splice or stopgain mutations) using SNPdat v1.0.5. The

dNdS  ratio  was  calculated  as  the  quotient  of  non-synonymous  mutations  by

synonymous  mutations  in  a  sample,  divided  by  the  average  quotient  in  the  full

genome.  The average quotient of non-synonymous to synonymous in humans was

taken equal to 3.34951759 (hg19).

Mutational signatures.  Mutational signatures for human subjects were downloaded

from the COSMIC database (https://cancer.sanger.ac.uk/signatures/ ; version 3.1 as of

11.08.2020). Mutation data was binned using a bin half-width of 0.5 on the inverse

allele frequency. Exposure of binned data was determined using R 3.5.2 with package

YAPSA (version 1.8.0).  Uncertainty  on mutational  signatures  were determined by

bootstrap resampling  of mutations  and generation of the binned data and YAPSA

exposures  on  the  resampled  data.  We  have  used  1000  bootstrap  replicates  as  a

compromise  between  an  ideally  larger  (1M) number  of  replicates,  and reasonable

computing  time.  Large  mutation  sets  (>100,000  mutations)  were  subsampled  to

50,000-60,000 mutations  for the bootstrap analysis. Mean, median,  percentiles and

95% confidence bounds were determined using the resulting bootstrap distribution.
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Time course. We have utilized clock-like mutational signatures SBS1 and SBS5 as a

surrogate indicator of time (for glioblastoma, SBS1 only, in agreement with [36]). We

obtained  an  increment  of  time  by integrating  the  number  of  mutations  which  are

clock-like  over  an  increment  of  inverse  allele  frequency  1/f.  Considering  that  the

number of mutations  is also proportional  to the number of cells  in the tumor,  we

further wanted to standardize the count of clock-like mutations, by dividing this count

by the number of cells N. Since 1/f is proportional to N [9], we multiply by f instead of

dividing by  N. This yielded the formula for determining time  t from integration of

clock-like mutational signatures θ over the range of the inverse allele frequency 1/f: 

t a .u .= ∫
(1/ f ) min

(1 /f ) max

θ ⋅ f ⋅d (1 / f ). (9)

This evaluation of time is in arbitrary units (a.u.). For some glioblastoma samples, the

time-to-relapse  is  known.  We  have  used  this  time-to-relapse,  denoted  here  τ, to

calibrate the time course in the recurrence to real units, in months: 

t=τ ⋅ t a .u . /max ( ta . u .). (10)
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In order to propagate the time calibration to the time course of the primary tumor, it

was necessary to determine a practicable link between these two phases. To this aim,

we have looked at the ratio of mutation accumulation between the end of primary

tumor  (subscripted  'P',  taken  as  the  last  5% time  points)  and  start  of  recurrence

(subscript 'R', first 5% time points). The passage from primary tumor to recurrence

effectively corresponds to the instant of primary tumor resection. Using equation (X)

above, this ratio could be written as follows:

(dM /dt )P
(dM /dt )R

=
( μ⋅ π ⋅G ⋅2⋅ω ⋅γ ⋅N )P

(μ ⋅ π ⋅G ⋅2⋅ω ⋅ γ ⋅N )R

. (11)

The constants normalized out of this ratio. Further, we have assumed that ploidy π,

mutation rate μ and division rate ω stay constant over this short period, because they

are inherent features of the tumor cells. However, the count of tumor cells  N wasn't

constant.  We  expressed  it  as  the  ratio  of  inverse  allele  frequency,  since  it  is

proportional to N:

NP

N R

=
(1/ f )P
(1/ f )R

. (12)
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Equation  (12) is  perturbed in  practice by mutations  which are not  de novo in the

recurrence,  but inherited from the primary tumor.  Ideally,  only de novo mutations

should be included to perform this  calculation.  Finally,  the survival rate  of tumor

cells, γN, also couldn't be considered constant, and we had no indicator or surrogate for

this value. For this reason we have set an arbitrary value for the survival at end of

primary tumor, relatively to the start of recurrence, γNP/γNR = 1/300. 

Using the above, dM/dt at end of primary tumor could be determined:

( dM
dt )

P

=
(1/ f )P

(1/ f )R

⋅
γ P

γ R

⋅( dM
dt )

R

. (13)

Since the number of mutations at end of primary tumor was known, and since the rest

of parameters was known, the time in real units at the end of primary tumor could be

calculated as follows:

dt P=
(dM )P

(1/ f )P
(1/ f )R

⋅
γ P

γR

⋅( dM
dt )

R

. (14)

Finally,  the time course of the primary tumor in arbitrary units was scaled to real

units, using the known point at the end of primary tumor:

dt=dta .u .⋅
dtP

dt a .u . ,P
. (15)
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Tumor cell  survival  ratio. For  time  calibration  to  real  units,  we  have  made  an

assumption on tumor cell survival ratio  γ R/γ P to determine real time in the primary

tumor. To quantify the survival ratio, we have proceeded the other way around, using

an assumption on the time course in the primary tumor, in order to determine the ratio

γ R/γ P. We have taken the assumption that the time between the most recent common

ancestor  (TMRCA) lies  either  2  years  or 7  years before primary  tumor resection.

These durations correspond to the shortest and longest time spans from Koerber et al.

(2019). The calculation of the tumor cell survival ratio was done using the following

equation:

γ R

γ P

=
( dM

dt )
R

(1 / f )R
(1 / f )P

⋅( dM
dt )

P

. (16)

Tumor expansion profile. From equation (4) in Suppl. Demonstration, time and 1/f

are  proportional,  with  modulators  growth  rate  ω,  tumor  cell  survival  rate  γN,  and

number of tumor cells N:

d (1/ f )∝ω ⋅ γ ⋅N ⋅dt . (17)

As a consequence, dividing increment d(1/f) by increment d(t) yielded the product

ωγNN, which we denoted expansion profile (or pattern).
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Expansion profile analysis. We first noticed and identified 4 curve categories by

visual inspection (Suppl. Fig. 4), and next manually classified expansion curves to

one of these 4 categories. For the automated procedure, curve segments for M(1/f)

were  determined  using  R  package  segmented  (v1.1-0),  using  objective  R²  set  to

0.9995,  and  using  the  lowest  number  of  segments  which  attained  this  objective,

limited to a maximum of 20 segments. For curves ωγNN(t), the number of segments

was tailored to allow annotation of most visible local minima or maxima. The count

of extrema was then derived from the changed slope from one segment to the next.

This count had to be further curated in a subset of samples.
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Mutation rate of Procambarus virginalis. Mutation accumulation between animals 1

and its offsprings animals 34 and animals 35 was used to calculate the mutation rate.

SNP variants were examined in terms of quality and coverage (Suppl. Fig. 5). Quality

at least 35 and coverage at least 50 and no more than 200 was retained for the main

estimate  of  the  mutation  rate.  Coverages  200  and  higher  exhibited  altered  SNP

distribution  (Suppl.  Fig.  5),  and  have  thus  been  excluded  because  possibly

corresponding to a distinct part of  P. viriginalis genome (possibly highly repetitive

and variable domains). For the minimum estimate of the mutation rate, we have used

more stringent  quality  filters,  with quality  >39 and coverage  in  [50-200].  For  the

maximal  estimate  of  the  mutation  rate,  we have  used relaxed quality  filters,  with

quality >35 and coverage in [25-200]. Subsequently, the mutation rate per nucleotide

per year was calculated as the count of biallelic mutated nucleotides in animal 34

(respectively, animal 35) as compared to animal 1, divided by the count of nucleotides

in the triploid genome of  P. virginalis, and divided by the period of time, in years,

between animal 1 and animal 34's births (respectively, birth date of animal 35). We

have made a thorough uncertainty analysis. We first determined standard deviation on

the  count  of  mutations  observed  assuming  that  this  count  follows  a  Poisson

distribution of new mutations (genotyping uncertainty). Second, we used a third of the

total uncertainty on time of birth as the standard deviation for the date of birth. Third,

we calculated the standard deviation between animal  34 and animal  35's  mutation

rates.  Finally,  we  combined  these  three  standard  deviation  components  using  a

quadratic  sum  (since  considering  that  at  least  two  of  these  variance  components

follow a normal distribution).
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Coalescent time. Time to most recent common ancestor for P. virginalis samples was

determined using Bayesian evolutionary analysis by sampling trees (BEAST v1.10.4 ;

Note: at the time of download and installation, BEAST2 didn't offer any additional

model, but rather a multiplatform component which wasn't needed here). Mutation

data with quality >35 and coverage depth >15 was used in this analysis (a coverage

cutoff of 25 was not justified here because samples other than animals 1, 34 and 35

possessed a notably lower average sequencing depth). Samples birth dates were used

as tip dates. Further BEAST parameters used were: simple substitution model with

estimated  base  frequencies,  strict  clock,  skyride  coalescent  prior,  Markov  chain

Monte Carlo length of 10M. The resulting dates were rescaled to match the exact time

durations known for animals 1, 34 and 35. We further modulated the coalescent time

with the mutation rate profile in replacement of the strict clock, using the following

equation:

t 0=t f −
1
μr

⋅ (t f −t b ,0). (18)
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In this equation,  t f  is the end timepoint,  t 0 is the initial time point, here the time to

most recent common ancestor,  t b ,0 is the initial time point before rescaling and μr is

the temporal mean of the mutation rate profile divided by the mutation rate at the end

timepoint. The mutation rate profile was taken as the slope of dM/d(1/f), in agreement

with equation (6). For the first time point,  the temporal  mean could be calculated

immediately, using the full profile, but for intermediate coalescent timepoints  t i, the

time  interval  where  the  temporal  mean  should  be  calculated  was  not  known

beforehand. Because of that, we first used the full mutation rate profile to estimate t i ,1.

Then, we proceeded by iterations, using  t i ,1 to recalculate  μr (t i ,1 ) which in turn was

used  to  determine  t i ,2.  We  repeated  these  steps  ten  times,  which  ensured

|t i ,10− ti ,9|<0.001 for all i.
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Statistical  analyses.  R  [57]  was  used  for  all  statistical  analyses,  as  well  as  for

bootstrap calculations (except a few instances carried out in Python [58] and summary

statistics mean, median, quantiles). All statistical tests were unpaired and two-sided;

with the level of significance set at 5%. Segmentation p-values were extracted from

the output of R package segmented. Correlation coefficients between SBS1 and SBS5

were determined using Pearson method, and summarized by their median and IQR

over the 42 samples, and a comparison between the group under selection or not was

made  using  a  Wilcoxon  rank-sum test.  A differential  time  to  recurrence  between

subgroups in the manually sorted  ωγN  curves was assessed using a wilcoxon rank-

sum test against curve type 3. Differences on the time to recurrence in the systematic

analysis was explored by analysis of variance against the number of maxima in the

primary tumors and in the recurrence, with Bonferroni adjustment of  p-values. The

difference of time to recurrence between subgroups based on the number of maxima

in the primary tumors was further explored using a non-parametric wilcoxon test and

using a F-test of comparison of variances. A possible association of the  γ R/γ P ratio

(n=20) with the pattern of ωγN  curves was investigated using a F-test of comparison

of variances. A possible association of the γ R/γ P ratio with the time to recurrence was

assessed with a linear regression, using a simple or double log10 scale on the  γ R/γ P

ratio, with Bonferroni adjustment.

Data availability

Newly sequenced marbled crayfish data have been deposited as a National Center for

Biotechnology Information BioProject (to be completed ; accession number XXXX),
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while  reanalysed  data  is  accessible  as  a  BioProject  as  well  (accession  number

PRJNA356499).  Glioblastoma  data  corresponds  to  accession  number  :

EGAS00001003184 at the European Genome-phenome Archive (EGA).
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