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Abstract 
Summary: Site saturation mutagenesis (SSM) experiments have been transformative in our study 
of protein function. Despite the rich data generated from such experiments, current tools for 
processing, analyzing, and visualizing the data offer only a limited set of static plots that are 
difficult to customize. Furthermore, usage of the tools requires extensive experience and 
programming. This slows the research process for those in the biological field who are unfamiliar 
with programming. Here, we introduce mutagenesis-visualization, a Python API for the creation 
of publication-quality figures for SSM datasets which requires no prior Python or statistics 
experience. The plots can be rendered as native matplotlib objects (easy to stylize) or as Plotly 
objects (interactive graphs). Additionally, the software offers the possibility to visualize the 
datasets on Pymol. 
 
Availability and implementation: The software can be installed from PyPI or GitHub using the 
pip package manager and is compatible with Python ≥ 3.8. The documentation can be found at 
readthedocs and the source code can be found on GitHub.  
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Introduction 
Site saturation mutagenesis (also known as deep mutational scanning) allows the comprehensive 
study of all possible amino acids of a protein simultaneously in an unbiased fashion (Tripathi and 
Varadarajan 2014; Fowler and Fields 2014; Nov 2012; Shin and Cho 2015; Wrenbeck et al. 2017; 
Araya and Fowler 2011). A library of single-codon variants is plugged into an assay, where 
mutations in the protein will affect functional selection. The library is retrieved from the before 
and after selection samples, and using next-generation sequencing, the counts of each variant are 
used to calculate an enrichment score. Numerous applications have been pursued using SSM, 
including drug resistance prediction (Pines et al. 2020), protein engineering (Shin and Cho 2015), 
allostery determination (Subramanian et al. 2021), and functional analyses of genomes (Li et al. 
2016).  
 A substantial number of software tools for different parts of the bioinformatics pipeline 
have been described in the literature. For DNA library design, Mutation Maker and OneClick let 
users design oligos according to different specifications and much more (Tang et al. 2012; Hiraga 
et al. 2021). For the preprocessing of DNA reads, FLASH and PEAR tools merge paired-end reads, 
Cutadapt and trimmomatic remove adapter sequences (Zhang et al. 2014; Bolger et al. 2014) and 
QUASR provides a framework for quantification and analysis of short reads (Gaidatzis et al. 
2015). For calculating enrichment scores and statistical analysis, DiMSsum, enrich2, dms_tools2, 
and DESeq2 use different statistical models to quantify the errors, treat replicates, and time series, 
(Love et al. 2014; Rubin et al. 2017; Bloom 2015; Faure et al. 2020). This subset of tools may also 
integrate a preprocessing module. Lastly, for the identification of molecular constraints that affect 
enrichment scores, there is dms2dfe (Dandage and Chakraborty 2017). 
 While the current tools allow the user to calculate enrichment scores and error estimates 
from raw sequencing data, they have only a few built-in static visualization options such as 
heatmaps, logos, and scatters. Customizing these plots and/or creating further plots requires a high 
knowledge of programming and extensive data wrangling. This makes the creation of publication-
quality figures challenging and time-consuming. None of these packages allow plots to be 
visualized interactively, and there is no integration with Pymol (Schrödinger 2015). Thus, 
overlaying enrichment scores onto a PDB structure must be done by hand, slowing the data 
analysis process. Here, we describe mutagenesis-visualization, a Python package that addresses 
the aforementioned needs. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.08.463725doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463725
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Implementation 
Mutagenesis-visualization is a user-centered Python API for processing, analyzing, and creating 
high-quality figures for publication from pairwise SSM datasets. Unlike other packages, 
mutagenesis-visualization handles all the data wrangling internally, streamlining the workflow. 
The workflow of the software consists of two main steps: (i) processing of DNA reads and 
calculation of enrichment scores and (ii) analysis and visualization. The first step is to count the 
DNA reads for each variant, and then, from pre-selection and post-selection samples, the 
enrichment score of each variant can be calculated. Mutagenesis-visualization has several options 
for processing and normalizing datasets. Due to the modularity of our software, this first step can 
be conducted separately on other software packages, and the data can be integrated back into the 
mutagenesis-visualization pipeline for further visualization analysis. Once the enrichment scores 
are calculated, different types of visualizations can be conducted. 
 These datasets are commonly represented with heatmaps. In mutagenesis-visualization, 
heatmaps are highly tunable (Figure 1.A). The user can change all stylistic aspects such as size, 
labels, color scheme, protein cartoon. These heatmaps can also be customized by choosing protein 
residues of interest or by selecting a subset of amino acids. Heatmaps with average substitutions 
can be generated for the easy visualization of global phenotypic trends of the variants (Figure 1.B). 
Since heatmaps are just one method of visualizing data, mutagenesis-visualization provides tools 
for plotting data sets through histograms, scatter plots, line plots, and bar charts (Figure 1.D, 1.E, 
1.H). To aid the analysis of data, mutagenesis-visualization includes tools for hierarchical 
clustering, correlations (Figure 1.C), PCA (Figure 1.G), and ROC (Figure 1.F) curves. The 
matplotlib axes objects (Hunter 2007) can be retrieved, allowing for a high level of customization. 
Furthermore, most of the visualizations, including heatmaps, can also be generated using Plotly, 
which allows for interactive plots with hover features and dashboard creation. We have created a 
sample dashboard on Heroku to illustrate the capabilities of the software. Lastly, mutagenesis-
visualization allows for data to be easily exported and visualized onto a PDB structure on Pymol 
(Figure 1.I). 

Mutagenesis-visualization is designed to be run locally and does not require a high-
performance computing environment. The software can be installed from PyPI or GitHub using 
the pip package manager and is compatible with Python ≥ 3.8. The source code is available in the 
GitHub repository. The documentation contains a step-by-step tutorial on the different types of 
plots, and a live version of the tutorial is hosted on mybinder (Jupyter et al. 2018) and can be run 
remotely without the need for any installation. The tutorial includes the analysis of sample SSM 
datasets from various studies (Dou et al. 2018; Fernandes et al. 2016; Livesey and Marsh 2020; 
Melnikov et al. 2014; Newberry et al. 2020; Stiffler et al. 2015; Bandaru et al. 2017). 
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Figure 1. Mutagenesis-visualization can produce several types of plots. The user passes into the software a pandas dataframe 
(McKinney 2010) or numpy array (Harris et al. 2020) containing the enrichment scores, the protein sequence, and, optionally, the 
secondary structure. The user can generate each of the following plots using a one-line command. The data used to generate the 
plots was obtained from replicating previous work on H-Ras (Bandaru et al. 2017). For figures A, B, E, and I, shades of red, and 
blue indicate gain and loss of function, respectively. (A) A heatmap representing enrichment scores for substituting a particular 
residue in H-Ras with one of the 20 amino acids. The cartoon indicates the secondary structure motifs. (B) A heatmap with average 
amino acid substitution effects in H-Ras. (C) A correlation plot where the Pearson R-value is calculated for each amino acid 
substitution. (D) A bar plot representing the cumulative % of each amino acid substitution in the DNA library grouped by residue. 
The library was used to conduct the H-Ras SSM experiment. Each amino acid is coded with a different color. (E) A bar plot 
representing the average amino acid substitution effect per residue in H-Ras. (F) A scatter plot of the first two dimensions of a 
principal component analysis (PCA) conducted on the H-Ras dataset, which had been grouped by the secondary structure. (G) A 
receiver operating characteristic (ROC) plot used to make a quantitative determination of the fit between the measured enrichment 
scores and binary classification of the variants. The binary classification could represent any property such as the sequence 
conservation, whether it is found in a cancer screen database, etc. (H) A histogram plot of the enrichment scores of all the sequence 
changes required for the H-Ras protein sequence to revert to Ancestral Ras, and vice versa. 48 residues that differ between the two 
protein sequences (Bandaru et al. 2017). The data from the Ancestral Ras experiment are unpublished. (I) Two Pymol-generated 
figures obtained from mapping the alanine (left) and aspartate (right) enrichment scores to the 5P21 PDB structure on Pymol. The 
user needs a valid Pymol license, as well as having the same Python path for Pymol and the virtual environment being used to run 
this software.  
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Conclusion 
Mutagenesis-visualization fills a need in the Python and scientific community for user-friendly 
software that streamlines the pairwise SSM bioinformatics pipeline. While the workflow allows 
for end-to-end analysis of the preprocessed datasets, its modularity allows the user to perform the 
data processing using alternative software and integrate the data back into mutagenesis-
visualization to conduct the analysis and visualization. Installation, API description, as well as a 
comprehensive, step-by-step tutorial, can be found online. 
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