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Abstract 26 

A comprehensive characterization of the human body resistome (sets of antibiotic 27 

resistance genes (ARGs)) is yet to be done and paramount for addressing the antibiotic 28 

microbial resistance threat. Here, we study the resistome of 771 samples from five 29 

major body parts (skin, nares, vagina, gut and oral cavity) of healthy subjects from the 30 

Human Microbiome Project and addressed the potential dispersion of ARGs in pristine 31 

environments. A total of 28,731 ARGs belonging to 344 different ARG types were 32 

found in the HMP proteome dataset (n=9.1x10
7
 proteins analyzed). Our study reveals a 33 

distinct resistome profile (ARG type and abundance) between body sites and high inter-34 

individual variability. Nares had the highest ARG load (≈5.4 genes/genome) followed 35 

by the oral cavity, while the gut showed one of the highest ARG richness (shared with 36 

nares) but the lowest abundance (≈1.3 genes/genome). Fluroquinolone resistance genes 37 

were the most abundant in the human body, followed by macrolide-lincosamide-38 

streptogramin (MLS) or tetracycline. Most of the ARGs belonged to common bacterial 39 

commensals and multidrug resistance trait was predominant in the nares and vagina. 40 

Our data also provide hope, since the spread of common ARG from the human body to 41 

pristine environments (n=271 samples; 77 Gb of sequencing data and 2.1x10
8
 proteins 42 

analyzed) thus far remains very unlikely (only one case found in an autochthonous 43 

bacterium from a pristine environment). These findings broaden our understanding of 44 

ARG in the context of the human microbiome and the One-Health Initiative of WHO 45 

uniting human host-microbes and environments as a whole.  46 

 47 

 48 

Importance 49 

The current antibiotic resistance crisis affects our health and wealth at a global scale and 50 

by 2050 predictions estimate 10 million deaths attributed to antibiotic resistance 51 

worldwide. Remarkably, a comprehensive analysis of ARG diversity and prevalence in 52 

different human body sites is yet to be done. Undoubtedly, our body and human built-53 

environment have antibiotic resistant bacteria than can also be transported to other 54 

environments. Hence, the analysis of Human Microbiome Project dataset provides us 55 

not only the opportunity to explore in detail the ARGs diversity and prevalence in 56 

different parts of our body but also to provide some insights into the dispersion of 57 

ARGs from human to natural populations inhabiting pristine environments. Thus, our 58 

data would help to stablish a baseline in ARG surveillance protocols to asses further 59 

changes in antibiotic resistances in our society.   60 

 61 

 62 

 63 

 64 
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Introduction 66 

Since the discovery of antibiotics, human and animal health has profoundly changed. 67 

Undoubtedly, antibiotics have not only saved millions of lives but also have 68 

transformed modern medicine (Ventola, 2015; Centers for Disease Control and 69 

Prevention, 2019). Nevertheless, antibiotic overuse, incorrect prescription, extensive use 70 

of antibiotics in agriculture and farming and the low availability of new antibiotics have 71 

led to a major antibiotic resistance crisis, wherein bacterial pathogens are becoming 72 

resistant to available antibiotics (Ventola, 2015). In the US, it has been estimated that 73 

antibiotic-resistant organisms cause 2.8 million infections and 35,900 deaths each year 74 

(Centers for Disease Control and Prevention, 2019). This not only is a health issue but 75 

also affects food security and requires significant financial investment. For instance, it 76 

has been estimated that in 2017, the annual treatment of six multidrug-resistant bacteria 77 

costs approximately $4.6 billion to the US healthcare system (Nelson et al., 2021). By 78 

2050, predictions estimate that over 10 million deaths and a total cost of ≈100 trillion 79 

USD will be attributed to antibiotic resistance worldwide (Brogan and Mossialos, 2016; 80 

O’Neill, 2016), and recently, the WHO estimated that in 10 years, antimicrobial 81 

resistance could force up to 24 million people into extreme poverty (IACG, 2019). 82 

Antibiotic resistance is a natural process in which bacteria become resistant to 83 

antibiotics using different mechanisms, which are classified as phenotypic resistance 84 

(due to physiological changes and nonhereditary) or acquired (when antibiotic 85 

resistance is genetically gained) (Olivares et al., 2013). Different antibiotic resistance 86 

genes (ARGs) that confer resistance to antibiotics could be acquired due to mutations in 87 

the bacterial genome or through horizontal gene transfer (HGT). The transference of 88 

ARGs could be mediated by bacteria, viruses, plasmids or even vesicles (Emamalipour 89 

et al., 2020). Among the possible antibiotic classifications, the most common are the 90 

ones based on their chemical structure (drug classes, e.g, tetracycline,beta-lactams, 91 

aminoglycosides…), mode of action (determined by the antibiotic target, mainly 92 

proteins, cell membrane and nucleic acids) and spectrum of activity (from narrow to 93 

broad) (Wright, 2010; Etebu and Arikekpar, 2016; Reygaert, 2018). 94 

The occurrence of antibiotic resistance has increased and accelerated since antibiotics 95 

are constantly present in the environment, derived from anthropogenic sources such as 96 

wastewater treatment plants, hospitals or domestic use (Rodriguez-Mozaz et al., 2020). 97 

Another cause of this increase is the dispersion of resistant bacteria from hot spots, such 98 
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as wastewater treatment plants (from our own human microbiome) and built 99 

environments (i.e., microorganisms found in human-constructed environments) (Baron 100 

et al., 2018; Centers for Disease Control and Prevention, 2019), which continuously 101 

disseminates our microbes and thus parts of their genetic content. 102 

The human microbiome project (HMP) (Methé et al., 2012), an interdisciplinary effort, 103 

was developed with the objective of characterizing the human microbiome. For this 104 

purpose, samples from different major body parts of healthy humans were obtained and 105 

sequenced, producing one of the largest resources for the study of the human 106 

microbiome (Huttenhower et al., 2012). To the best of our knowledge, comprehensive 107 

analysis and cross-comparison of the human resistome from all human body parts 108 

studied within the HMP have not been performed, but to date, some valuable but 109 

separate and non-interconnected studies have been performed for the oral cavity and the 110 

skin (Carr et al., 2020; Li et al., 2021). Addressing the abundance and diversity of 111 

ARGs as a whole in all human body parts has enormous potential to broaden our 112 

knowledge on the dispersion of ARGs from human bacteria within different microbial 113 

populations in nature. 114 

Thus, here, in the context of antibiotic resistance-related health concerns, in addition to 115 

analyzing in detail the antibiotic resistance genes present in the HMP-studied body sites, 116 

we studied the potential spread of ARGs from the human body to different types of 117 

pristine environments. These environments are supposed to be undisturbed and not 118 

affected by anthropic actions. While many places, such as caves or polar environments 119 

with no apparent and visible human activity, are often perceived as pristine 120 

environments, human activity unfortunately leaves an indirect ever-increasing footprint. 121 

Here, we use some of these pristine environments as a model to address and estimate 122 

the potential “mobility” of common human ARGs found in the human body to better 123 

assess the global impact of antibiotic resistance in our ecosystems, in line with the One 124 

Health concept (i.e., human health and animal health are interdependent and bound to 125 

ecosystems) (Atlas, 2012). Pristine environments are commonly used as “reporter 126 

ecosystems” to monitor pollution and climate change and, in our case, specifically to 127 

measure how deep the potential impact of the spread of antibiotic resistance is. 128 

 129 

 130 
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Results 131 

Comprehensive metagenomic characterization of the human resistome 132 

The HMP (Huttenhower et al., 2012) aimed to characterize the diversity and metabolic 133 

potential of the microbiomes of healthy human subjects from different body sites. In 134 

this study, we analyzed the resistome (i.e., pool of antibiotic resistance genes) of these 135 

body parts, examining a total of 771 HMP samples from the oral cavity, skin, nares, 136 

vagina and gut (Suppl. Table 1 and 2). Detection of ARGs was performed using amino 137 

acid sequence similarity searching against the following reference ARG databases (see 138 

methods for details): CARD 3.0.3 (Jia et al., 2017), RESFAMS (Gibson et al., 2015) 139 

and ARG_ANNOT (Gupta et al., 2014). ARGs with an e-value ≤ 10
-5

, amino acid 140 

identity ≥ 90% and bit score ≥ 70 were considered bona fide ARG hits. 141 

From all the detected HMP proteins (9.17E+07), a total of 28,731 ARG hits were found, 142 

representing between 0.02 and 0.08% of the relative abundance of HMP proteins 143 

depending on the body site analyzed (Suppl. Table 2). Overall, nearly all analyzed 144 

samples (99%) from the different human body sites showed at least one ARG. The 145 

exceptions were some specific HMP samples from the nares (≈14% of nares samples), 146 

skin (4.25% of skin samples) and vagina (45% of vagina samples), in which no ARG 147 

was detected (Suppl. Table 2). 148 

On average, tetracycline resistance genes were the most abundant antibiotic resistance 149 

genes in the HMP dataset (Fig. 1A and B), followed by MLS or fluoroquinolone 150 

resistance genes, the ranks of which were dependent on the analyzed body site. 151 

Tetracycline resistance genes were the most abundant ARGs in vagina (53.4%) and gut 152 

(40.52%), whereas their abundance decreased in oral cavity, skin and nares (26.02, 9.03 153 

and 10.45%), where the most dominant antibiotic resistance genes were, respectively, 154 

fluoroquinolone (30%), multidrug (18.22%) and beta-lactamase resistance genes 155 

(≈20%) (Fig. 1A). In gut samples, the second most abundant resistance genes were the 156 

ones conferring resistance against beta-lactamases (as in skin), while in the vagina, the 157 

second most abundant were multidrug resistance genes (19.37%). Aminocoumarin 158 

resistance genes were only found in the gut, while peptide antibiotic resistance genes 159 

were found in all body parts analyzed and they were more frequent in skin and nares 160 

(representing a 6-fold increase compared with the relative abundance of this antibiotic 161 

class resistance gene in the rest of the body).  162 
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All samples from the oral cavity (hard palate, buccal mucosa, saliva, subgingival and 163 

supragingival plaque, attached/keratinized gingivae, tongue dorsum, throat and palatine 164 

tonsils) showed a similar pattern of resistance to the different antibiotic classes with 165 

minor variations (Fig. 1B; Suppl. Fig. 1). Separated from the oral cavity, the skin and 166 

nares showed similar dominant antibiotic resistance genes grouped by drug classes 167 

(fluoroquinolone, multidrug, macrolide-lincosamide-streptogramin (MLS) and beta-168 

lactamase resistance), although the ARG in nares displayed resistance to 14 different 169 

drug classes, while ARG present in skin displayed resistance to 10 different drug 170 

classes. The bacteria from the vagina had resistance against 8 antibiotic classes, being 171 

the lowest number of the 5 body parts compared in this study (the top three ARG ranked 172 

were tetracycline, fluoroquinolone and MLS resistance genes). Remarkably, nares and 173 

gut showed resistance to the highest number of antibiotic classes (14 out of the 16 174 

different classes found in this study). 175 

As shown in Fig. 1C, the body part that had the highest abundance of ARGs per 176 

assembled mega-base pair (Mb) was the nares (1.86±2.32 ARGs/Mb), followed by the 177 

skin (1.22±1.42 ARGs/Mb) and oral cavity (0.90±0.88 ARGs/Mb) (Fig. 1C). It is worth 178 

noting that the gut (0.34±0.33 ARGs/Mb) had the lowest amount of ARGs per Mb 179 

among all the analyzed body parts (Fig. 1C). The Welch test employed to compare the 180 

abundance of different body parts showed statistically significant differences (P-181 

value≤0.05) between almost all body parts but not between the skin and nares (Fig. 1C). 182 

No significant differences were found between male and female subjects in any of the 183 

body sites analyzed (Suppl. Fig. 2). According to recent estimates of the average 184 

genome size (AGS) of human microbes from different body parts of HMP datasets 185 

(Nayfach and Pollard, 2015), in general, the correlation of ARGs and the AGS indicated 186 

that the number of ARGs per bacterial genome ranged from 1.3 in stool (AGS=3.9 Mb) 187 

to 3 in nares (AGS≈2.5 Mb). 188 

Characterization of dominant antibiotic resistance genes in the human body 189 

In this section, beyond the above-described diversity and abundance of antibiotic 190 

resistance gene classes in the HMP dataset, we sought to study in detail the pool of 191 

different types of ARGs and the identity of antibiotic-resistant microbes harboring these 192 

ARGs. Within each of the antibiotic classes, different types of ARGs are described in 193 

databases (2404 in CARD (Jia et al., 2017), 2038 in ARG_ANNOT (Gupta et al., 194 

2014), and 3169 in RESFAMS (Gibson et al., 2015)). In addition, based on the 195 
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antibiotic mechanism of action (Reygaert, 2018), five types of antibiotics are defined: 196 

antibiotics that 1) inhibit cell wall synthesis (e.g., beta-lactams), 2) depolarize the cell 197 

membrane (e.g., lipopeptides), 3) target nucleic acid synthesis (e.g., quinolones), 4) 198 

inhibit metabolic pathways (e.g., sulfonamides) and 5) affect protein synthesis (e.g., 199 

MLS antibiotics or tetracyclines) (Reygaert, 2018). Therefore, ARGs could provide 200 

protection against one specific antibiotic or different types of antibiotics. 201 

In the HMP datasets, after comparison with all three of the above ARG databases, a 202 

total of 344 different type of ARGs were found in all the analyzed samples (Suppl. 203 

Table 3 and 4). The gut samples had 198 different ARGs, the highest number and 204 

diversity among the analyzed body sites, while the lowest ARG diversity was found in 205 

the vagina (46) (Suppl. Table 4). The most abundant type of ARG in the oral cavity was 206 

patB, which provides resistance to fluoroquinolones via antibiotic efflux (ARO: 207 

3000025). The fmtC gene was the predominant ARG in the nares and skin, while tetQ 208 

was the most common ARG in the gut and in the vagina, the most frequent gene was 209 

tetM (Suppl. Table 4). 210 

Regarding the identification of the most common antibiotic resistant (AR) bacteria in 211 

HMP datasets (Fig. 2) based on the best-hit score, as expected, the results differed 212 

among body parts. The oral cavity had 326 different species harboring ARGs, followed 213 

by the gut (257 different species). The skin showed the lowest number of different 214 

species with ARGs (a total of 52) (Fig. 2). Streptococcus mitis was the most abundant 215 

AR bacterium in the oral cavity. In the gut, the most abundant AR bacterium was 216 

Escherichia coli, while in nares and skin, Staphylococcus was the predominant AR 217 

bacterium (Staphylococcus aureus in nares and Staphylococcus epidermis in skin). 218 

Finally, Gardnerella vaginalis was the most abundant resistant species in the vagina. S. 219 

aureus, E. coli and Bacteroides fragilis were the most abundant AR bacteria found in all 220 

body sites (Fig. 2). Remarkably, from the total ARG hits found in the HMP (n=28,731), 221 

only one example detected in the oral cavity was detected with high confidence in a 222 

viral genome fragment of a human herpesvirus carrying APH(4)-Ia; this ARG was an 223 

aminoglycoside phosphotransferase that inactivates aminoglycosides (human subject 224 

765560005, buccal mucosa, Suppl. Table 5). 225 

 226 
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The increasing multiantibiotic-resistant bacteria (MRBs) are a major threat to human 227 

health. We next attempted to identify genome fragments (i.e. contigs) having two or 228 

more ARGs which provide insights into multiple-antibiotic resistance (MR) bacteria in 229 

HMP datasets. For this purpose, we applied the criteria for the detection of more than 230 

one ARG in the same assembled genome fragment, conferring resistance to at least two 231 

different antibiotics classes in each of the analyzed HMP samples. The percentage of 232 

metagenomic samples from the HMP with the presence of MR was between ≈25% (oral 233 

cavity) and 6% (vagina). Twenty-one percent of the analyzed gut samples had >1 contig 234 

conferring multi-antibiotic resistance potential, whereas in the skin, the percentage was 235 

19%, and in nares, 15% of the samples showed MR (Fig. 3A). The MR frequency 236 

changed depending on the studied group. Vagina samples showed the highest multi-237 

antibiotic resistance-related contig frequency, with a large difference among vaginal 238 

samples (0.42±0.27 MRB/assembled Mb). The skin, oral cavity and gut had the lowest 239 

frequency of MR (Fig. 3B). 240 

The most abundant MR species in each body site were the same in all cases and were 241 

also detected as the most predominant resistant bacteria (Fig. 3C). The MR profile was 242 

different depending on the sampling site. In the vagina there was only one MR species 243 

whereas in skin, there were only 2 main species carrying more than one ARG, while the 244 

gut had 23 MR species, with the highest number of different MR found in all body sites. 245 

None of the MRB species were found in all the body parts. In fact, 6 species 246 

(Bacteroides sp. 4_1_36, Bacteroides fragilis, Enterococcus faecium, Staphylococcus 247 

aureus, Staphylococcus epidermidis, Streptococcus mitis) out of the 33 MRBs found 248 

were in two or three different parts of the body, while the rest were only body site 249 

specific (Suppl. Fig. 3). 250 

When all of the above ARGs detected in healthy humans were clustered (≥90% amino 251 

acid identity) to study a highly conserved core of shared ARGs, it was observed that 252 

there were 3 common ARGs in all the body parts. One, MFS-type efflux protein 253 

(msrD), was related to resistance to macrolides. The other 2 genes were related to 254 

ribosomal resistance against tetracycline (tetO and tetQ) associated with conjugative 255 

plasmids or transposons. In feces, tetO was found not only in bacteria belonging to the 256 

phylum Firmicutes (Clostridiales bacterium VE202-13; Ga0104838_1543581) but also 257 

in bacteria of the phylum Actinobacteria (Trueperella pyogenes MS249; 258 

Ga0111491_10662371). 259 
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Detection of Human Microbiome Project ARGs in pristine environments 260 

Resistomes and ARGs dispersion from hot spots such as wastewater plants or hospitals 261 

to downstream aquatic environments have been extensively studied and characterized 262 

(Rowe et al., 2017; Ju et al., 2018; Khan et al., 2019). Although the presence of ARGs 263 

in environments with low or scarce human intervention has been explored (Van 264 

Goethem et al., 2018; Naidoo et al., 2020), to the best of our knowledge, it has never 265 

been explored whether common ARGs from HMP datasets are present in autochthonous 266 

bacteria from different pristine environments. 267 

To determine the presence of ARGs from the HMP in pristine environments (Fig. 4; 268 

polar, desert, cave, hot spring, and submarine volcano environments; Suppl. Table 6) 269 

with no a priori anthropogenic influence, proteins from 271 different pristine 270 

environments (i.e. metagenomic datasets) were screened to search for ARGs detected in 271 

the analyzed HMP samples. Only those proteins with identity ≥90%, with bit-score ≥ 70 272 

and belonging to genomic scaffolds with at least 4 proteins were considered for further 273 

analysis. It is important to remark that if an ARG from the HMP dataset is detected in a 274 

genome fragment from a pristine environment, two different hypothesis could be 275 

considered: this detected ARG in pristine environments was 1) an allochthon HMP gene 276 

dispersed from anthropic areas that was acquired by autochthonous bacteria inhabiting 277 

the pristine environment, or 2) this ARG in pristine environments is actually the result 278 

of contamination during sample manipulation, collection or post-processing (e.g., DNA 279 

contaminant fragments in reagents from kits, DNA sequencing and other 280 

metagenomics-related experiments) and thus is not truly present in these pristine 281 

environments. 282 

In the 271 analyzed samples from pristine environments (a total of 77 Gb of sequencing 283 

information and 2.1E+08 analyzed proteins), we detected a total of 9 ARGs from HMP 284 

dataset. Only one of those ARGs were found in a genome fragment of a putative 285 

autochthonous bacterium from the family Rhodobacteraceae recovered in a submarine 286 

volcano (Fig. 4; Suppl. Table 7; a chloramphenicol acetyltransferase gene 100% amino 287 

acid identical with the HMP gene dataset). The rest and great majority of detected 288 

ARGs in pristine environments were simply exogenous contaminant present in these 289 

metagenomes from manipulation or laboratory reagents. For instance, it is obvious that 290 

Escherichia coli should not be detected in hot springs. However, we indeed found 291 
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ARGs in E. coli genome fragments in the corresponding hot spring metagenomes (Fig. 292 

4, bottom right panel).  293 

Discussion 294 

The human resistome has received increased attention in recent years due to its impact 295 

in our society. Usually, resistome studies focus their attention on one body site, usually 296 

studying the gut (Hu et al., 2013; Palleja et al., 2018) or, more recently, the skin (Li et 297 

al., 2021). To our knowledge, only one study has compared resistome traits from the gut 298 

with different parts of the oral cavity, examined via different protocols (Carr et al., 299 

2020). In our study, the advantage of using only HMP samples that were subjected to 300 

standardized procedures was the elimination of biases and variability introduced by 301 

contrasting procedures from different surveys (Huttenhower et al., 2012). Here, in our 302 

study, we found that the most abundant ARGs in the HMP resistome provided 303 

resistance against fluoroquinolone, MLS and tetracycline resistance genes, followed by 304 

multidrug resistance genes and beta-lactamases. Members of these antibiotic classes 305 

were among the most commonly prescribed oral antibiotics in 2010 (Hicks et al., 2013), 306 

right before the samples were obtained, which shows a plausible relation between the 307 

consumed antibiotics and the detected resistance in American subjects, even though we 308 

cannot rule out the influence of antibiotics consumed through the food (Salyers et al., 309 

2004). A human gut study from Chinese, Spanish and Danish subjects showed that more 310 

than 75% of the ARGs were tetracycline resistance genes, MLS resistance genes and 311 

beta-lactamases (Hu et al., 2013). This was consistent with our data since these three 312 

antibiotic classes accounted for 61% of the relative abundance found in our study with 313 

HMP samples (Van Boeckel et al., 2014). The characterization of resistomes from 314 

metagenomic data can also be performed from unassembled data (Arango-Argoty et al., 315 

2018; Maestre-Carballa et al., 2019). Here, the analysis from unassembled data (Suppl. 316 

Fig. 5; Suppl. Table 8) showed that major ARGs grouped by drug classes relative 317 

abundance was similar to the one obtained with assembled data shown in Fig. 1. Even 318 

though, we cannot rule out that the normalized abundances (no. of ARG per Mb) could 319 

be biased by the metagenomic assembly step or by the very short lengths of Illumina 320 

DNA reads and the predicted amino acid sequences obtained from the HMP datasets 321 

(Suppl. Fig. 6). 322 

 323 
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The different physiological conditions, bacteria-host interactions, and average genome 324 

size (AGS) (Nayfach and Pollard, 2015) present in each body part could be important 325 

factors contributing to the differences in ARG abundance, which were statistically 326 

significant for different paired body parts analyzed, except in the skin-nares pair (Fig. 327 

1C). In addition, the well-known inter-individual variability in the human microbiome 328 

was also observed here for ARG abundance. The highest ARG abundance was found in 329 

the nares, a body entrance for microorganisms carried by air, which could include 330 

pathogenic bacteria such as Legionella or Mycobacterium species. Airborne bacteria 331 

could also carry ARGs (Li et al., 2018); therefore, antibiotic resistance genes could first 332 

arrive at the nares. It has been calculated that we inhale 7 m
3
 of air and 10

4
-10

6
 bacterial 333 

cells per cubic meter of air per day (Kumpitsch et al., 2019) albeit the quantity varies 334 

depending on different factors, such as geography, weather, micro-niches and air 335 

pollution (Li et al., 2018; Kumpitsch et al., 2019; Zhang et al., 2019). In addition, 336 

seasonal variation in bacterial species in the nares environment has been observed 337 

(Camarinha-Silva et al., 2012). However, considering that bacteria present on the nares 338 

surface, in contrast to gut or oral bacteria, are not typically in “direct contact” with 339 

antibiotics, it is certainly surprising that the nares microbiome maintains the highest rate 340 

of ARG abundance, and more intriguing are the mechanisms used to acquire and fix 341 

these ARGs. 342 

 343 

As shown in this study, the numbers of ARGs per assembled Mb in the gut was lower 344 

than that in the other body parts, but the ARG richness was greater. This observation is 345 

consistent with the results of Carr et al. (2020), who compared oral and fecal samples. 346 

Even though the abundance was measured with other parameters (reads per kilobase of 347 

read per million (RPKM) and coverage greater than 90%), the ARG abundance in stool 348 

was smaller than that in oral samples from China, the USA and Fiji but not western 349 

Europe (Carr et al., 2020). Carr et al. (2020) hypothesized that different niches in the 350 

oral cavity, such as the dorsum of the tongue, could aid the deposition of debris and 351 

microbes or even the formation of biofilms, which are structures that favor HGT 352 

between different species (Giaouris et al., 2015). 353 

 354 
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Regarding the bacterial species with antibiotic resistance, consistent with other studies, 355 

we found that commensals such as Staphylococcus aureus and Staphylococcus 356 

epidermidis in skin were the top 10 AR bacteria (Li et al., 2021). Further, some of them, 357 

such as S. aureus, were multidrug-resistant bacteria, with a total of 4 ARGs in nares 358 

(arlS, arlR, dha-2, mprF) conferring resistance to 3 different antibiotic classes 359 

(fluoroquinolone, beta-lactam and cationic antibiotics). Additionally, as expected, 360 

methicillin-resistant S. aureus (MRSA), which is listed among the CDC’s Antibiotic 361 

Resistance Threats in the United States (Centers for Disease Control and Prevention, 362 

2019), was present naturally in nares from different subjects. Another species found in 363 

oral HMP samples listed in the AR Threats report was Streptococcus pneumoniae. 364 

 365 

Remarkably, our data give hope, since the dispersion of ARGs detected in the HMP 366 

dataset to pristine environments is extremely infrequent and anecdotical, with only one 367 

ARG in an autochthonous bacterium among dozens of millions of analyzed genes. 368 

Therefore, even using more relaxed thresholds, it can be considered as a rara avis event. 369 

As shown in Fig. 4, nearly all detected ARGs from pristine environments actually 370 

belonged to laboratory contaminants or exogenous bacteria that were not obviously 371 

found in these habitats (e.g., E. coli in hot springs). Sometimes, a general metagenomic 372 

analysis could mislead the interpretation of the data if sequencing and genomic 373 

assembled data is not carefully inspected.  Our study exemplifies very well this bias 374 

since an initial ARG search detection indeed discovered a certain number of ARGs, but 375 

later on, it was demonstrated that they were clearly not naturally present in these 376 

pristine environments.  377 

 378 

Finally, it is important to discuss potential caveats and biases of our study. Here, we 379 

have used sequence similarity-based searches with strict conservative thresholds for 380 

detecting ARGs in metagenomics datasets to avoid false positives. Only hits with amino 381 

acid identity ≥90% and bit-score ≥ 70 against ARGs deposited in curated reference 382 

antibiotic resistance databases were considered. This methodology has been widely used 383 

in previous publications (Van Goethem et al., 2018; Chng et al., 2020; Lira et al., 384 

2020). Obviously, unknown ARGs yet to be discovered and therefore not present in 385 

reference ARG databases cannot be detected using our methodology. Likewise, 386 
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probably our approach has ruled out some actual ARGs present in samples that display 387 

a score similarity below our thresholds (i.e. false negatives). However, it is worth-388 

noting, as highlighted in previous studies using our methodologies, that more rigorous 389 

thresholds are clearly preferred. It is very interesting to read the discussion on how 390 

using less strict thresholds when detecting ARGs in viruses can profoundly mislead data 391 

interpretation (Enault et al., 2017)). This is even more important when analyzing 392 

datasets from pristine environments since a conservative approach is preferable over 393 

using riskier thresholds. Even though we have used strict thresholds to detect only bona 394 

fide ARGs, it may be noted that some genes could “scape” this filter. For instance, some 395 

housekeeping genes (constitutive genes required for basic cellular functions) only 396 

require one or few mutations to conferring antibiotic resistance (e.g. rplS, gyrA, parY). 397 

For instance, the mutant version of the housekeeping gene gyrA found in common 398 

antibiotic resistance databases used in this study, typically display a very short motif 399 

called “QRDR” that is responsible for quinolone resistance (Avalos et al., 2015; Jia et 400 

al., 2017). However, in our search in HMP datasets, despite having high similarity and 401 

above our thresholds, the great majority of detected gyrA proteins in HMP did not have 402 

this motif (Suppl. Fig. 4) and therefore was totally unclear whether they confer 403 

antibiotic resistance. Similar cases were found for other housekeeping genes, even when 404 

they displayed high sequence similarity. Thus, to avoid including false positives that 405 

would overestimate ARG abundance, housekeeping gene hits were ruled out from our 406 

analysis.  407 

 408 

Overall, our study provides a comprehensive analysis of the human microbiome 409 

resistomes from different body sites studied by the HMP consortium, providing 410 

valuable biological insights that can serve as baseline for further studies and be thus 411 

integrated into AMR surveillance protocols to determine the fate of the diversity and 412 

abundance of ARGs in the long term. Our data also show that the level and impact of 413 

ARGs spreading and selection pressure to fix these alleles in non-anthropogenic areas is 414 

negligible. However, it is in our hands, as a society, to control these selection pressures 415 

and, if possible, reverse and ameliorate the impact of ARGs in nature. 416 

Experimental Procedures 417 

Sample collection 418 
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A total of 751 shotgun-sequenced samples from 15 different parts of the body from 419 

healthy American adults belonging to the Human Microbiome Project (HMP) 420 

(Huttenhower et al., 2012) were retrieved from JGI-IMG/ER (Chen et al., 2021) (Suppl. 421 

Table 1). Not all HMP assembled data present at JGI-IMG/ER was accessible, thus only 422 

the available metagenomes were included in this study. The data were organized in 5 423 

groups: Skin (retro-auricular crease), Nares, Gut, Vagina (posterior-fornix, mid vagina 424 

and vagina introitus), and oral cavity (hard palate, buccal mucosa, saliva, subgingival 425 

plaque, attached gingivae, tongue dorsum, throat, palatine tonsils, and supragingival 426 

plaque). 427 

20 metagenomes belonging to left and right retro-auricular crease that could not be 428 

found in JGI-IMG were downloaded from the HMP page 429 

(https://www.hmpdacc.org/HMASM/) and included with the rest of HMP samples 430 

(Suppl. Table 1). 431 

Proteins of 271 metagenomes from pristine environments (or environments with no or 432 

little human presence) were downloaded from JGI-IMG, and they were organized in 5 433 

groups: Arid deserts (65), submarine volcanoes (66), hot springs (68), polar 434 

environments (57) and caves (15) yielding a total of 76 Gb (Suppl. Table 6).  435 

Environments associated to a host (e.g., tubeworms) were also discarded. 436 

HMP resistome in silico analysis 437 

Proteins from 751 samples of the HMP were retrieved from de JGI-IMG/ER (Chen et 438 

al., 2021). In addition, 20 assembled metagenomes were downloaded directly from the 439 

HMP official page since they were not available in JGI.  ORF of the genomic sequences 440 

downloaded from HMP were predicted with prodigal 2.6.3 (Hyatt et al., 2010). 441 

Then, all obtained proteins were compared using BLASTp 2.8.1+ with the following 442 

antibiotic resistance protein databases: CARD 3.0.3 (Jia et al., 2017), ARG-ANNOT 443 

(Gupta et al., 2014) and RESFAMS  (Gibson et al., 2015). Aiming to identify only 444 

high-confidence ARG, only those ARG with e-value ≤ 10
-5

, amino acid identity ≥ 90% 445 

and bit-score ≥ 70 with the mentioned ARG databases were considered as hits, thus, 446 

being more conservative than other accepted thresholds (bit-score ≥ 70) (Enault et al., 447 

2017). 448 
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The ARG were grouped, following CARD 3.0.3 annotation (Jia et al., 2017), according 449 

to the drug class their confer resistance to. The taxonomic affiliation was extracted from 450 

the annotation found in JGI/IMG-ER (Chen et al., 2021). To compare the obtained 451 

results, hits were normalized by the assembled Megabase pair (Mb).  452 

Multiresistant contigs were manually curated, and only those with at least 2 different 453 

ARG conferring resistance to at least two different drug classes were included in the 454 

analysis. The abundance of metagenomes with multiresistant contigs was calculated by 455 

dividing the number of metagenomes with at least one multiresistant contig by the total 456 

number of metagenomes studied. The frequency of multiresistant species only in 457 

metagenomes with more than one multiresistant bacteria was done by dividing the 458 

number of multiresistant by the total number of contigs. 459 

The presence of common ARGs in all the analysed parts of the body was performed  460 

using CD-HIT (90% identity) (Fu et al., 2012) which was used to cluster all the ARGs 461 

found in the HMP. 462 

For studying the effect of our threshold in housekeeping genes that requires few 463 

mutations to become resistant, gyrA proteins from the HMP dataset that were 464 

considered as ARG by our analysis were extracted and aligned against the gyrA 465 

fluroquinolone resistant gene deposited in CARD (Jia et al., 2017) from Mycobacterium 466 

tuberculosis (>gb|CCP42728.1|+|Mycobacterium tuberculosis gyrA conferring 467 

resistance to fluoroquinolones [Mycobacterium tuberculosis H37Rv]) and gyrA
R
 468 

obtained from RESFAMS (Gibson et al., 2015) (NC_002952_2859949_p01) from 469 

Staphylococcus. The alignment was performed with MUSCLE available in Geneious 470 

9.1.3.  471 

 472 

HMP antibiotic resistance genes in pristine environments 473 

To determine the presence of ARG from the HMP in pristine environments with 474 

presumptive low or none human presence, the ARGs obtained from the human samples 475 

were compared with the proteins from the chosen metagenomes using BLASTp 2.8.1+. 476 

Only those hits with an amino acid identity ≥ 90%, a bit-score ≥ 70 and e-value ≤ 10
-5 

477 

were considered. The taxonomic annotation was retrieved from JGI-IMG/ER only for 478 

those scaffolds with at least 4 proteins to ensure the detection of HMP ARGs in 479 
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autochthonous bacteria (3 out of, at least, 4 proteins should be from the autochthonous 480 

bacteria). All the hits were manually curated to avoid false positives, especially those 481 

produced by housekeeping genes. Those belonging to taxons that could not be 482 

associated with a specific environment were discarded.  483 

Alignments were performed using the software geneious 9.1.3. 484 

Comparison between ARGs present in assembled and raw data was performed 485 

analysing paired unassembled and assembled metagenomes from 5 gut samples from 486 

different subjects (Subjects ID: 159005010, 159247771, 159369152, 763961826 and 487 

246515023; Suppl. Table 7) and from five buccal mucosa samples from 5 different 488 

subjects (Subjects ID: 370425937, 764325968, 604812005, 246515023 and 809635352; 489 

Suppl. Table 7). ARG in assembled data were detected with blastp as mentioned above. 490 

ARGs detection in raw data was performed with two different strategies: DeepARG 491 

(Arango-Argoty et al., 2018), a machine learning algorithm that detects ARGs and 492 

normalises it by the number of 16S rRNA gene (90% identity, e-value ≤ 10
-10

), and 493 

comparing the reads with blastx against the antibiotic resistance databases CARD (Jia et 494 

al., 2017), ARG-ANNOT (Gupta et al., 2014) and RESFAMS (Gibson et al., 2015) (e-495 

value ≤ 10
-5

, amino acid identity ≥ 90% and bit-score ≥ 70) and normalised by the 496 

unassembled Mb.  497 

 498 

Statistical analysis 499 

One-way ANOVA was performed to compare the ARG abundance (ARG/Mb) in each 500 

body site between samples from women and men. 501 

Comparison between ARGs hits/Mb  was performed with Welch test and pairwise.t.test 502 

in R (R Core Team, 2014). P-value≤0.05 was considered as significant in all the 503 

statistical test performed. 504 

PcoA analysis was performed calculating the distance matrix using the Euclidean 505 

distance and plotted with ggplot (Wickham, 2016). For the different sites of the body it 506 

was studied the relative abundance of each ARG categorized by antibiotic class 507 

resistance . 508 
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Fig. 1. Human Resistome. Human atlas of the ARGs grouped by drug class their confer resistance to present in different body parts.  The body 675 

groups studied were the gut, the skin (retroauricular crease), vagina (posterior-fornix, mid vagina and vagina intraotus), the nares and the oral 676 

cavity (hard palate, buccal mucosa, saliva, subgingival plaque, attached gingivae, tongue dorsum, throat, palatine tonsils, and supragingival 677 

plaque) (A). PCoA analysis of the different body sites distributed according to their relative abundance of AR to different drug classes (B). The 678 

samples included in the group oral cavity (hard palate, buccal mucosa, saliva, subgingival plaque, attached gingivae, tongue dorsum, throat, 679 

palatine tonsils, and supragingival plaque -shaped as a circle-) gathered together and separately from nares, skin and gut samples.  Abundance of 680 

antibiotic resistance genes calculated as ARGs hits per assembled Mb and number of samples included in each body group (C). Welch test was 681 

performed to compare ARG abundances between different body sites. All paired samples showed statistically significant differences but the 682 

nares and the skin. P-values (P) considerer as significant were indicated with an asterisk:   P ≤ 0.05 *, P ≤ 0.01**, P ≤ 0.001***. 683 
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Fig. 2. Main antibiotic resistant bacteria in HMP dataset. Relative abundance of the most abundant resistant bacteria. Top five bacteria were 685 

chosen in each body part and then the graphic was completed with the relative frequency of all the chosen bacteria in all body parts. Circle sizes 686 

were different to determine the relative abundance of each species and colours were used to differentiate the body parts (red-oral cavity, brown-687 

gut, skin-yellow,green-nares,blue-vagina). At the bottom of the graphic the number of different species that carried ARGs is shown. 688 

 689 
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Fig. 3. Multiresistance in the human body. Those assembled genome fragments (i.e. contigs) that had more than one ARG conferring resistance 691 

to at least 2 different antibiotic families were considered as multiresistant (MR). Percentage of metagenomes with multiresistant contigs 692 

compared with all the metagenomes studied from the same HMP sample (A). Study of the multiresistant contigs frequency in metagenomes with 693 

at least one multiresistant contig (B), to compare the different samples, the number of multiresistant contigs was divided by the assembled Mb. 694 

Standard deviation is shown in the graphic. Relative abundance of the most abundant MR (C). Only MR whose relative abundance was, at least 695 

in one body site, equal or greater than 5% were represented. 696 

 697 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.08.463752doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463752
http://creativecommons.org/licenses/by-nd/4.0/


A manuscript submitted to mSystems 

29 
 

 698 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.08.463752doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463752
http://creativecommons.org/licenses/by-nd/4.0/


A manuscript submitted to mSystems 

30 
 

Fig. 4. Detection of ARGs from Human Microbiome Project dataset in pristine environments (arid deserts (n=65), submarine volcanoes (n=66), 699 

hot springs (n=68), polar environment (n=57) and caves (n=15)). Only 9 ARGs were found in pristine environments according to our criteria (see 700 

methods and results). The only case of ARG found in an autochthonous bacterium in pristine environments was that of a chloramphenicol 701 

acetyltransferase (CAT) gene belonging to Salmonella sp. (100% identity with Ga0111015_155701; a nares sample) present in a marine 702 

bacterium found in Loihi (a submarine volcano) from the family Rhodobacteraceae. The presence of CAT from Enterobacteriaceae in 703 

Rhodobacter has been previously described in the coastal water of Jiaozhou Bay, (Dang et al., 2008). Chloramphenicol-resistant bacteria often 704 

harbor plasmids carrying the CAT gene (Shaw et al., 1979) that could have been transferred to Rhodobacter. Desert photo taken from Boris 705 

Ulzibat (PEXELS). Submarine volcano photograph courtesy of NOAA / NSF / WHOI page 706 

(https://oceanexplorer.noaa.gov/facts/volcanoes.html). 707 
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