
Astrocytes encode complex behaviorally relevant information 1 

 2 

 3 

Katharina Merten1,*, Robert W. Folk1, Daniela Duarte1 and Axel Nimmerjahn1,* 4 

1Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 5 

92037, USA 6 

*Correspondence: kmerten@salk.edu (K.M.), animmerj@salk.edu (A.N.) 7 

 8 

Abstract 9 

Astrocytes, glial cells of the central nervous system, help to regulate neural circuit operation and 10 

adaptation. They exhibit complex forms of chemical excitation, most prominently calcium 11 

transients, evoked by neuromodulator and -transmitter receptor activation1-4. However, whether 12 

and how astrocytes contribute to cortical processing of complex behavior remains unknown1. 13 

One of the puzzling features of astrocyte calcium transients is the high degree of variability in 14 

their spatial and temporal patterns under behaving conditions. Here, we provide mechanistic 15 

links between astrocytes’ activity patterns, molecular signaling, and behavioral cognitive and 16 

motor activity variables by employing a visual detection task that allows for in vivo calcium 17 

imaging, robust statistical analyses, and machine learning approaches. We show that trial type 18 

and performance levels deterministically shape astrocytes’ spatial and temporal response 19 

properties. Astrocytes encode the animals’ decision, reward, and sensory properties. Our error 20 

analysis confirms that astrocytes carry behaviorally relevant information depending on and 21 

complementing neuronal coding. We also report that cell-intrinsic mechanisms curb astrocyte 22 

calcium activity. Additionally, we show that motor activity-related parameters strongly impact 23 

astrocyte responses and must be considered in sensorimotor study designs. Our data inform 24 

and constrain current models of astrocytes' contribution to complex behavior and brain 25 

computation beyond their established homeostatic and metabolic roles.  26 
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 27 

Introduction 28 

Mounting evidence from multiple species and central nervous system regions suggests that 29 

astrocytes play pivotal roles in neural circuit function and behavior2,3,5. Although not electrically 30 

excitable, astrocytes display a complex repertoire of intracellular signaling, most prominently 31 

calcium transients, triggered by neurotransmitter and neuromodulator receptor activation on 32 

their surface. This signaling spans multiple spatial and temporal scales, from sub-second 33 

transients in single astrocytes to seconds- or even minutes-long transients in astrocytic 34 

networks, suggesting that astrocytes may carry out computations on various timescales related 35 

to sensory processing, brain state modulation, and memory formation1,2,4. 36 

  37 

Despite the recent technical progress in measuring neuronal, astrocyte, and transmitter 38 

dynamics in behaving animals, a key unresolved question is precisely how astrocyte excitation 39 

relates to animal behavior and how it may contribute to brain computation of cognitive functions. 40 

This knowledge gap is partly due to the lack of standardized quantitative behavioral assays that 41 

allow tight control over the animal's behavior and associated cellular and molecular signaling. 42 

Additionally, data analysis approaches are often based on manually drawn regions of interest, 43 

which are poorly suited to capture the complexity of astrocyte excitation or its relationship to 44 

circuit dynamics and behavior6,7. Moreover, recent studies reporting astrocytic encoding of 45 

spatial information8 or reward location9 in the hippocampus have neglected the impact of mouse 46 

motor behavior on astrocyte responses. Astrocytes are known to exhibit widespread calcium 47 

excitation during locomotion mediated by local neurotransmitter and volumetric neuromodulator 48 

release10-12. Therefore, run parameters, particularly the timing of astrocyte response onset 49 

relative to run onset and the period between runs, might strongly influence experimental results 50 

and interpretation. 51 
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 52 

Using a quantitative visual detection task, in vivo calcium imaging, robust statistical analyses 53 

that account for the joint influence of run and cognitive parameters, and machine learning 54 

approaches, we show that astrocyte population transients ("syncytium responses") in the mouse 55 

motor cortex are deterministic and encode information about the stimulus, trial type, reward, 56 

decision, and the animal's performance level. Astrocyte responses were also significantly linked 57 

to run onset, run duration, and inter-run interval. Additionally, we show that astrocyte population 58 

responses underlie intrinsic constraints. Our data provide insight into fundamental computations 59 

within astrocyte networks and the integration and transformation of molecular signals within their 60 

environment, suggesting that these cells contribute to complex behavior and brain computation 61 

beyond their established homeostatic and metabolic roles. 62 

 63 

Results 64 

To investigate whether astrocytes contribute to cortical information processing and the encoding 65 

of complex behavior, we recorded their activity in a visual detection task. This behavioral assay 66 

involved numerous trial repetitions across multiple sessions and allowed robust regression and 67 

decoding analysis. In total, we recorded 4,837 trials across 21 behavioral sessions (see 68 

Methods). Mice were trained to report the presence or absence of a visual stimulus by running 69 

on a spherical treadmill for a fluid reward (Fig. 1a,b). Stimuli were presented at two intensity 70 

levels: i) salient and ii) close to the animal’s perceptual level. The internal state of the mouse 71 

determined whether it had seen the stimulus (‘yes’ decision if the animal initiated a run during 72 

stimulus presentation; ‘no’ decision if it stood still for >3 s). Decision outcomes were classified 73 

according to signal detection theory (Fig. 1c). Before stimulus presentation, the mice were 74 

required to stand still for 20 s. If mice interrupted the stand-still phase, the trial was aborted and 75 

counted as a spontaneous run. Fig. 1d shows trial outcome proportions for an example session. 76 

To create psychometric detection curves for each animal, we used the proportion of ‘yes’ 77 
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decisions for the two stimulus intensities (Fig. 1e). The mice were rewarded on correct trials 78 

only (hits and correct rejections). Trials with stimuli close to the perceptual threshold, in which 79 

the animals did not detect the stimulus, were not reinforced. This reward contingency led to a 80 

slight bias of the mice to erroneously report the presence of a stimulus in some of the stimulus 81 

absent trials (Fig. 1e). The animals’ performance levels varied within and across sessions. We 82 

computed a measure of discriminability (d’) derived from signal detection theory13 by subtracting 83 

z-scores (normal deviates) of median ‘hit’ rates from z-scores of median ‘false alarm’ rates 84 

(Fig. 1f). Performance intervals exceeding the detection threshold were considered high-85 

performance states, whereas periods with d’<2 were classified as low-performance states. 86 

  87 

Astrocyte calcium activity in fully trained GFAP-GCaMP6f mice was recorded using two-photon 88 

imaging (Fig. 1g). All recordings were performed in cortical layer 2/3 of the primary and 89 

secondary motor areas (M1/M2) and had a ~510×640 µm field-of-view recorded at ~30.9 Hz 90 

(Fig. 1g,h). While the GFAP promoter drives expression in most and predominantly astrocytes, 91 

a limited region-dependent neuronal expression has been reported14,15. We, therefore, 92 

computationally identified and excluded any areas showing features of neuronal activity16 (see 93 

Methods).   94 

 95 

Next, we analyzed the animals' task-related running responses. During hit trials and false 96 

alarms (FA), the runs started shortly after stimulus presentation (mean reaction time of two 97 

representative mice: 0.7 s and 1.2 s) (Fig. 2a, top panel). During correct rejections (CR) and 98 

miss trials, mice remained still on the treadmill during the stimulus phase. However, during 99 

reward consumption, 97.6% of CR trials were followed by a run. Similarly, stimulus offset 100 

triggered runs in 7.2% of the miss trials.  101 

 102 
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To study astrocytes’ encoding of complex cognitive functions in the context of running, we only 103 

analyzed trials that included runs with comparable characteristics (for trial selection criteria and 104 

numbers, see Methods and Table 1). Moreover, we applied multivariate analysis to explore the 105 

joint influence of cognitive and run-related variables and determine the effect of each variable in 106 

the presence of the others. To analyze astrocytes' response properties, we implemented a 107 

Region of Activity (ROA) analysis algorithm that uses three-dimensional filtering and noise-108 

based thresholding on individual pixels over time to detect significant fluorescence transients7 109 

(see Methods). Astrocytic syncytium responses were plotted as the percentage of active pixels 110 

within the labeled area over time (Extended Data Fig. 1a). We characterized the syncytium 111 

responses by calculating their onset (relative to run onset), duration, peak value and time, and 112 

offset (Extended Data Fig. 1b). We also calculated the total extent of activation (i.e., projection 113 

of active pixels throughout the response interval normalized to the total labeled area) and mean 114 

duration of pixels activated during the response interval. To identify the contribution of 115 

behavioral variables (trial type, performance level, recording area, mouse identity, current and 116 

previous run parameters) to astrocyte syncytium response characteristics, we used multivariate 117 

linear mixed-effects (LME) models with recording sessions as a random effect (see Methods). 118 

  119 

We found that behavioral context significantly influenced the astrocyte syncytium response to 120 

running. Not every run was capable of triggering an astrocyte response. In areas M1/M2, we 121 

found a significant effect of inter-run interval period on the probability of eliciting an astrocyte 122 

response (Extended Data Fig. 2a), a cell-intrinsic mechanism previously reported for cerebellar 123 

Bergmann glia10. The shorter the rest period, the less probable (Extended Data Fig. 2b), 124 

weaker (Extended Data Fig. 2d), and more delayed astrocyte responses were (Extended Data 125 

Fig. 2c). Nevertheless, the trial type had a significant effect on the probability of astrocyte 126 

syncytium responses. To further investigate this trial type effect, we focused on task-related 127 
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runs with ≥20 s stand-still phase (by task design) and spontaneous runs with ≥15 s inter-run 128 

distance. Notably, astrocyte syncytium response probability was significantly higher for 129 

rewarded runs than spontaneously initiated runs (Fig. 2b). 130 

  131 

Next, we aligned all run trial transients at the run onset to examine how syncytium responses 132 

depended on behavioral context parameters. This representation also allowed us to compare 133 

task-related trials to spontaneous runs (Fig. 2c). Averaged syncytium transients lasted ~10 s, 134 

and their onset latency (3 s) was strongly correlated to run onset (Fig. 2d). We found 135 

significantly shorter onset latencies (2.7 s) for hit compared to CR trials (3.2 s) and spontaneous 136 

runs (3.2 s) (Table 3). Additionally, our LME analysis revealed that astrocyte syncytium signals 137 

significantly encoded the detection decision, with earlier onsets for hit and FA trials ('yes' 138 

decision) (Fig. 2e, Table 9). Applying the LME model on hit trials only, we found that syncytium 139 

responses to salient stimuli were shorter (2.6 s) than to threshold stimuli (3 s) (Fig. 2f, 140 

Table 10). The strength of astrocyte syncytium responses (i.e., its response duration, peak, total 141 

extent of activation, and mean pixel activation duration) was similar for rewarded trials (hits and 142 

CRs) (Fig. 2g) but stronger compared to spontaneous runs. Astrocyte syncytium responses 143 

also significantly differed between rewarded and error trials, with correct trials showing longer 144 

response durations, larger total extent, and longer mean pixel activation duration (Fig. 2h). 145 

Astrocyte calcium activity also significantly encoded the animals' performance levels throughout 146 

the session. The response peaks, total extent, and the mean pixel activation duration were 147 

significantly larger/longer during low-performance periods than high-performance phases 148 

(Fig. 2i). Finally, responses in area M1 showed more prominent peaks, total extent, and mean 149 

pixel activation duration than in area M2 (Extended Data Fig. 3). In summary, astrocyte 150 

syncytium responses are extraordinarily versatile, with different response characteristics 151 

encoding various behavioral features. 152 
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 153 

Notably, our LME model also revealed a significant dependence of the astrocyte syncytium 154 

response duration on the current run duration with longer runs resulting in slightly longer 155 

response durations (19%, 12%, and 35% slope for hits, CRs, and spontaneous runs, 156 

respectively; Extended Data Fig. 4a, Table 12). To examine this dependency more closely, we 157 

plotted astrocyte syncytium responses for different run durations (1-10 s, 10-15 s, 15-20 s, 20-158 

30 s) for the hit and CR trials and spontaneous runs (Fig. 3a-c). For rewarded trials, run 159 

duration did not affect response onset. In contrast, longer run durations for spontaneous runs 160 

resulted in longer response latencies (42% slope, Fig. 3d, Table 13). Likewise, while the 161 

response peak location shifted only slightly toward later time points for longer runs in hit (4% 162 

slope) and CR trials (11% slope), we found a considerable peak location shift (66% slope) for 163 

spontaneous runs (Fig. 3e, Table 14). Additionally, when we calculated response offsets 164 

relative to the run onset, this duration increased only slightly with run duration for rewarded trials 165 

(18% increase for hit trials and 16% for CR trials). In comparison, it changed drastically for 166 

spontaneous runs (75% slope) (Fig. 3f, Table 15). These findings imply that different 167 

mechanisms control the on- and offset of astrocyte syncytium responses in different behavioral 168 

contexts.  169 

 170 

Rewarded runs appeared to have a defined onset and offset period of ~15 s, within which the 171 

response peak and duration varied slightly. We calculated the difference between the response 172 

offset and run offset to investigate whether a behavioral event might trigger the astrocytic 173 

syncytium response offset. For rewarded trials, the response offset coincided with run offset for 174 

13-15 s-long runs (Extended Data Fig. 4b, top and center panels). For shorter runs (<13 s), the 175 

response duration outlasted the run, and for longer runs (>15 s), it was shorter (Table 16). 176 

Intriguingly, this 13-15 s response interval corresponds well with the duration that dopamine is 177 

detectable in the extracellular space during rewarded trials17 (Extended Data Fig. 4d). Both 178 
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rewarded trial types showed higher response peaks at this ‘preferred’ run duration (Fig. 3a,b 179 

and Extended Data Fig. 4c, top, center panels, Table 17). Calculating the response offset 180 

relative to the reward onset in correct trials showed that most responses ended ~10 s after 181 

reward onset, with only a few lasting longer than 15 s (Fig. 3g). Similarly, aligning the 182 

responses to the longest runs (25-40 s) at reward onset showed that their offsets are similar 183 

(Fig. 3h). In contrast, for spontaneous runs, the astrocyte response co-varied with run duration 184 

(Fig. 3c), with the difference between syncytium response offset and run offset clustering 185 

around 0 s, irrespective of run duration (Extended Data Fig. 4b, bottom panel, Table 16). As 186 

expected, a histogram of response offsets relative to run offset reflects this high degree of 187 

correlation (Fig. 3i). Together, this data suggests that different encoding profiles underlie 188 

rewarded and spontaneous runs and that reward-related molecular signals, such as dopamine, 189 

modulate astrocytes' run-evoked syncytium responses. 190 

  191 

While linear regression analysis is restricted to predefined signal characteristics (e.g., onset, 192 

offset, peak, or duration), decoding models can access all information contained within the 193 

signals' time course. To infer relevant parameters from the signals' temporal dynamics, we used 194 

the k-nearest neighbor (kNN) classifier18, one of the most popular supervised machine learning 195 

algorithms for time series classification. We trained the classifier on example syncytium traces, 196 

represented as vectors in multidimensional feature space with corresponding class labels. In the 197 

subsequent test phase, the classifier was tasked with predicting the classes of syncytium 198 

transients that the classifier had not used for learning, based on the most frequent class among 199 

the k training samples nearest to the query vector. Bayesian optimization was used to select the 200 

distance calculation method and k, the number of neighbors (Table 18). We visualized classifier 201 

predictions using confusion matrices19. To evaluate the classifier’s performance, we calculated 202 

the area under the receiver operating characteristic curve (AUC). This curve captures the true 203 

positive versus the false positive rate of the classifier at different classification thresholds, 204 
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thereby representing the prediction performance quality irrespective of the chosen threshold. 205 

Statistical significance was derived from random permutation testing, shuffling the training data 206 

class labels, and calculating the probability that the prediction performance could be explained 207 

by chance (Table 19). 208 

 209 

When we used syncytium responses for rewarded and spontaneous trials only, the kNN 210 

classifier was able to identify these two classes with high accuracy (85% correct class 211 

assignments; chance level at 50%) and AUC=0.87, significantly different from the mean 212 

calculated in the permutation test (AUC=0.5, Fig. 4a). The classifier also confirmed the high 213 

predictability of correct and error trials from syncytium responses (86% accuracy; chance level 214 

at 50%; AUC=0.83, Fig. 4b). Remarkably, the syncytium response carried information about 215 

every trial type, which the classifier could predict from the recorded trials (38% accuracy; 216 

chance level at 20%) (Extended Data Fig. 5a). Moreover, the classifier predicted the animals' 217 

performance level using all traces from all recorded trial types (62% accuracy; chance level at 218 

50%; AUC=0.64, Extended Data Fig. 5b). 219 

  220 

Next, motivated by our LME model results showing that astrocyte syncytium responses varied 221 

substantially with run duration for spontaneous but not as much for task-related runs, we asked 222 

whether the kNN classifier could predict run duration from spontaneous runs (Extended Data 223 

Fig. 5c) and task trials (Extended Data Fig. 5d). We found that decoding of run duration was 224 

possible from both spontaneous (90% accuracy; chance level at 33%) and task trials (46% 225 

accuracy; chance level at 25%), with significantly higher accuracy and AUC values when 226 

spontaneous trials were used for classification (p<0.05, Kolmogorov-Smirnov test). We 227 

reasoned that if the gradual increase of run duration in the defined run duration classes is 228 

accompanied by a gradual change in the encoding signal, the classifier decoding performance 229 

should be most robust along the main diagonal of the confusion matrix, and confusions between 230 
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adjacent classes should be more frequent. To test this idea, we averaged the classification 231 

probability along the main diagonal and the parallel diagonals, resulting in the average 232 

performance of the classifier as a function of distance from the actual run duration (Extended 233 

Data Fig. 5c-d, last panel). The function peaked at the probability for correctly assigning the 234 

query traces to their real run duration class, while more erroneous classifications occurred for 235 

adjacent run durations. This finding confirms the gradually changing nature of the signal 236 

underlying the decoding of spontaneous and task trials and the proper operation of the 237 

classifier. 238 

  239 

While the previous analyses demonstrated that we could decode animal behavior (run context, 240 

reward delivery, performance level, run duration) from astrocyte syncytium responses, we also 241 

wanted to know whether the responses were relevant for the animals' behavior.  If the astrocytic 242 

signal is relevant for mouse behavior, the decision should be decodable from correct and error 243 

trials. Indeed, we found that the perceptual decision of the animal could be decoded from 244 

correct (hit and CR) trials (62% accuracy; chance level at 50%; Extended Data Fig. 6a). Next, 245 

we trained the kNN classifier on correct decision trials (hit trial: ’yes’ decision; CR trial: ’no’ 246 

decision) and used the signals for erroneous decisions (miss trial: ‘no’ decision, FA trial: ’yes’ 247 

decision) as a test dataset. We found that error trials also carried significant information about 248 

the decision (Extended Data Fig. 6b). Finally, we examined whether areas M1/M2 encoded 249 

information about the nature of the sensory information that was essential for the animals’ 250 

decision. In accordance with our LME model results (Fig. 2f), the classifier was able to decode 251 

information about the presented stimulus intensity from the astrocyte syncytium responses to hit 252 

trials (65% accuracy; chance level at 50%; Extended Data Fig. 6c). Importantly, decoding of 253 

stimulus type information was not possible from astrocyte syncytium responses to miss trials 254 

(53% accuracy; Extended Data Fig. 6d), implying that sensory information important for 255 
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decision-making was absent in error trials. Together, these findings suggest that the information 256 

encoded by astrocyte syncytium responses is relevant for animal behavior. 257 

 258 

Discussion 259 

In summary, the astrocyte syncytium calcium response is a complex yet deterministic signal 260 

encoding several aspects of behavioral context. Signal onset was tightly linked to run onset in 261 

rewarded trials, with an earlier calcium response encoding the animal’s decision (Fig. 2e) and 262 

stimulus intensity (Fig. 2f). Interestingly, in spontaneous runs, the response onset had a 263 

significant delay for longer run durations. Response duration was influenced by both decision 264 

correctness in task trials and run duration (Fig. 2g). Response offset correlated with dopamine 265 

levels in rewarded trials and run offset in spontaneous runs (Extended Data Fig. 4d, Fig. 3i). 266 

The overall strength of the calcium response was impacted by trial type, with rewarded trials 267 

showing the most notable increase (Fig. 2g). The amplitude was also significantly modulated by 268 

the animal’s performance level (Fig. 2i) and potentially by run parameters linked to reward 269 

expectation (Fig. 3a-b). The inter-run interval had a significant impact on the probability and 270 

strength of the astrocytic response in task trials and spontaneously initiated runs. Notably, the 271 

information encoded in the astrocyte syncytium calcium responses was behaviorally relevant 272 

(Extended Data Fig. 6). 273 

 274 

What mechanisms might control astrocyte syncytium responses? Because astrocytes do not 275 

exhibit stereotyped calcium waveforms like those evoked by neuronal action potentials, previous 276 

work suggested that their transients result from spatial and temporal integration of behavior-277 

related extracellular molecular signals released, for example, by local and projection neurons1. 278 

The complex yet deterministic nature of astrocyte syncytium responses revealed by our study 279 

supports this notion. Response duration and amplitude depended, amongst others, on run 280 

duration, suggesting integration of ongoing synaptic activity by astrocytes (Fig. 3). Rewarded hit 281 
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and CR trials showed larger syncytium responses than unrewarded trials with a 'preferred' run 282 

duration. One possible explanation for this ‘preferred’ run duration is that 13 s-long runs offer 283 

the highest reward probability to the animal, with astrocytes reflecting the corresponding local 284 

activity of M1/M2 neurons. Another possibility is that dopamine's time course determines the 285 

peak of the astrocyte syncytium response in rewarded runs. The time course of previously 286 

measured dopamine signals in the same region and task are consistent with this hypothesis17,20 287 

(Fig. 2; Extended Data Fig. 4). We also found that astrocyte syncytium responses in run trials 288 

are significantly different from no-run trials. Specifically, the probability of miss and CR trials 289 

without a run was significantly lower than those with a run (Extended Data Fig. 7a,b). 290 

Moreover, the syncytium responses to no-run trials had significantly longer response latencies 291 

(Extended Data Fig. 7c), were shorter, reached lower peak values, and showed lower total 292 

activation extent (Extended Data Fig. 7d). This observation seems consistent with previous 293 

work showing that locomotion mediates noradrenaline release and widespread astrocyte 294 

calcium excitation and that the astrocyte response is boosted in the presence of sensorimotor-295 

evoked local neural activity11,12. How astrocyte syncytium responses may differ in behavioral 296 

tasks that do not involve a running response (e.g., lever press/release task) remains to be 297 

determined. Apart from dopamine and noradrenaline, additional neuromodulator signals, such 298 

as acetylcholine, may also modulate astrocytes' phasic syncytium responses21,22. Our finding 299 

that astrocyte responses were larger during low-performance states may, at least in part, be 300 

explained by higher tonic neuromodulator levels (e.g., noradrenaline) associated with this 301 

cortical state23,24 (Fig. 2). Together, our data seem consistent with the concept of spatial and 302 

temporal integration of neurotransmitter and neuromodulator signals in shaping astrocyte 303 

syncytium responses in the M1/M2 cortex. Nevertheless, to better understand the syncytium 304 

signal's building blocks and regional differences, an analysis of individual regions of interest or 305 

astrocyte compartments may be informative. 306 
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  307 

How might astrocyte syncytium responses affect local neural circuits? Our findings suggest that 308 

astrocytes’ signaling is encoding relevant behavioral information (Extended Data Fig. 6).  309 

However, one of the striking features of astrocyte syncytium responses is their seconds-long 310 

delay relative to run onset (Fig. 2; Extended Data Fig. 1), likely due to signal integration within 311 

astrocytes (e.g., IP3, which mediates endoplasmic reticulum (ER) calcium release) 3,25. This 312 

delay, together with the syncytium responses' slow time course, indicates that astrocyte 313 

excitation likely serves complementary roles to neuronal activity, particularly those preceding or 314 

initiating the behavioral response (e.g., decision making or motor planning). One potential role 315 

of astrocyte syncytium responses may be circuit regulation. Following task execution, astrocytes 316 

may restore the neural circuit's ionic and transmitter homeostasis, thus ensuring the circuit's 317 

continued operation with optimal signal-to-noise ratio and gain. Additionally, they may actively 318 

tune the system when the executed behavior does not reliably achieve the desired outcome 319 

(e.g., reward)26,27. By establishing a computational "review period" of past events, astrocytes 320 

could potentially inform future behavior, enabling trial-to-trial behavioral adjustments or learning. 321 

If these considerations are correct, they might explain why astrocyte syncytium responses 322 

depended on behavioral performance and perceptual level (Figs. 1-2). These hypotheses might 323 

be tested by an in-depth analysis of trial history and performance as a function of the inter-run 324 

interval, which strongly affects astrocytes' response probability and strength (Extended Data 325 

Fig. 2). 326 

 327 

Given the complex yet predictable syncytium responses (Fig. 4; Extended Data Figs. 5-6), it is 328 

conceivable that astrocyte calcium excitation mediates more than one output and on multiple 329 

timescales. Astrocytes can modulate neural circuit activity on the seconds (i.e., individual trial) 330 

timescale by releasing neuroactive substances in a calcium-dependent manner (e.g., 331 
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ATP/adenosine, D-serine, potassium)3. Neural circuit activity can also be modulated on the 332 

minutes (i.e., performance level) timescale by activity-dependent changes in astrocyte 333 

transporter activity, gap junctional coupling, metabolic support, or perisynaptic process 334 

structure.  335 

 336 

How might these open questions about astrocyte syncytium responses be addressed? The 337 

quantitative visual detection task and computational methods employed in our study may help 338 

address these fundamental questions. In conjunction with genetically encoded neurotransmitter 339 

and neuromodulator sensors, our standardized approach may help reveal how behavior-340 

dependent extracellular signals relate to astrocyte activity, as exemplified for dopamine 341 

(Extended Data Fig. 4). However, this may require further optimization of current transmitter 342 

sensors and their color variants to enable concurrent and high-resolution measurement of 343 

corresponding transient maps. Simultaneous recording of astrocyte and projection neuron 344 

activity can only partly replace such measurements, as calcium spiking does not identify the 345 

type and quantity of the transmitter(s) released or its spatial spread. Likewise, new indicators for 346 

intracellular signaling (e.g., IP3, cAMP, or PKA) and functional alterations (e.g., proximity 347 

assays) may in the future allow measurement of how the various molecular signals are 348 

integrated within astrocytes, how this spatiotemporal integration relates to astrocyte syncytium 349 

responses, and how these responses modulate astrocyte output28,29.  One approach to 350 

determine the effect of astrocyte syncytium responses on local neural activity may be to 351 

leverage their intrinsic properties. We showed that the probability, onset, and magnitude of 352 

syncytium responses depend on inter-run distance (Extended Data Fig. 2), an effect previously 353 

described for cerebellar astrocytes and likely dependent on ER calcium store dynamics10. 354 

Animals trained to perform visual detection task trials at various inter-run distances may provide 355 

insight into how local neural activity changes in the presence or absence of astrocyte syncytium 356 
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responses. However, the dependency of astrocyte syncytium responses on trial-type, 357 

performance levels, and other behavioral variables suggests that approaches to globally in- or 358 

decrease astrocyte excitation (e.g., by opsin, DREADD, calcium pump, or chelator expression) 359 

may only partially mimic astrocytes' varied effects on neural circuits. Finally, applying our visual 360 

detection task and computational methods to other (e.g., sensory) brain regions should help 361 

determine conserved features of astrocyte encoding and circuit modulation and inform models 362 

of how astrocyte signaling may need to be incorporated into systems neuroscience. 363 

 364 

 365 

 366 

  367 
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Figures431 

 432 

Fig. 1 | Approach for relating astrocyte syncytium calcium signals to behavioral context 433 

using detection task variables. 434 

a, Schematic of the experimental setup. Head-fixed mice were placed on a spherical treadmill 435 

viewing a computer screen. Astrocytic calcium excitation was recorded in layer 2/3 of the M1/M2 436 

motor cortex using two-photon microscopy while the mice performed the visual detection task. 437 

In total, we recorded 4,837 trials during 21 behavioral sessions (see Methods). b, Schematic of 438 

the behavioral protocol. A trial started when mice stopped running for 1 s. A visual cue (blue 439 
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frame) instructed mice to remain still for 20 s. Following this stand-still phase, a stimulus (blue 440 

square) was presented for 3 s in 50% of the trials. In the other half of the trials, no stimulus was 441 

shown. Stimulus intensity varied between two levels: salient and close to the perceptual 442 

threshold (see Methods). Stimulus presence and intensity were randomly selected. In trials with 443 

stimulus presentation, mice were required to start running within the 3 s stimulus phase to 444 

receive a fluid reward. In trials without stimulus presentation, mice had to remain still for a 3 s 445 

period to receive the reward. Spontaneous runs during the 20 s stand-still phase aborted 446 

stimulus presentation. Mice were able to initiate a new trial after a 5 s inter-trial interval. 447 

c, Signal detection theory classes for behavioral outcomes (hit, miss, correct rejection, and false 448 

alarms), given two stimulus conditions (stimulus present or absent) and two possible decisions 449 

(‘yes, stimulus present’ and ‘no, stimulus absent’).  d, Proportions of behavioral outcomes 450 

during one example session. e, Average psychometric detection curves for two representative 451 

mice. f, The mouse's performance levels during the example session shown in d. The 452 

performance level was quantified using the d′-sensitivity index, calculated as the difference of z-453 

scores for ‘hit’ and ‘false alarm’ rates. A d′-value of 2 was chosen to distinguish between high- 454 

and low-performance states. g, Heatmap of average GCaMP6f fluorescence in layer 2/3 from 455 

an example recording in area M1. h, Left, dorsal view of the mouse cortex with the chronic 456 

cranial window location indicated (circle). Center and right, imaging locations (squares) within 457 

the cranial window for two representative mice. M1, primary motor cortex; M2, secondary motor 458 

cortex. 459 
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Fig. 2 | Astrocyte syncytium responses encode detection task variables. 461 

a-i, Astrocyte syncytium responses encode reward, the animal's decision (stimulus present or 462 

stimulus absent), and performance level. a, Population data showing the astrocyte syncytium 463 

signals' dependence on the trial type. Top, running velocity profile for hit (green), miss (yellow), 464 

CR (blue), and FA trials (red). Center, onsets (colored dots) for individual qualifying astrocyte 465 

syncytium signals by trial type.  Bottom, average astrocyte syncytium calcium signals, 466 

represented as the percentage of ROA (Regions of Activity) pixels over time (see Extended 467 

Data Fig. 1). Each colored trace is an average across the individual trials of a given type 468 

aligned to the stand-still cue onset (198 hit, 17 miss, 260 CR, 15 FA trials, and 106 spontaneous 469 

runs from 21 recording sessions). Only trials that included a run within a defined parameter 470 

range were included to ensure comparability (see Methods). Vertical lines at 20 s and 23 s 471 

mark the stimulus phase. b, Probability of observing a significant astrocyte syncytium response 472 

for the different detection task trial outcomes and spontaneous runs. Only spontaneous runs 473 

that occurred 15 s after stimulus onset and before the end of the 20 s stand-still phase were 474 

included in the analysis. c, Same population data as in a, but aligned at run onset (0 s). 475 

d, Astrocyte syncytium response onsets relative to run onset for the different trial types. The 476 

boxplot marks the median and the 25th and 75th percentiles of the data for each trial type. The 477 

whiskers cover ~99.3% of the data. e, The animals' ‘yes’ decision (based on hit and FA trials) 478 

was encoded by an earlier onset of the astrocyte syncytium response. f, Stimulus intensity was 479 

encoded by astrocytes' syncytium response onsets. g, Astrocyte signal strength, as quantified 480 

by response duration, peak, the total area under the response curve, and mean pixel activity 481 

duration (from left to right), was significantly larger for rewarded than spontaneous and in some 482 

characteristics for error trials. h, Encoding of rewarded versus error trials. Same layout as in g. 483 

Rewarded trials showed significantly longer response durations. i, The animal's performance 484 

level was encoded primarily by the astrocyte syncytium response amplitude. Low-performance 485 
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periods were associated with higher amplitudes. The layout is the same as in g. Statistical 486 

significance was derived from linear mixed-effects model (LME) analysis for all comparisons 487 

(see Methods, Tables 2-10). 488 

 489 

 490 

 491 
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 493 

Fig. 3 | Astrocyte syncytium responses show different run encoding mechanisms. 494 

a-c, Astrocyte syncytium responses, grouped by different run durations, revealed different 495 

response profiles for rewarded run trials than spontaneous runs. a, Response profile for hit 496 

trials. Top, running velocity profiles. Bottom, astrocyte syncytium responses for hit trials of 497 

different run duration (19, 56, 75, and 47 trials of 1-10 s, 10-15 s, 15-20 s, and 20-30 s run 498 

duration, respectively, from 21 recording sessions). b, Response profile for CR trials. Same 499 
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layout as in a. The data is an average across 36, 73, 98, and 53 runs of 1-10 s, 10-15 s, 15-20 500 

s, and 20-30 s duration, respectively, from 21 recording sessions. c, Response profile for 501 

spontaneous runs. Same layout as in a. The data is an average across 104, 19, and 3 runs of 1-502 

10 s, 10-15 s, and 15-20 s duration, respectively, from 21 recording sessions. d, Astrocyte 503 

syncytium response onsets as a function of run duration for hit trials (top), CR trials (center), 504 

and spontaneous runs (bottom). e, Peak location of the astrocyte syncytium response as a 505 

function of run duration. Same layout as in d. f, Astrocyte syncytium response offsets relative to 506 

run onsets as a function of run duration. The layout is the same as in d. g, Histogram of 507 

astrocyte syncytium response offsets for rewarded trials (hit and CR) relative to reward onset 508 

(see also Extended Data Fig. 4d). Event frequencies were bin-normalized for each run duration 509 

interval. h, Profile of astrocyte syncytium responses for the longest runs (25-40 s). Top, running 510 

velocity. Bottom, astrocyte syncytium responses aligned at reward onset. i, Histogram of 511 

astrocyte response offsets relative to run offsets for hit trials, CR trials, and spontaneous runs. 512 

Event frequencies were bin-normalized for each run duration interval. 513 

 514 

 515 

 516 
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 518 

 519 

Fig. 4 | Detection task variables can be decoded from astrocytic syncytium responses 520 

using machine learning approaches. 521 

a-b, The k-nearest neighbor (kNN) classifier allows reliable decoding of rewarded/correct trials 522 

from astrocytes' syncytium calcium responses. a, Classifier decoding performance of rewarded 523 

trials from rewarded trial and spontaneous run astrocyte syncytium responses. Left, classifier 524 

confusion matrices with rows representing the true classes and columns showing the classifier 525 

predictions. The main diagonal shows how frequently the classifier correctly assigned the trials 526 

to their real category (accuracy). Off-diagonal cells correspond to the count of incorrectly 527 

classified trials. A row-normalized row summary and a column-normalized column summary 528 

display the percentages of correctly and incorrectly classified trials for each true class or 529 

predicted class, respectively. Center, receiver-operating characteristic (ROC) curve and area 530 

under the ROC curve (AUC) for the classifier's output. Right, true data mean AUC values (black) 531 

were obtained using a 10-fold cross-validation design, repeated 100 times, and compared to the 532 

mean AUC values from shuffled trials (gray) when syncytium responses were randomly 533 
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assigned to one of the two classes. b, Classifier decoding performance of rewarded trials from 534 

rewarded and erroneous trial syncytium responses. The layout is the same as in a. Error bars 535 

indicate s.e.m. 536 
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Methods 538 
 539 
Experimental model and subject details 540 
 541 
All procedures were performed following the National Institutes of Health (NIH) guidelines for 542 

the Care and Use of Laboratory Animals and were approved by the Institutional Animal Care 543 

and Use Committee (IACUC) at the Salk Institute. Mouse strains used in this study included 544 

Gfap-Cre 73.12 (RRID: IMSR_JAX:012886) and Ai95D mice (RRID: IMSR_JAX:024105)30,31.  545 

All imaging and behavioral experiments involved heterozygous male mice (N=4). Mice 546 

underwent two surgeries: head plate implantation at 8-10 weeks of age and cranial window 547 

implantation at ~12 weeks of age. Training started ~7 days after each surgery. Mice were water-548 

restricted to 25 ml kg-1 per day and maintained at 80-85% of their normal ad-libitum weight 549 

during training and imaging. Optical recordings were performed at ~20 weeks of age. Of the five 550 

mice trained on the task, one failed to reach proficiency. Mice were typically group-housed, 551 

provided with bedding and nesting material, and maintained on a 12 h light-dark cycle in a 552 

temperature (around 22°C) and humidity controlled (45-65%) environment. The animals had ad 553 

libitum access to standard rodent chow and water outside of training and imaging periods. 554 

 555 
Live animal preparation 556 
 557 
Head plate and cranial window implantation were performed as previously described17,20. Briefly, 558 

mice were anesthetized with isoflurane (4% and 2% for induction and maintenance, 559 

respectively) on a custom surgical bed (Thorlabs Inc., Newton, NJ). Body temperature was 560 

maintained at 36–37°C with a DC temperature control system. Ophthalmic ointment was used to 561 

prevent eyes from drying. The skin at the surgical site was cleaned and disinfected with 70% 562 

ethanol and Betadine. A small (~10 mm) incision was performed along the midline. The scalp 563 

was pulled open, and the periosteum was cleaned. A portion of the scalp was surgically 564 

removed to expose frontal, parietal, and interparietal skull segments. A custom metal plate was 565 
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affixed to the bone above the motor cortex with C&B Metabond Quick Adhesive Cement (Parkell 566 

Inc., Edgewood, NY). The cement also covered all other exposed skull regions. 567 

  568 

After initial training, a custom-made cranial window was implanted to enable chronic two-photon 569 

imaging32. The skull was thinned above the motor cortex, and a craniotomy was performed (2.5 570 

mm diameter; centered around AP 1.5 mm / ML 1.5 mm). The dura mater was kept intact. The 571 

craniotomy was sealed with a custom three-layered cover glass assembly (each No.1 thickness) 572 

with the two layers closest to the cortex consisting of two circular 2.5 mm-diameter coverslips 573 

and the outermost layer consisting of a circular 3 mm-diameter cover glass that rested on the 574 

thinned skull. UV-curing optical adhesive (NOA 71, Norland Products, Inc.; cat. no. 7106) was 575 

used to attach the coverslips one at a time, taking care to avoid air inclusions that might 576 

interfere with imaging or facilitate cover glass detachment during the implantation period. 577 

 578 
Behavioral setup and data acquisition 579 
 580 
Animal training was performed in a sound-attenuating cubicle (ENV-017M, Med Associates Inc.) 581 

using a custom-built setup. This setup included a color LCD monitor for stimulus presentation 582 

(12.1" LCD Display Kit/500cd/VGA, ICP Deutschland GmbH). Noise in optical recordings was 583 

minimized by covering the monitor with a color filter (R342 Rose Pink, Rosco Laboratories Inc.). 584 

The setup also included a spherical treadmill (Habitrail Mini Exercise Ball, Animal World 585 

Network), allowing the animal to run freely or when instructed. Mice were placed on the treadmill 586 

facing the LCD display. Head fixation was achieved by clamping the head plate with custom-587 

build holders. An optical encoder (E7P OEM, US Digital) attached to the treadmill enabled 588 

measurement of both speed and direction of ball movement. Water reward was delivered with a 589 

programmable syringe pump (NE-500 OEM Syringe Pump, New Era Pump Systems, Inc.). 590 

Behavior-related signals were acquired through a data acquisition board (PCI-6221, National 591 

Instruments) connected to a breakout box (BNC-2110, National Instruments) and interfaced to 592 
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MATLAB using the Data Acquisition Toolbox (Version R2010bSP2, The MathWorks Inc.). The 593 

MATLAB-based software MonkeyLogic (www.monkeylogic.net)33,34 controlled the behavioral 594 

task sequence. Custom-written functions were added to MonkeyLogic to enable analysis and 595 

control of ball rotation parameters. Treadmill encoder signals and trial marker codes, generated 596 

by MonkeyLogic, were acquired (10 kHz sampling rate; ±5 V input range) in sync with the 597 

imaging data. Simultaneous acquisition through the microscope's software (MScan; Sutter 598 

Instrument Company) allowed run parameters, behavioral task events, and image frames to be 599 

linked with high temporal precision. 600 

 601 
Animal training 602 
 603 
Mice were handled/tamed on two consecutive days before behavioral training to reduce stress. 604 

During the first two training days, mice spent ~15-30 min/day in the setup to become 605 

accustomed to head restraint. Mice were then trained daily for 60-90 min during which they 606 

performed ~300-700 trials. A sequence of trial task events was initiated when mice stood still on 607 

the ball for 1 s. First, a blue square frame was displayed on the monitor, requiring the animal to 608 

continue standing still for 20 s (ball rotational velocity ≤2 mm/s). If the mouse remained still for 609 

this entire stand-still phase, a second stimulus (filled blue square) was presented for 3 s in 50% 610 

of trials, instructing the mouse to initiate a run. The stimulus was presented at two intensities: 611 

salient or close to the perceptual threshold (determined empirically towards the end of the 612 

training and kept at the same level during recordings). If the mouse initiated sustained 613 

movement during the 3 s stimulus phase (ball rotational velocity >10 mm/s for at least 1 s), a 614 

water reward was delivered (hit trial). If no running occurred, the trial counted as a miss trial. In 615 

the 50% of trials where no stimulus was presented, the mouse received a fluid reward when it 616 

remained still on the ball for 3 s (correct rejection, CR). Running during the 3 s period was 617 

counted as a false alarm (FA) trial. The trial was aborted and counted as a spontaneous run if 618 
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the animal moved during the 20 s stand-still phase (ball rotational velocity >2 mm/s). The mouse 619 

could initiate a new trial after an inter-trial interval (ITI) of 5 s. 620 

 621 

In vivo two-photon imaging 622 
 623 
Once mice had reached proficiency on the task, two-photon imaging commenced. Mice were 624 

imaged daily for 9-12 days while performing the task. We used a resonant scanning two-photon 625 

microscope (Sutter Instrument) equipped with a pulsed femtosecond Ti:Sapphire laser 626 

(Chameleon Ultra II, Coherent) for simultaneous optical and analog data acquisition. GCaMP6f 627 

fluorescence was excited with 910 nm light and detected using an ET525/70M emission filter 628 

(Chroma Technology Corp.) and H7422-40 GaAsP photomultiplier tube (Hamamatsu 629 

Photonics). Average excitation power depended on imaging depth (typically 55-66 mW). The 630 

typical recording depth was 100-135 μm below the pia. Data were acquired using a Nikon 631 

16×0.8-NA water immersion objective. A custom-made blackout curtain around the 632 

microscope’s detector was used to reduce light contamination by the LCD monitor. Images 633 

(512×512 pixels) were acquired at 1.0x Zoom (~510×640 μm effective field of view after 634 

cropping) and ~30.9 frames/s using MScan software (Sutter Instrument Company). Each 635 

recording session consisted of five to twelve ~10 min recordings, separated by short imaging 636 

breaks (3-5 min). Recordings within a given session were performed at the same location to 637 

maximize the number of trial repetitions for analysis. Recordings from different sessions on 638 

consecutive days were offset either laterally or axially to maximize the tissue volume being 639 

sampled (Fig. 1h).  640 

 641 

Behavioral data processing and analysis 642 
 643 
All data analyses were performed using custom-written MATLAB scripts (The MathWorks Inc). 644 

The encoder signal (frequency of voltage changes) was converted to run velocity and smoothed 645 
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with a 3 s moving average window. This smoothing widened the signal by half the window size. 646 

We, therefore, shifted the smoothed velocity trace by +1.5 s for all analyses involving 647 

alignments at task events (trial onset, reward onset). Smoothing also lowered peak running 648 

speeds (Fig. 2a). Run onset threshold was set at 0.5 mm/s, while run offset was defined as the 649 

time when running speed fell below 0.1 mm/s. We chose these low thresholds because even 650 

small movements could elicit calcium responses. Run onsets <0.5 s after the offset of a 651 

previous run were considered as one running event. A trial-associated run counted as hit or FA 652 

if running lasted >1 s and exceeded 30 mm/s. The absence of ball movement (<0.5 mm/s) 653 

during the stimulus phase counted as CR trial. Run velocity was measured in real-time during 654 

animal behavior (without temporal smoothing). While all hit and FA trials included a run during 655 

the stimulus phase, miss and CR trials did not exhibit a run during this phase. However, they 656 

were often followed by a run after stimulus offset or reward delivery, respectively. 657 

 658 

To quantify the animals' task performance, we recorded all trial outcomes (Fig. 1c) and reaction 659 

times (RTs) (the time interval between stimulus and run onset). Mice were considered to have 660 

reached task proficiency when the proportion of correct decisions (hit and CR trials) exceeded 661 

50% over a 50 trial performance interval. Additionally, RTs for correct ‘yes’ decisions (hit trials) 662 

had to drop below 1.5 s. The psychometric curve for each mouse (Fig. 1e) was computed 663 

based on the proportion of ‘yes’ decisions for stimulus-absent (FA), threshold, and salient 664 

stimulus intensity trials (hit trials). A steep increase in miss trials at the end of the session 665 

indicated that mice had lost interest in the water reward. Trials beyond that point were excluded 666 

from the average performance analysis. To quantify the level of performance throughout the 667 

session, we calculated the discriminability index d-prime (d’, Fig. 1f) for each session as 668 

Z(hit/(hit + miss)) − Z(FA/(FA + CR)), with Z(p), p ∈ [0,1]13. All trials during d’>2 phases were 669 

considered high-level performance trials. Trials during d’<2 phases were deemed to be low-level 670 

performance trials. 671 
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 672 

Image data processing and analysis 673 
 674 
Lateral image motion (e.g., due to mouse movement) was corrected using the non-rigid 675 

movement correction algorithm NoRMCorre35. We used 200 frames from the first recording of a 676 

given session to compute the registration template. The same reference image was used to 677 

correct the image motion of other recordings taken at the same location. 678 

  679 

We excluded regions over and immediately surrounding blood vessels to reduce artifacts 680 

caused by vascular dilation and constriction. First, we calculated a baseline image by smoothing 681 

the image data temporally with a moving average of 1 s. Next, we determined the mode of the 682 

pixels. Areas below the 70th percentile of the baseline image's pixel intensity distribution were 683 

automatically excluded from data analysis. 684 

  685 

While the GFAP promoter drives expression in most and predominantly astrocytes, a limited 686 

region-dependent neuronal expression (0.5-5% of labeled cells) has been described14,36. To 687 

identify corresponding regions in our data, we first calculated the mean intensity projection of all 688 

recordings at a given imaging site and segmented this image using the CellProfiler image-689 

analysis software37. We allowed the total area of segments to vary between 8 and 300 pixels. 690 

Next, we extracted the fluorescence time trace F(t) from all segments by averaging the pixel 691 

intensities of all pixels within individual segments. ∆F(t)/F was calculated as (F(t) –692 

 mean F) / mean F. Segments were classified manually by considering their morphology (from 693 

the mean intensity projection image), waveform shape, and event frequency and pattern (from 694 

the corresponding ∆F(t)/F trace). Segments showing features of neuronal activity16 were 695 

excluded. Between 4.5% and 12.8% of segments displayed neuronal characteristics in areas 696 

M1/M2. 697 
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  698 

To capture the high spatiotemporal complexity of astrocytes' calcium signals, we implemented a 699 

previously described activity-based algorithm based on Regions-of-Activity (ROA) analysis7 with 700 

a few modifications. The data were smoothed with a Gaussian filter (σ = 3 pixels). To remove 701 

slow drifts in the calcium baseline, we detrended the time course of each pixel using the 702 

MATLAB function detrend() instead of bandpass filtering the data. Fluorescence events were 703 

determined based on noise-based thresholding over time for each pixel. First, the signals were 704 

high pass filtered. Then, the standard deviation of each pixel’s noise over time was calculated. 705 

Whenever a given pixel's value in the standard deviation image exceeded the corresponding 706 

value 5-fold, the pixel was considered active. The syncytium response signal was calculated as 707 

the sum of the active pixels in the field of view (FOV) normalized by the total GCaMP6f labeled 708 

area over time. 709 

  710 

Each astrocyte syncytium time trace includes multiple repetitions of the same trial type. To 711 

characterize the syncytium response to a given trial, we quantified its temporal features, such as 712 

response onset/offset, probability, and strength. To calculate response onset/offset, we first 713 

determined the mean syncytium response distribution during the baseline period (7-2 s before 714 

stimulus onset). We defined the 95th percentile of this baseline activity distribution as the 715 

significant response threshold (Extended Data Fig. 1b). Time points at which the signal 716 

surpassed or fell below this threshold relative to run onset were defined as response onset and 717 

offset, respectively. Response probability was calculated by determining the proportion of trials 718 

during which the astrocyte syncytium signal exceeded the threshold value during the 0.5-15 s 719 

response interval after run onset (if a run happened) or 0.5-17 s after stimulus onset (if no run 720 

was detected during that trial). Response strength was characterized by the (1) response 721 

duration (i.e., the interval between response on- and offset), (2) response peak (the maximum 722 

value reached during the response duration), (3) total spatial extent of the syncytium response 723 
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(defined as the percentage of active pixels in the projection image during the response interval), 724 

and (4) mean duration of consecutively active pixels during the response interval. 725 

 726 

Statistical analysis 727 
 728 
In total, we analyzed 4,837 trials from 21 behavioral sessions. Only trials with >7 mm/s ball 729 

rotational velocity (smoothed) and >5 s run duration were included in our analysis to ensure trial 730 

comparability. The analysis also included only spontaneous runs starting >15 s after the stand-731 

still cue onset to ensure comparability of task-trial and spontaneous run-evoked syncytium 732 

responses. The resulting numbers of qualifying trials are shown in Table 1. Qualifying trial 733 

traces from all animals, all sessions, and trial types, associated with a run and significant 734 

syncytium response, were averaged and aligned at trial onset (Fig. 2a) or run onset to calculate 735 

population responses (Fig. 2c). 736 

  737 

To quantify the relationship between astrocyte syncytium responses and behavioral variables, 738 

we performed linear mixed-effects analyses in MATLAB38 (Fig. 2). Separate encoding models 739 

were fitted for astrocyte syncytium response probability, onset, duration, peak (log-transformed), 740 

total extent (log-transformed), and the mean duration of pixel activation (log-transformed) as 741 

dependent variables. Subject (mouse identity), recording area (M1/M2), trial type (hit, miss, CR, 742 

FA, spontaneous run), performance level (high/low), current run duration, current run amplitude, 743 

preceding run duration, preceding run amplitude, and the interval between current run onset and 744 

preceding run offset were included as fixed effects in the model. The recording session was 745 

treated as a random effect. To decide which behavioral variables to include in the model, we 746 

first performed a univariate analysis. We included the fixed factors separately and added the 747 

random effects to the model. If the p-value of a dependent variable's relationship to the tested 748 

fixed effect was <0.1, the factor was considered for inclusion in the final model. Next, a model 749 
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with all qualifying fixed effects and the random effect was set up for each dependent variable, 750 

followed by a backward step-down model selection. With every iteration, we excluded the fixed 751 

effect with the highest non-significant p-value until the p-values of all remaining factors were 752 

<0.05. This value was chosen as the significance criterion. Visual inspection of residual plots for 753 

the final models did not reveal any apparent deviations from homoscedasticity or normality. We 754 

fitted a binomial generalized linear model using the MATLAB function fitglme() (Table 2) to 755 

analyze the relationship between syncytium response probability and behavioral parameters. 756 

We included only trials followed by a run and compared the proportions of trials with significant 757 

syncytium response to the proportion of trials without one (i.e., when the syncytium response 758 

remained under the threshold value). We also included the interaction between trial type and 759 

run duration in the model because this described our data better (p<0.0001, Likelihood ratio 760 

test). For all other dependent variables, we fitted ordinary linear mixed-effects models using the 761 

MATLAB function fitlme() and included only trials with a run and significant syncytium response 762 

(Tables 3-10). To analyze differences between trials with or without a run, we used all trials with 763 

a significant syncytium response aligned at trial onset (Table 11). Mixed-effects model 764 

parameters were estimated by the maximum likelihood method. The significance of the 765 

regression coefficients was assessed using the t-statistic. 766 

  767 

To investigate the relationship between run duration and syncytium response duration 768 

(Extended Data Fig. 4a), onset, peak location, and offset, aligned on run onset (Fig. 3d-f) or 769 

run offset (Extended Data Fig. 4b), we also applied linear regression analysis. Linear mixed-770 

effects models were fitted separately for the rewarded trials (hits, CR) and spontaneous runs. 771 

Model selection criteria and analysis were the same as described above. The percent slope was 772 

determined by multiplying the regression coefficient by 100 (Tables 12-16).   773 

  774 
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To examine the relationship between response peak and run duration, we used responses with 775 

peak values >3% active pixels (Extended Data Fig. 4c). The peak values appeared to reach 776 

their maximum for 13 s-long runs. Linear models were fitted to trials with shorter (<13 s) and 777 

longer run durations (>13 s) separately for rewarded trials and spontaneous runs (Table 17). 778 

 779 

To determine what triggers astrocyte syncytium response offset, we plotted the distribution of 780 

rewarded trial offsets aligned at reward onset (Fig. 3g). For comparison, we also plotted the 781 

rewarded and spontaneous run offsets aligned at run offset (Fig. 3i). For both histograms, we 782 

normalized the distribution of each predefined run duration interval (5-10 s, 10-15 s, 15-20 s, 20-783 

25 s, 25 s-maximum run duration). For final representation, the normalized distributions were 784 

averaged. This approach helped to avoid biasing run durations that appeared more frequently 785 

during trials. 786 

 787 

To decode information from astrocyte syncytium responses, we applied the k-Nearest Neighbor 788 

(kNN) classifier using the MATLAB function fitcknn() (Fig. 4 and Extended Data Figs. 5-6). We 789 

represented the syncytium responses (% active pixels over time), from run onset to 30 s after 790 

run onset, as vectors in multidimensional feature space. The prior probabilities for all classes 791 

were defined as equal (i.e., 1/number of classes). The classifications were performed in a 10-792 

fold cross-validation design (i.e., data was partitioned in 10 randomly chosen subsets). One 793 

data subset was used to validate the model, while the remaining subsets were used for training. 794 

We used automatic hyperparameter optimization to find hyperparameters that minimized the 10-795 

fold cross-validation loss (see Table 18 for resulting parameters for each classification). 796 

Accuracy was calculated as the number of correct predictions divided by the total number of 797 

predictions. For decoding the animal's decision from erroneous syncytium responses, the 798 

classifier was trained on correct responses only. It was then tested on error trials that the 799 

classifier had not seen before. 800 
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 801 

To visualize the classifier performance, we used the “Receiver Operator Characteristic” (ROC) 802 

curve. We calculated the “Area Under the Curve” (AUC) to measure the classifier's ability to 803 

distinguish between classes. We extended the ROC-AUC calculation to multiclass classification 804 

decoding, using the “one versus all technique” (i.e., the ROC for one class was generated to 805 

classify this class against everything else). 806 

 807 

The classification process and the calculation of the AUC were repeated 100-times to ensure a 808 

reliable estimate of the average classification performance. To evaluate the significance of the 809 

classifier performance, we used permutation testing. In this test, the response traces were kept 810 

the same, but their labels were randomly permutated. After repeating the permutation procedure 811 

100-times, we calculated the AUCs for a classifier trained on a dataset with randomly assigned 812 

labels and tested on true classes. This approach generated a null distribution, which we used 813 

for the empirical p-value calculation (i.e., the proportion of permutations for which the AUC is 814 

greater than the score obtained using the original data)39 (Table 19). 815 

 816 

Reporting summary 817 
 818 
Further information on research design is available in the Research Reporting Summary linked 819 

to this paper. 820 

 821 

Data availability 822 
 823 
The data that support the findings of this study will be deposited in the Brain Image Library (BIL; 824 

https://www.brainimagelibrary.org/index.html), as required for this BRAIN Initiative-funded 825 

project. They will also be available from the corresponding authors upon reasonable request. 826 
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 827 
Code availability 828 
 829 
The custom Matlab-based code used for acquisition, processing, and analysis of the data will be 830 

deposited in GitHub, as required for this BRAIN Initiative-funded project. It will also be available 831 

from the corresponding authors upon reasonable request. 832 
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Extended Data Fig. 1 | Approach for extracting and analyzing astrocyte syncytium 887 

calcium signals. 888 

a, The Regions of Activity (ROA) algorithm7 was used to extract and characterize astrocyte 889 

syncytium calcium signals. The example data shows one representative hit trial. Top, run 890 

velocity profile. Center, x-y-t rendering of active pixels detected within the (~510×640 µm field-891 

of-view (FOV). Bottom, the percentage of active pixels over time normalized to all labeled pixels 892 

within the FOV. b, Schematic of the astrocyte signal characteristics used for data analysis. Top, 893 

run velocity profile. Bottom, astrocyte syncytium calcium signal.  894 

  895 
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 896 

 897 

Extended Data Fig. 2 | Astrocyte syncytium response properties depend on the rest 898 

period between runs. 899 

a-d, Astrocytes' syncytium calcium response probability, onset, and strength in area M1/M2 900 

depends on the rest period between runs. This inter-run interval dependency was accounted for 901 

during data analysis, including only trials with >15 s rest periods between runs. a, Paired traces 902 

of running activity (left) and syncytium calcium signals (right), ordered by the inter-trial interval 903 

and aligned on the current run's onset (red lines). b, Astrocyte syncytium response probability 904 

as a function of the inter-run interval and trial type. c, Astrocyte syncytium response onset as a 905 

function of the inter-run interval and trial type. d, Astrocytes syncytium response strength, as 906 

quantified by response duration, peak, total activation extent, and mean pixel activation duration 907 

(from left to right), as a function of the inter-run interval and trial type. 908 

 909 
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 910 

 911 

Extended Data Fig. 3 | Astrocyte syncytium responses show regional differences. 912 

a-e, Astrocyte syncytium response onset and duration were comparable between areas M1 and 913 

M2 for the different trial types. In contrast, response peak, total activation extent, and mean 914 

pixel activation duration were significantly larger in area M1. a, Response onsets. b, Response 915 

durations. c, Response peaks. d, Total response extent. e, Mean pixel activation durations. 916 

 917 

 918 
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 921 

 922 

Extended Data Fig. 4 | Astrocyte syncytium responses correlate with dopamine signaling 923 

in rewarded trials. 924 

a, Astrocyte syncytium responses in hit trials, CR trials, and spontaneous runs (top to bottom) 925 

increase slightly with run duration. b, Astrocyte syncytium response offsets relative to run offset 926 

decrease strongly for longer run durations in hit (top) and CR (center) trials. Response offsets 927 

coincide with run offsets in 13-15 s-long runs. In contrast, response offsets for spontaneous 928 

runs (bottom) are only slightly modulated by run duration, coinciding mostly with run offsets. 929 

c, Astrocyte syncytium response peak varies with run duration for hit trials, CR trials, and 930 

spontaneous runs (top to bottom). 13 s-long runs produced the highest response peaks. Linear 931 

fits to the data from <13 s and >13 s-long runs showed that response peak values steadily rose 932 
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toward the "preferred" 13 s run duration and declined after that. Trials with response peaks of 933 

≤3% active pixels (gray) were excluded from the linear fits. LME analysis was used to derive fit 934 

significance. d, Astrocyte response duration and offset in rewarded hit and CR trials correlated 935 

with the period dopamine is present in the extracellular space after reward delivery. Dopamine 936 

signals were measured with the genetically encoded indicator dLight1.2 in layer 2/3 of cortical 937 

areas M1/M2 during detection task performance17. Top, run velocity profiles and corresponding 938 

average dLight1.2 transients for rewarded hit trials (green), unrewarded hit trials (brown), and 939 

spontaneous runs (cyan) aligned at the run onset. The traces are an average across ROIs 940 

active during reward (241 ROIs from four mice). Bottom, run velocity profiles and corresponding 941 

astrocyte syncytium responses for rewarded hit (198 trials, green) and CR trials (260 trials, blue) 942 

aligned at the run onset. 943 

 944 
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Extended Data Fig. 5 | Behavioral aspects can be decoded from astrocytic syncytium 947 

responses using machine learning approaches. 948 

a-d, Astrocyte syncytium signals carry behavioral information as indicated by the k-nearest 949 

neighbor (kNN) classifier's prediction accuracy. For each classification, confusion matrices, 950 

receiver-operating characteristic (ROC) curves and area under the ROC curves (AUC) for the 951 

classifier's output, and statistical analysis of significance based on permutation tests are shown 952 

(left to right). Error bars indicate s.e.m. a, The kNN classifier decoded the trial type from 953 

astrocyte syncytium responses significantly above chance level. Most confusions happened 954 

between hit and CR trials. The decoding performance was worst for miss trials. b, Animal 955 

performance level could be significantly decoded from astrocyte syncytium signals. 956 

c, Spontaneous run durations could be decoded from astrocyte syncytium responses. d, Task-957 

related run duration could be decoded from astrocyte syncytium responses. Confusions were 958 

more likely between neighboring run duration classes. Far-right plots in c and d show the 959 

decoding probabilities for a given run duration class as a function of distance from the true class 960 

(black line). The gray line depicts the average decoding probabilities based on permutation tests 961 

(see Methods). 962 
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Extended Data Fig. 6 | Astrocyte syncytium responses are behaviorally relevant. 967 

a-d, Separate classifications of correct and error trials reveal that information encoded by 968 

astrocyte syncytium calcium responses is relevant for the animal's behavior. For each 969 

classification, confusion matrices, receiver-operating characteristic (ROC) curves for the 970 

classifier's output and Area under the ROC curves (AUC), and statistical analysis of significance 971 

based on permutation tests are shown (left to right). Error bars indicate s.e.m. a, Decoding the 972 

animal's decision about stimulus presence or absence was possible from astrocytes' syncytium 973 

responses to hit and CR trials. b, Decoding the animal's decision was also possible when the 974 

classifier was trained on correct (hit and CR) but tested on erroneous (miss and FA) trials. 975 

Significant prediction of the animal's decision (miss-’no’, FA-’yes’) was confirmed by the AUC 976 

value. This value was significantly higher than AUC values obtained on a training set with 977 

randomly shuffled class labels. c, Information about stimulus intensity could be significantly 978 

decoded from astrocyte syncytium responses to hit trials. d, Miss trials lack behaviorally 979 

relevant sensory information, as the decoder fails to classify error trials according to stimulus 980 

intensity. 981 

 982 
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 986 

Extended Data Fig. 7 | Astrocyte syncytium responses depend on run occurrence.  987 

a-d, Astrocyte syncytium responses are significantly different in miss and CR trials with or 988 

without a subsequent run. During miss and CR trials, the animals remain still throughout the 989 

stimulus presentation phase. However, they start running in most CR trials during reward 990 

consumption and occasionally miss trials after stimulus offset. These trial types allowed for the 991 

comparison of trials with and without a run. a, Astrocyte syncytium response probability for miss 992 

trials with and without a subsequent run. b, Astrocyte syncytium response probability for CR 993 

trials with and without a subsequent run. c, Response onsets for ‘run’ and ‘no run’ trials 994 

averaged across miss and CR trial types aligned at stimulus onset. d, Astrocyte syncytium 995 

response strength, as quantified by response duration, peak, total activation extent, and mean 996 

pixel activation (from left to right), for ‘run’ and ‘no run’ trials averaged across miss and CR trial 997 

types. 998 

 999 
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Extended Data Tables 1002 

Table 1 | Numbers of trials included in the syncytium response analysis. 1003 

 Hit Miss CR FA Spont. 

   run no run run no run     
Significant response 198 17 253 260 6 15 106 

No significant response 23 4 20 30 1 3 61 
 1004 
 1005 
Table 2 | Generalized linear mixed-effects model for astrocyte syncytium response probability. All 1006 
qualifying trials (Table 1), followed by a run, were included in the analysis. Degrees of freedom: 717. 1007 

Behavioral Variable Coefficient Standard Error p-value 

Trial type hit vs. miss 3.48 2.93 0.23 

Trial type hit vs. CR -0.51 1.03 0.62 

Trial type hit vs. FA -2.94 3.61 0.42 

Trial type hit vs. spont. -2.96 1.12 0.01 

Trial type miss vs. CR 0.66 0.64 0.30 

Trial type miss vs. FA -0.01 0.88 0.99 

Trial type miss vs. spont. -0.83 0.61 0.18 

Trial type CR vs. FA -0.68 0.70 0.33 

Trial type CR vs. spont. -1.49 0.29 5·10-7 

Trial type FA vs. spont. -0.81 0.68 0.23 

Run duration 0.12 0.05 0.02 

Inter-run interval 0.04 0.01 5·10-4 

Trial type miss: Run duration -0.44 0.34 0.19 

Trial type CR: Run duration 0.02 0.07 0.74 

Trial type FA: Run duration 0.43 0.51 0.40 

Trial type spont.: Run duration 0.31 0.12 0.01 
 1008 
 1009 
  1010 
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Table 3 | Linear mixed-effects model for astrocyte syncytium response onset. All qualifying trials 1011 
(Table 1) with a run and significant syncytium response were included. Degrees of freedom: 590. 1012 

Behavioral Variable Coefficient Standard Error p-value 

Trial type hit vs. miss -0.07 0.40 0.85 

Trial type hit vs. CR 0.81 0.15 1·10-7 

Trial type hit vs. FA 0.64 0.41 0.12 

Trial type hit vs. spont. 0.60 0.20 0.002 

Trial type miss vs. CR 0.88 0.40 0.03 

Trial type miss vs. FA 0.71 0.54 0.19 

Trial type miss vs. spont. 0.68 0.40 0.09 

Trial type CR vs. FA -0.17 0.41 0.67 

Trial type CR vs. spont. -0.21 0.19 0.29 

Trial type FA vs. spont. 0.03 0.42 0.94 

Inter-run interval 0.04 0.01 5·10-4 

 1013 
 1014 
 1015 
 1016 
 1017 
Table 4 | Linear mixed-effects model for astrocyte syncytium response duration. All qualifying trials 1018 
(Table 1) with a run and significant syncytium response were included. Degrees of freedom: 589. 1019 

Behavioral Variable Coefficient Standard Error p-value 

Trial type hit vs. miss -2.04 0.91 0.02 

Trial type hit vs. CR -0.63 0.33 0.06 

Trial type hit vs. FA -3.82 0.94 5·10-5 

Trial type hit vs. spont. -3.16 0.48 1·10-10 

Trial type miss vs. CR 1.40 0.90 0.12 

Trial type miss vs. FA -1.78 1.19 0.13 

Trial type miss vs. spont. -1.12 0.88 0.20 

Trial type CR vs. FA -3.19 0.93 6·10-4 

Trial type CR vs. spont. -2.52 0.47 9·10-8 

Trial type FA vs. spont. -0.66 0.92 0.47 

Run duration 0.17 0.03 3·10-7 

Inter-run interval 0.03 0.01 1·10-6 

  1020 
 1021 
  1022 
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Table 5 | Linear mixed-effects model for astrocyte syncytium response peak. All qualifying 1023 
trials (Table 1) with a run and significant syncytium response were included. Degrees of 1024 
freedom: 588. 1025 

Behavioral Variable Coefficient Standard Error p-value 

Trial type hit vs. miss 0.04 0.22 0.87 

Trial type hit vs. CR -0.08 0.08 0.31 

Trial type hit vs. FA -0.61 0.22 6·10-3 

Trial type hit vs. spont. -0.33 0.10 2·10-3 

Trial type miss vs. CR -0.12 0.21 0.58 

Trial type miss vs. FA -0.65 0.3 0.03 

Trial type miss vs. spont. -0.36 0.22 0.09 

Trial type CR vs. FA -0.53 0.22 0.02 

Trial type CR vs. spont. -0.24 0.10 0.02 

Trial type FA vs. spont. 0.28 0.22 0.20 

Area (M2) -0.48 0.19 1·10-83 

Performance (high) -0.29 0.08 1·10-4 

Inter-run interval 0.01 0.001 7·10-13 
  1026 
 1027 
 1028 
 1029 
 1030 
Table 6 | Linear mixed-effects model for astrocyte syncytium response extent. All qualifying trials 1031 
(Table 1) with a run and significant syncytium response were included. Degrees of freedom: 588. 1032 

Behavioral Variable Coefficient Standard Error p-value 

Trial type hit vs. miss -0.31 0.14 0.03 

Trial type hit vs. CR -0.12 0.05 0.03 

Trial type hit vs. FA -0.64 0.15 2·10-5 

Trial type hit vs. spont. -0.54 0.07 3·10-14 

Trial type miss vs. CR 0.19 0.14 0.18 

Trial type miss vs. FA -0.33 0.19 0.08 

Trial type miss vs. spont. -0.23 0.14 0.10 

Trial type CR vs. FA -0.52 0.14 4·10-4 

Trial type CR vs. spont. -0.42 0.08 1·10-9 

Trial type FA vs. spont. 0.10 0.15 0.50 

Area (M2) -0.26 0.12 0.03 

Performance (high) -0.18 0.05 2·10-4 

Inter-run interval 0.008 0.001 6·10-14 

 1033 
 1034 

1035 
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Table 7 | Linear mixed-effects model for mean pixel activity duration. All qualifying trials (Table 1) 1036 
with a run and significant syncytium response were included. Degrees of freedom: 588. 1037 

Behavioral Variable Coefficient Standard Error p-value 

Trial type hit vs. miss -0.09 0.07 0.23 

Trial type hit vs. CR -0.05 0.03 0.60 

Trial type hit vs. FA -0.25 0.07 7·10-4 

Trial type hit vs. spont. -0.17 0.03 5·10-7 

Trial type miss vs. CR 0.03 0.07 0.62 

Trial type miss vs. FA -0.16 0.09 0.09 

Trial type miss vs. spont. -0.09 0.07 0.21 

Trial type CR vs. FA -0.19 0.07 0.006 

Trial type CR vs. spont. -0.12 0.03 2·10-4 

Trial type FA vs. spont. 0.07 0.07 0.31 

Area (M2) -0.20 0.09 0.02 

Performance (high) -0.07 0.02 0.005 

Inter-run interval 0.003 5·10-4 3·10-10 

 1038 
 1039 
 1040 
 1041 
 1042 
Table 8 | Linear mixed-effects models for astrocyte syncytium response strength probing 1043 
correct/error trial encoding. The categorical variable correct/error was included instead of trial type.  All 1044 
qualifying task trials (Table 1) with a run and significant syncytium response were included. Degrees of 1045 
freedom: 486. 1046 

Behavioral Variable Coefficient Standard Error p-value 

Response duration       

Correct/Error trials -2.66 0.73 3·10-4 

Run duration 0.16 0.04 5·10-6 

Inter-run interval 0.03 0.007 6·10-6 

Extent       

Correct/Error trials -0.40 0.10 2·10-4 

Performance (high) -0.15 0.05 0.005 

Inter-run interval 0.01 0.001 2·10-12 

Mean pixel activity duration       

Correct/Error trials -0.11 0.05 0.03 

Area (M2) -0.21 0.09 0.03 

Inter-run interval 0.003 5·10-4 2·10-9 

 1047 
 1048 
  1049 
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Table 9 | Linear mixed-effects model for astrocyte syncytium response onset probing decision 1050 
encoding (‘yes’ - hit and FA trials; ‘no’ - CR and miss trials). The categorical variable decision was 1051 
included instead of the trial type. All qualifying task trials (Table 1) with a run and significant syncytium 1052 
response were included. Degrees of freedom: 487. 1053 

Behavioral Variable Coefficient Standard Error p-value 

Response onset       

Decision (no) 0.68 0.15 5·10-6 

Inter-run interval -0.01 0.003 4·10-4 

 1054 
 1055 
 1056 
 1057 
Table 10 | Linear mixed-effects model testing the relationship between astrocyte syncytium 1058 
response and stimulus intensity. Only hit trials with a run and a significant astrocyte syncytium 1059 
response were included in the analysis (Table 1). Degrees of freedom: 240. 1060 

Behavioral Variable Coefficient Standard Error p-value 

Response onset       

Stimulus type (thresh.) 0.36 0.19 0.05 

Inter-run interval -0.01 0.01 0.05 
 1061 
 1062 
 1063 
 1064 
Table 11 | Linear mixed-effects models examining the astrocyte syncytium response's probability, 1065 
onset, and strength with respect to run occurrence. All trials with a significant syncytium response 1066 
were included (Table 1). All trials were aligned at trial onset. 1067 

Behavioral Variable Coefficient Standard Error p-value 
Degrees of 
Freedom 

Probability (miss trials)         

Run/No run (run) 4.2 0.74 1·10-12 292 

Probability (CR trials)        

Run/No run (run) 4.93 1.32 2·10-4 295 

Onset        

Run/No run (run) -2.10 0.43 2·10-5 297 

Response duration        

Run/No run (run) 3.50 0.86 6·10-5 294 

Response peak        

Run/No run (run) 1.45 0.22 9·10-11 294 

Response extent        

Run/No run (run) 1.75 0.14 2·10-29 297 

Mean pixel activity duration        

Run/No run (run) -0.09 0.07 0.25 297 
 1068 
  1069 
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Table 12 | Linear mixed-effects model for astrocyte syncytium response duration, testing for the 1070 
effect of run duration in hit trials, CR trials, and spontaneous runs. All qualifying trials (Table 1) with 1071 
a run and significant syncytium response for the respective trial types were included. 1072 

Behavioral Variable Coefficient Standard Error p-value 
Degrees of 
Freedom 

Hit trials         

Run duration 0.19 0.05 4·10-4 195 

Inter-run interval 0.06 0.01 9·10-5 195 

CR trials         

Run duration 0.12 0.05 0.01 257 

Inter-run interval 0.02 0.01 0.003 257 

Spontaneous runs         

Run duration 0.34 0.10 6·10-4 104 

  1073 
  1074 
 1075 
 1076 
 1077 
Table 13 | Linear mixed-effects model for astrocyte syncytium response onset, testing for the 1078 
effect of run duration in hit trials, CR trials, and spontaneous runs. All qualifying trials (Table 1) with 1079 
a run and significant syncytium response for the respective trial types were included. 1080 

Behavioral Variable Coefficient Standard Error p-value 
Degrees of 
Freedom 

Hit trials         

Run duration -0.009 0.02 0.61 195 

Inter-run interval -0.01 0.005 0.04 195 

CR trials        

Run duration 0.04 0.02 0.11 257 

Inter-run interval -0.01 0.004 0.006 257 

Spontaneous runs        

Run duration 0.42 0.06 3·10-11 103 

Inter-run interval -0.02 0.009 0.40 103 
 1081 
 1082 
  1083 
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Table 14 | Linear mixed-effects model for the astrocyte syncytium response's peak location 1084 
testing for the effect of run duration in hit trials, CR trials, and spontaneous runs. All qualifying 1085 
trials (Table 1) with a run and significant syncytium response for the respective trial type were included. 1086 

Behavioral Variable Coefficient Standard Error p-value 
Degrees of 
Freedom 

Hit trials         

Run duration 0.04 0.03 0.21 196 

CR trials         

Run duration 0.11 0.03 4·10-5 258 

Spontaneous runs         

Run duration 0.66 0.06 2·10-18 104 
  1087 
 1088 
 1089 
 1090 
 1091 
Table 15 | Linear mixed-effects model for astrocyte syncytium response offset aligned on run 1092 
onset testing for the effect of run duration in hit trials, CR trials, and spontaneous runs. All 1093 
qualifying trials (Table 1) with a run and significant syncytium response for the respective trial types were 1094 
included. 1095 

Behavioral Variable Coefficient Standard Error p-value 
Degrees of 
Freedom 

Hit trials         

Run duration 0.18 0.05 3·10-4 195 

Inter-run interval 0.50 0.01 4·10-4 195 

CR trials         

Run duration 0.16 0.04 6·10-5 257 

Inter-run interval 0.01 0.006 0.05 257 

Spontaneous runs         

Run duration 0.75 0.08 8·10-16 104 
  1096 
  1097 
  1098 
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Table 16 | Linear mixed-effects model for astrocyte syncytium response offset aligned at the run 1099 
offset, testing for the effect of run duration in hit trials, CR trials, and spontaneous runs. All 1100 
qualifying trials (Table 1) with a run and significant syncytium response for the respective trial types were 1101 
included. 1102 

Behavioral Variable Coefficient Standard Error p-value 
Degrees of 
Freedom 

Hit trials         

Run duration -0.82 0.05 2·10-37 195 

Inter-run interval 0.50 0.10 5·10-4 195 

CR trials        

Run duration -0.84 0.04 2·10-59 257 

Inter-run interval 0.01 0.006 0.05 257 

Spontaneous runs        

Run duration -0.25 0.08 0.002 104 
 1103 
 1104 
 1105 
 1106 
Table 17 | Linear mixed-effects model for determining the relationship between syncytium 1107 
response peaks and run duration. All qualifying trials (Table 1) with a run and significant syncytium 1108 
response (>3% active pixels peak value) were included. 1109 

Behavioral Variable Coefficient Standard Error p-value 
Degrees of 
Freedom 

Hit trials     

Run duration <13s 0.15 0.04 0.002 19 

Run duration >13s -0.02 0.01 0.12 70 

CR trials     

Run duration <13s 0.08 0.04 0.06 37 

Run duration >13s -0.02 0.01 0.27 99 

Spontaneous runs     

Run duration <13s 0.1 0.04 0.01 39 
 1110 
 1111 
 1112 
Table 18 | Optimized hyperparameters used in the kNN classification analyses. 1113 

Classification Nr. neighbors Distance Distance weight 

Rewarded trials/ spontaneous runs 7 correlation equal 

Rewarded/ error, non-rewarded 7 correlation equal 

Trial types (hit, miss, CR, FA, spont.) 9 correlation equal 

Performance 11 jaccard equal 

Run duration 5 cosine equal 

Decision 50 correlation inverse 

correlation: linear correlation between observations (data were treated as a sequence of values) 1114 
jaccard: Jaccard coefficient (the percentage of nonzero coordinates that differ) 1115 
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cosine: cosine of the angle between observations (data were treated as vectors) 1116 
 1117 
 Table 19 | Permutation tests evaluating the kNN classifier's decoding performance. All qualifying 1118 
trials (Table 1) with a run and significant syncytium response for the respective trial types were included. 1119 

Classification  mean AUC Standard Error p-value 

Rewarded and spont. trials 0.88 9·10-9 0 

Rewarded and erroneous trials 0.83 0.002 0 

Performance level (all trials used) 0.64 0.001 0 

Trial types (all trials used)    

hit 0.67 0.002 0 

miss 0.63 0.006 0.02 

CR 0.68 0.001 0 

FA 0.75 0.004 0.008 

spont. 0.79 0.001 0 

Run duration, spont. runs       

1-10s 0.93 0.001 0 

10-15s 0.90 0.002 0 

15-20s 0.99 0.001 0.02 

Run duration, task trials        

1-10s 0.72 0.002 0 

10-15s 0.66 0.001 0 

15-20s 0.58 0.002 0.01 

20-30s 0.68 0.001 0 

Decision       

correct trials decoded from correct trials 0.58 0.001 0 

error trials decoded from correct trials 0.68 - 0.03 

Stimulus       

correct trials decoded from correct trials 0.59 0.002 0.01 

error trials decoded from error trials 0.38 0.007 0.51 
 1120 
  1121 
 1122 
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