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Abstract. Recombination is a powerful evolutionary process that shapes the genetic
diversity observed in the populations of many species. Reconstructing genealogies in
the presence of recombination from sequencing data is a very challenging problem, as
this relies on mutations having occurred on the correct lineages in order to detect the
recombination and resolve the placement of edges in the local trees. We investigate the
probability of recovering the true topology of ancestral recombination graphs (ARGs)
under the coalescent with recombination and gene conversion. We explore how sample
size and mutation rate affect the inherent uncertainty in reconstructed ARGs; this sheds
light on the theoretical limitations of ARG reconstruction methods. We illustrate our
results using estimates of evolutionary rates for several biological organisms; in particular,
we find that for parameter values that are realistic for SARS-CoV-2, the probability of
reconstructing genealogies that are close to the truth is low.
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1. Introduction

The reconstruction of genealogies from sequencing data in the presence of recombina-
tion has remained an important but challenging problem. Several algorithms have been
developed recently for recovering the topology of local trees between recombination break-
points, capable of tackling very large datasets using heuristic methods (e.g. Kelleher et al.
2019; Speidel et al. 2019). However, all methods that use sequencing data alone rely on
mutations in the genealogical history in order to detect recombination and determine the
ordering of coalescence events. Particularly when mutation rates are low, there may thus
be significant uncertainty in the shape of the reconstructed local trees. Some tools (such
as ARGweaver, Rasmussen et al. 2014) instead infer a distribution over genealogies, al-
lowing inference methods to integrate over this uncertainty, although these are generally
limited by computational power and can handle only moderate sample sizes.

In this article, we calculate the probability that the true topology of the genealogy
can be recovered from the data, either in full or up to a specified number of ambiguous
internal edges, under some simplifying assumptions. This sheds light on the performance
of heuristic reconstruction methods, by quantifying how close to the truth they might get
in the best case scenario, and the performance of methods exploring the distribution over
compatible genealogies, by giving a sense of the size of the search space.

The coalescent with recombination is a widely used model for genealogies that extends
coalescent trees to ancestral recombination graphs (ARGs) (Griffiths and Marjoram 1997).
Under the commonly used infinite sites assumption, each mutation occurs at a new po-
sition of the genome. Recombination can then be detected using the four gamete test
(Hudson and Kaplan 1985): denoting the ancestral allele by 0 and the derived allele by 1,
if all four configurations 00, 01, 10 and 11 are observed at any two sites of a sample, then
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the sample could not have been generated by mutation alone and at least one recombi-
nation must have occurred. For a recombination to generate such incompatible sites, the
ARG topology must include a particular configuration of coalescence events preceding a
recombination, and mutations must fall on the correct edges of the recombination cycle.

Under the coalescent with recombination, Myers (2003) derives the probability that
conditional on a single recombination having occurred in the history of a sample, its
effect is detectable from the sequencing data. This is achieved by constructing recursion
equations for the probability of interest, by starting with the sample and considering each
next event backwards in time. We utilise similar ideas and expand our consideration to
the case of multiple recombination events, with the ARG topology constrained to be in
the shape of a galled tree, i.e. an ARG where the recombination cycles do not interact
with each other. This allows us to calculate the probability that, conditioning on R
recombinations having occurred in the sample’s history, these are all detectable, and the
topology of each local tree can be recovered fully (or up to a fixed number of ambiguous
internal edges). We also consider gene conversion—where a section of genetic material
is taken from one parent genome, and the endpoints from another parent genome—and
derive the probability that given one gene conversion event has occurred in the history of
the sample, this is detectable from the sequencing data.

Where possible, we illustrate our findings using mutation and recombination rate pa-
rameters that are reasonable for biological organisms. Using published estimates of evolu-
tionary rates for SARS-CoV-2, we take the population scaled mutation and recombination
rates to be approximately θ = 100 and ρ = 0.1 per genome, respectively (assuming a
generation time of 7.5 days (Li et al. 2020), Ne = 50 , mutation rate of 1 ·10−3 per site per
year (Duchene et al. 2020), recombination rate of 2 · 10−6 per site per year (Müller et al.
2021)). We also consider Drosophila melanogaster, with θ = 8 and ρ = 21 per kb, using
estimates of Chan et al. (2012). For human populations, typical rates are θ = ρ = 0.1
per kb, as used in previous analyses (Kelleher et al. 2019).

In Section 2, we first demonstrate our ideas in the simpler case that recombination is
disallowed, i.e. when the genealogy is constrained to be a binary tree generated under
the coalescent model. Then, in Section 3, we expand our results to include crossover
recombination (under a two-locus model), and consider the probability of recovering the
ARG topology when it is a galled tree. Further, in Section 4, we derive the probability
that a gene conversion event is detectable from sequencing data. Discussion is presented
in Section 5.

2. Recovering the topology of a tree

2.1. Knowledge of full tree topology. Disallowing recombination, we first consider
the probability that the tree topology can be deduced fully from a sample of sequencing
data. Without recombination, the coalescent history can be represented by a rooted
tree, and a mutation on each internal edge is necessary and sufficient for unambiguously
deducing the tree topology (Buneman 1971). In Figure 1, the first two trees are consistent
with the same sequencing sample, so the sample is not sufficient to uniquely identify the
coalescent tree topology. The third tree topology is uniquely associated with the sample,
even though fewer mutations occur. Note that mutations on the terminal branches are
not required in order to deduce the topology.

We note that some algorithms detect recombination by identifying changes to the mar-
ginal trees on either side of a breakpoint (Song and Hein 2005), so the detectability of
recombination depends on how accurately the tree topologies at each locus can be recon-
structed.
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Figure 1. Examples of tree topologies that can and cannot be uniquely recon-
structed from the data. Mutations are shown as dots; internal edges that do not
carry a mutation are highlighted in red.

In order to derive the probability that the tree topology can be reconstructed fully
from the data, we proceed by considering the genealogy backwards in time, and tracking
whether at least one mutation has occurred on each internal lineage before it undergoes
a coalescence event. At any point in time, each lineage can be in one of two states: if the
lineage has not mutated since the last coalescence event, it is in State 1, and otherwise in
State 2. Note that the terminal branches are taken to be in State 2.

Let nl count the total number of lineages in the tree, and nf count the number of
lineages currently in State 2, that are therefore free to coalesce without losing knowledge
of the tree topology. Define pnl

nf
as the probability that the full tree topology is known

given there are nf lineages in State 2, while nl lineages remain. Assigning all lineages to
be in State 2 at the present time, pnn gives the probability the topology is fully recoverable
starting with a sample size n .

We then construct recursion equations by considering the possible next event backwards
in time. Letting λ =

(
nl

2

)
+ nl θ/2 ,

• with probability
(
nl

2

)
/λ the event is a coalescence of two lineages in State 2 (the

number of lineages decreases by one, and the number of lineages in State 2 de-
creases by two);
• with probability (nl−nf )θ/2λ the event is a mutation of a lineage in State 1 (the
number of lineages in State 2 increases by one, and consequently the number of
lineages in State 1 drops by one);
• with probability nfθ/2λ , the event is a mutation of a lineage in State 2 (no change).

The recursion thus takes the form((
nl
2

)
+ nl

θ

2

)
pnl
nf

=

(
nf
2

)
pnl−1
nf−2 + (nl − nf )

θ

2
pnl
nf+1 + nf

θ

2
pnl
nf
, 0 ≤ nf ≤ nl, (1)

with initial condition p10 = 1 . This is the simplest case of recursions we present, with a
runtime of roughly n2 . Further on in the text, recursions become more complex, but can
be solved efficiently via dynamic programming and shouldn’t require any matrix inversion.
We use MATLAB to solve the recursions.

Figure 2 illustrates the results for various values of n and θ . The left panel shows that
the probability of knowing the full topology is monotonically decreasing in n for fixed θ ;
this is because larger values of n have shorter time periods between coalescence events, so
it is less likely that mutations will occur on all the necessary edges. The right panel shows
that the probability of detection for a sample of fixed size (n = 20) is increasing in θ , with
a limit of 1 as θ →∞ . However, note that θ ≈ 105 is required for near certainty that the
topology is recovered fully, which is unfeasibly large for biological samples (where typically
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θ ≤ 100). For θ = 100 , which is typical for SARS-CoV-2 genomes, the probability of
recovering the tree topology becomes very small for sample sizes over 25. For Drosophila
melanogaster, with θ ≈ 10 , the probability of recovering the true topology is minuscule
for n > 10 .

(a) Varying n for several fixed values of θ
(colours).

(b) Fixed n = 20 and varying θ .

Figure 2. Probability that the full tree topology is known.

Fu and Li (1993) derive the total length of internal and external branches in a coa-
lescent tree. Using our time scaling, the expected total length of internal branches is
2
(
(
∑n−1

j=1 1/j)− 1
)
. Given that mutations occur as a Poisson process with rate θ/2 , the

expected total number of mutations on interior branches is

θ

(
(
n−1∑
j=1

1/j)− 1

)
∼ θ log(n).

This gives some intuitive understanding of the above graphs: for a sample of size n , there
are n− 1 coalescent events, and thus a minimum of n− 2 mutations are required to have
one on each interior branch. Therefore, even before the precise placement of individual
mutations is considered, the total number of mutations needed to know the full topology
increases like n , while the number of mutations expected to occur on the interior branches
increases like log(n) . Hence, the probability of knowing the full tree drops to 0 quickly.

Figure 3. Two possible trees for the same sample data. Mutations are shown as
dots on the branches. Starred internal edges carry no mutations.

2.2. Incomplete knowledge of tree topology. The probability of recovering the full
topology decreases rapidly as n increases, so we next consider the probability of partial
knowledge of the tree. Here, the full topology is required except for the exact placement
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of n0 internal edges. As observed above, internal edges are fixed in the tree by having
a mutation between each consecutive coalescence, so an “uncertainty” equates to one
missed mutation. Figure 3 demonstrates two possible trees for n0 = 1 and n = 4 : the
trees are consistent with the same sample data, and have the same topology apart from
the interior branch joining the second sequence to the rest of the tree. A mutation at the
starred position would fix the reconstructed genealogy to one of these two possibilities.

We extend the results of the previous section by including n0 as a recursive index to
track the number of internal branches that have not undergone at least one mutation. By
considering the next event backwards in time when nf out of nl lineages are in State 2,
the equivalent recursion to (1) is((

nl
2

)
+ (nl − nf )

θ

2

)
pnl,n0
nf

=

(
nf
2

)
pnl−1,n0

nf−2 + (nl − nf )
θ

2
pnl,n0

nf+1

+ nf (nl − nf )pnl−1,n0−1
nf−1 +

(
nl − nf

2

)
pnl−1,n0−2
nf

. (2)

The initial conditions are p1,n0

0 = 1 = p1,n0

1 . Note that we are considering the probability
of full knowledge of the tree topology except for the position of up to n0 internal branches.
The probability of missing precisely n0 branches can be calculated as pn,n0

nf
− pn,n0−1

nf
.

(a) θ = 1 . (b) θ = 10 .

(c) θ = 100 . (d) For a fixed sample n = 20 varying θ over
biologically feasible values.

Figure 4. Probability of recovering the topology while allowing a small number
n0 of uncertain positions. Panels (a)-(c) show the probabilities for different values
of the mutation rate against sample size, for a range of n0 (colours). Panel (d)
shows the probabilities for a fixed sample size n = 20 against θ , for a range of
n0 (colours).
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Figure 4 shows how the probability of reconstructing the true topology up to n0 internal
branches varies with θ and n0 . Note that increasing n0 in panels (a)-(c) appears to shift
the probability curve to the right, for each value of θ , and that the magnitude of the shift
increases with θ . Panel (d) highlights that allowing even a small number of unresolved
edges results in a large increase in the probability of correctly reconstructing the rest of
the tree.

2.3. History of a specific lineage. Even allowing for some uncertainty in recovering the
placement of internal branches, the probability of knowing the tree topology still decreases
rapidly with increasing sample size. We next focus on the probability of determining the
history of a specific lineage. This is useful if there is particular interest in the history of a
specific sequence: for instance, in the context of viral genealogies, our results quantify the
probability that a particular viral strain can be accurately placed in the overall genealogy.
Figure 5 shows an example of a tree topology where the history of the lineage highlighted
in red can be recovered unambiguously, while allowing for uncertainty in the rest of the
tree topology. This, again, requires that mutations occur on all of the internal branches
highlighted in red.

Figure 5. Example of a tree with a single lineage of interest (highlighted in red).

This simplifies the model considered in Section 2.1, as the dependence on nl can be
dropped, with the recursions only focussing on the state of the one lineage. Here, n0

counts missed mutations that occur only on the single lineage of interest. The equivalent
to (1) in this setting is((

nl
2

)
+
θ

2

)
pnl,n0

1 =

(
nl − 1

2

)
pnl−1,n0

1 + (nl − 1)pnl−1,n0−1
1 +

θ

2
pnl,n0

2 ,(
nl
2

)
pnl,n0

2 =

(
nl − 1

2

)
pnl−1,n0

2 + (nl − 1)pnl−1,n0

1 . (3)

The initial conditions are p1,n0

1 = 1 = p2,n0

2 .
Figure 6 shows plots of the resulting probabilities of knowing the history of a specific

lineage. The probabilities at each point are consistently much greater for a single lineage,
and are non-negligible for large sample sizes. Taking the SARS-CoV-2 value of θ ≈ 100 ,
panel (a) shows that the genealogical history of a particular lineage from a sample size
of 20 has 75% chance of being reconstructed accurately. Panel (b) considers partial
knowledge of a single lineage, up to n0 missed edges. As before, even a small degree of
flexibility (up to three undetermined interior edges out of a sample of hundreds) leads to
a significant improvement in recoverability.

3. Recovering the topology of an ARG

We now extend our results to include crossover recombination, through analysing the
probability of recovering the (partial) ARG topology for a two-locus model. We constrain

6

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463724doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463724
http://creativecommons.org/licenses/by/4.0/


(a) Varying n for several fixed values of θ
(colours).

(b) θ = 100 , allowing up to n0 undetermined
internal edges (colours).

Figure 6. Solutions to the recursions focusing on a single lineage. Note the
longer scale on the x-axis in panel (b).

the shape of the ARG to be a galled tree, disallowing interaction between the recombina-
tion loops. An example of ARGs which are and are not galled trees is shown in Figure
7.

First, we explore the probability that an ARG generated under the coalescent with
recombination take the form of a galled tree, showing that our investigation is particularly
relevant when the sample size is relatively small or the recombination rate is moderately
low. Building on the work of Myers (2003), which presents detectability conditions in
the case of a single recombination, we then derive recursion equations for the probability
that the full (or partial) ARG topology is recoverable from the data, conditioning on R
recombinations.

Figure 7. Left panel: ARG with two recombinations which is a galled tree (the
recombination loops do not interact). Right panel: ARG that is not a galled tree,
as the two recombinations loops are intertwined.

3.1. Probability of an ARG being a galled tree. Gusfield (2014, p.237) defines a
galled recombination cycle in a phylogenetic graph as one which "shares no node with
any other recombination cycle", and hence a galled tree as one where each recombination
cycle satisfies this condition. Gusfield notes that ARGs are likely to be galled trees if
the recombination rate is low, or if there is reason to believe that recombination has
only occurred relatively close to the present. We derive an explicit expression for the
probability that an ARG with n leaves and known recombination rate ρ contains only
galled recombination cycles. Define an open recombination loop as one where the two
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recombinant lineages have not yet coalesced back with each other, looking backwards in
time.

First, we constrain the system by assuming that at most R recombinations have oc-
curred in the history of the sample, with the intention of later removing this conditioning
by taking R −→ ∞ . The relevant probabilities are qnl,r,R , being the probability that an
ARG has at most R recombinations in the full history, given that there are currently
nl lineages present, with r out of R possible recombination loops currently open. By
considering the genealogy backwards in time and conditioning on the next possible event,
this is solved via the following recursion:

qnl,R,R =
nl − 1

nl − 1 + ρ
qnl−1,R,R, (4)

qnl,r,R =
nl − 1

nl − 1 + ρ
qnl−1,r,R +

ρ

nl − 1 + ρ
qnl+1,r+1,R, r ≤ R, (5)

qnl,R,R = 0, r > R.

The initial condition is q1,r,R = 1, r ≤ R . Then qn,0,R gives the probability starting from
a sample of size n .

Now, let pnl,r,R be the probability that an ARG has at most R galled recombinations
in the history, conditional on nl lineages currently present in the sample, with r out of
R recombinations currently open. Any ARG with at most one recombination is trivially
galled, so pnl,r,1 = qnl,r,1 . This gives the boundary conditions for the general case:

nl
2
(nl − 1 + ρ)pnl,R,R = R · pnl−1,R−1,R−1

+

(
1

2
(nl − 2R)(nl − 2R− 1) + 2R(nl − 2R)

)
pnl−1,R,R, (6)

nl
2
(nl − 1 + ρ)pnl,r,R = r · pnl−1,r−1,R−1

+

(
1

2
(nl − 2r)(nl − 2r − 1) + 2r(nl − 2r)

)
pnl−1,r,R

+
ρ

2
(nl − 2r)pnl+1,r+1,R. (7)

Then pn,0,R/qn,0,R gives the probability that an ARG with n leaves is a galled tree,
conditional on at most R recombinations occurring. Taking R −→ ∞ removes the condi-
tioning on R (as a finite number of recombinations occurs in any history with probability
1).

Figure 8 illustrates the results for a range of recombination rates and values of R . The
left panel demonstrates that when the recombination rate is low, ARGs are galled trees
with high probability—this is both due to the ARGs being likely to contain at most one
recombination node (and hence being trivially galled), or the recombinations being ‘far
apart’ in the ARG so that the recombination loops are not likely to interact. The right
panel shows that, conditioning on two recombinations and assuming a low recombination
rate, the ARG is a galled tree with reasonably high probability, of around 0.4 when the
sample size is moderate. This suggests that the galled tree restriction might be reasonable
when analysing whole-genome SARS-CoV-2 data, for instance, and human or drosophila
samples of relatively short genomic regions.
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(a) Varying n for several fixed values of re-
combination rate (colours). To approximate the
limit R →∞ , a suitably high value of R = 75
was chosen.

(b) Varying n , conditioning on the number of
recombinations (colours). To average over ρ ∈
(0, 1) , a uniform prior was used.

Figure 8. Probability that an ARG is a galled tree.

3.2. Knowledge of full ARG topology. Conditioning on one recombination having
occurred in the history of a sample, Myers (2003) considers the probability of this recom-
bination being detectable, i.e. the probability that the recombination changes the ARG
topology, and mutations fall on the correct edges of the recombination loop to create
incompatibilities in the data. Incompatibilities can then be detected by the four gamete
test: under the infinite sites assumption and with the ancestral type known, at most two
of the three non-ancestral allelic types generated by any pair of sites can be present in the
data in the absence of recombination. The presence of three non-ancestral types therefore
indicates a recombination event between the two sites (Hudson and Kaplan 1985). A
topology changing recombination is one where the marginal trees to either side of the
recombination give differing labelled graphs.

We first outline the results of Myers (2003) for the detectability of a single recombina-
tion. Then, through constructing similar recursion equations, we extend to the case of
R ≥ 1 recombinations having occurred, with the ARG in the shape of a galled tree; we
calculate the probability that the ARG topology is recoverable, fully or with a specified
number of unresolved internal edges.

Figure 9. Positioning of mutations on the ARG with a single recombination that
are required for the recombination to be detectable. Ancestral type is assumed
to be 00 .

3.2.1. Detectability of a single recombination. In this section, we summarise the results of
Myers (2003, Section 4.3) calculating the probability that a recombination is detectable,
when conditioning on a single recombination with breakpoint at r ∈ [0, 1] . The necessary
conditions on the ARG topology and positions of mutations are illustrated in Figure 9;
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one of the shown configurations of mutations inside the recombination loop must occur
in order for the recombination to be detectable from the data. Denote A-type mutations
as those occurring to the left of the recombination breakpoint, and B -type those to the
right. Assuming that the ancestral type is known to be 00 , all of the configurations shown
in the Figure generate incompatible sites at A and B .

The probability of the recombination being detectable is calculated through construct-
ing recursion equations, beginning with the sample and tracking the state of each lineage
backwards in time. The possible states for the recombinant lineages emerging from the
left-hand side of the recombination node are given in Table 1. The states for the right-hand
lineage are equivalent, but with A and B reversed. Myers notes that for one recombi-
nation to be detectable, it is sufficient to have either lineage reach State 4, or for both
lineages to simultaneously be in state ≥ 2 .

Table 1. States described for the left recombinant edge denoted E

State 0 No coalescence has occurred on edge E since the recombination.
State 1 There has been at least one coalescence since the recombination.

No mutations have occurred since the last coalescence.
State 2 E has reached state 1 and a type A mutation has occurred since

the last coalescence.
State 3 E has reached state 2 and undergone one further coalescence.
State 4 E has reached state 3 and a type B mutation has occurred since

the last coalescence.

Let pni,j be the probability that while n lineages remain in the tree, E is in state i , and
F is in state j . Condition on the recombination occurring while k lineages are present.
The required recursion equations are then formulated by considering the next event back
in time which changes the state of either recombinant lineage. A mutation moves a lineage
in State 1 to State 2; a coalescence moves a lineage in State 2 to State 3 and reduces n
by 1.

3.2.2. Knowledge of full ARG topology. We now calculate the probability of recovering
the full ARG topology, conditioning on R recombinations having occurred. This requires
at least one mutation between each coalescence event, and also mutations within the
recombination loops occurring at positions certain to generate incompatible sites. This
requires more states to track the recombinant lineages. As we consider only galled trees,
the detection conditions stated above must hold in every gall.

A fixed number of recombinations R are allowed to occur in the history of a sample
of size n . Suppose that at some point in time, the total number of remaining lineages
is nl , and the number of non-recombinant lineages which have undergone a mutation
since the last coalescence event is nf . The other indices are given in the third col-
umn of Table 2, tracking the number of left recombinant lineages in various states (with
equivalent states for the right recombinant lineages). The indices i, j, k1, k2, l1, l2,m1,m2

(resp. e, a, b1, b2, c1, c2, d1, d2 ) count the number of left (resp. right) lineages in states 0,
1,..., 7. The index r tracks the number of recombination loops currently open. Note that
we must have

r = i+ j + k1 + k2 + l1 + l2 +m1 +m2 = e+ a+ b1 + b2 + c1 + c2 + d1 + d2.

Let

p
nl,nf ,r

i,j,k1,k2,l1,l2,m1,m2,e,a,b1,b2,c1,c2,d1,d2
(8)
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Table 2. States are described for the left recombinant edge denoted E (third
column gives the index that counts the number of lineages in each state).

State 0 No coalescence has occurred on edge E since the recombination. i
State 1 There has been at least one coalescence since the recombination. j

No mutations have occurred since the last coalescence.
State 2 E has reached state 1 and a type B mutation has occurred since k2

the last coalescence.
State 3 E has reached state 1 and a type A mutation has occurred since k1

the last coalescence.
State 4 E has reached state 3 and undergone one further coalescence. l1
State 5 E has reached state 4 and a type A mutation has occurred since m2

the last coalescence.
State 6 E has reached state 4 and a type B mutation has occurred since m1

the last coalescence.
State 7 E has reached state 6 and undergone one further coalescence. l2

be the probability that given r recombinations have occurred and nl lineages remain,
there are i recombination loops with left lineage in State 1, j in State 2, and so on. As
we restrict to the case of galled trees, none of the recombinant lineages can interact with
any other recombinant lineages except to close the recombination loop. The recursions for
this system are described in full in the Appendix, Section A.1, and the recursion solved
in MATLAB to find pn,n,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 .

3.3. Incomplete knowledge of ARG topology. We also extend this system to con-
sider the probability that the full topology is known apart from n0 unresolved internal
edges. This is done similarly to the case for binary trees described in Section 2, by in-
cluding more states to track each lineage, so the full details of the resulting equations are
presented in the Appendix, Section A.1.

3.4. One recombination. We first consider the results when conditioning on one re-
combination, setting R = 1 ; this is a realistic scenario when analysing sequencing data
from species with a low recombination rate. We fix ρ = 0.1 , being suitably small so that
the assumption of a single recombination is valid (Myers 2003), noting that this is the
estimated value of the recombination rate for SARS-CoV-2 genomes, and human samples
of length 1kb.

Figure 10 (a) shows solutions of the recursive system for various values of the param-
eters. Note that these curves are not monotonic: there must be a sufficient number of
coalescences above the recombination to create incompatible sites in the sample, but in-
creasing the number of lineages makes it unlikely that a mutation occurs between each
coalescence (required to make the topology fully detectable). The results demonstrate
that the probability of recovering the full ARG topology is very low for even moderate
values of θ , increasing very slowly as θ →∞ .

Figure 10 (b) demonstrates that allowing just a small number of ‘missed’ internal edges
substantially improves the probability of recovering the rest of the ARG topology correctly.
For instance, with n = 15 , the probability of recovering the ARG topology increases from
around 0.1 to 0.4 if up to three unresolved internal edges are allowed.

Solutions to the recursive system while varying the breakpoint across the genome, z ,
show that taking a breakpoint closer to the centre of the genome gives slightly higher
probabilities of detecting the full topology (see Figure 15 in the Appendix). For just
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(a) Breakpoint fixed at z = 0.5 , varying n for
various values of θ (colours).

(b) Fixed θ = 100 , varying n , for various num-
bers n0 of unresolved internal edges (colours).

Figure 10. Probabilities of recovering the correct ARG topology conditional on
one recombination.

detecting the recombination, a similar effect was noted by Myers (2003, p54), as mutations
must occur on both sides of the breakpoint, and mutation rate varies linearly with genome
length. By symmetry, having a breakpoint at z will result in identical probabilities to a
breakpoint at 1− z .

3.5. Two recombinations. While ARGs containing only one recombination are trivially
galled, Figure 8 shows that around 40 percent of trees containing 2 recombination nodes
will be galled for ρ = 0.1 . The probability of an ARG being a galled tree falls substantially
when conditioning on more than two recombinations, so we do not analyse this case in
further detail.

(a) Breakpoint fixed at z = 0.5 . Varying n for
various values of θ (colours).

(b) Fixed θ = 100 , varying n , for various
numbers n0 of unresolved internal edges
(colours).

Figure 11. Probabilities of recovering the correct ARG topology conditional on
two recombinations.

Figure 11 illustrates solutions of the recursion equations when conditioning on two
recombinations. The probabilities of recovering the full ARG topology are significantly
smaller, with less than a tenth of ARGs being fully recoverable even with an infinite
mutation rate, for n = 100 . Here, the conditioning restricts to two recombinations
within the history. However, if instead we condition on two galled recombinations, Figure
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8 suggests a maximum probability of 0.1/0.4 = 0.25 , meaning that a quarter of galled,
two-recombination trees are fully detectable when the mutation rate is very large. In com-
parison, this probability is closer to 0.7 when conditioning on one recombination. Figure
11 (b) demonstrates again that allowing a small number of unresolved edges increases the
probabilities substantially, but they still remain very low.

These results imply that even if an ARG reconstruction algorithm utilises all of the
available sequencing data, there is still likely to be significant uncertainty in resolving the
location of internal edges. This probability only decreases with increasing recombination
rate, and improves very slowly with increasing mutation rate. This makes it very unlikely
that reconstruction programs will successfully capture the full complexity of the ARG.

The parameter values θ ≈ 100 and ρ ≈ 0.1 , reasonable for SARS-CoV-2, might appear
to be optimal for creating genealogies that are fully recoverable from the data: low re-
combination rates increase the probability of seeing a small number of galled cycles, and
high mutation rates make it more likely that mutations will fall on all of the necessary
edges. However, our results show that at most 30% of one-recombination, and 10% of
two-recombination ARGS can be reconstructed fully.

4. Detectability of gene conversion

We have so far focused on crossover recombination events, where there is one breakpoint
in the genome with genetic material on either side taken from the left or right parent. Gene
conversion is also important in shaping genetic variation, although has been investigated
less thoroughly (Song, Ding, et al. 2008). Figure 12 illustrates the key difference between
crossover recombination (left panel) and gene conversion events (right panel). Genetic
material ancestral to the orange section is taken from the right parent and material
ancestral to the purple section from the left. In biological samples, the conversion tract
(orange) is typically small compared to the length of the genome.

Figure 12. Two parent genomes undergoing crossover recombination with break-
point at position z1 (left panel), and gene conversion with conversion tract be-
tween positions z1 and z2 (right panel).

In this section, conditioning on a single gene conversion event in the history of the
sample, we calculate the probability that this event is detectable (without the requirement
that the rest of the ARG topology is recovered fully).

Let ρ be the population scaled rate of gene conversion. Similarly to the case of crossover
recombination, a gene conversion is detectable if two pairs of sites spanning the two break-
points are incompatible. Label the sections of the genome undergoing the gene conversion
[0, z1) , (z1, z2) , (z2, 1] as A,B,C, respectively. Figure 13 demonstrates possible config-
urations of events inside the gene conversion loop. Following similar arguments to those
of Myers (2003) for the case of a single recombination, if one of the three possibilities
illustrated in Figure 13 appears as a subgraph of the ARG, the gene conversion is guaran-
teed to be detectable. Note that there is some flexibility in the arrangement of events, as
the positions of A and C can be interchanged, and additional coalescence events can be
added to the recombination loop. Note also that the sub-graphs corresponding to [0, z2)
and (z1, 1] each must have one of the configurations given in Figure 9.

The recursion relations for this scenario take a similar form to those described in Section
3.2.1. They therefore condition on a single gene conversion in the history, occurring
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Figure 13. Conditions for a gene conversion to be detectable. Gene conversion
nodes are labelled with the breakpoint positions. Each mutation is labelled by
the section of the genome on which it must occur.

while k lineages are present. Let pnl
i,j be the probability that the gene conversion will be

detectable, conditional on nl lineages currently in the ARG. Similarly to Myers (2003),
the recursion only considers the events subsequent to the gene conversion (backwards
in time), so nl will include the two recombinant lineages. As we assume only one gene
conversion event occurs in the history, it is more efficient to let index i track the state of
the left recombinant lineage E as it undergoes mutations and coalescences, and likewise
j for the right recombinant lineage F . The required states are detailed in full in the
Appendix, Tables 3 and 4. Unlike the case of crossover recombination, there is now
a broken symmetry as two mutations on the outside (purple) parts of the genome are
needed, and only one on the conversion tract (orange).

The full system of recursions is included in the Appendix, Section A.3. Each equation
takes the form((

nl
2

)
+ g(θ) + ρ

nl
2

)
pnl
i,j =

(
nl − 1

2

)
pnl−1
i,j + (nl − 2)pnl−1

i′,j′ +
∑
i′,j′

gi′,j′(θ)p
nl

i′,j′ , (9)

where gi,j(θ) are linear functions of θ which are different for each pair (i, j) , and gi,j(θ) =∑
i′,j′ gi′,j′(θ) . These equations are formed by considering the next state that could be

reached in the ARG, and applying the law of total probability. As some events will not
change the state of the ARG, the recursive equations can be expressed as

(total rate of events that change the ARG) · pnl
i,j =∑

i′,j′

(
[rate of event that results in transition from states (i,j) −→ states (i′,j′)] · pn

′
l

i′,j′

)
.

Events which change the state of the ARG include coalescences and mutations (as the
position of the gene conversion event is separately conditioned upon). Coalescence events
always reduce nl by one, and occur at rate

(
nl

2

)
. These may involve only non-recombinant

lineages, which will not alter the states i, j . If a recombinant lineage is involved, it may
change state, from State 0 −→ 1 or from State 3 −→ 4 (see the Appendix for definitions of
individual states); if the recombinant lineage is not in State 0 or 3, then the states i, j
remain unchanged, but nl decreases by 1. Mutation events may only alter the ARG’s
state if they occur on a recombinant lineage which is in State 1, 2, 4 or 5. The rate of an
A-type mutation is gi′,j′(θ) = θA/2 := z1 · θ/2 , and likewise for B -type and C -type. A
mutation event on a lineage in one of these states increases the state by 1.

The recursive system is solved to find pk0,0 , and summing over k to remove the condi-
tioning on when the gene conversion event occurs gives the desired full probability, P ,
that a detectable gene conversion events occurs, conditional on precisely one such event
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in the history. We have

P =

∑n
k=2

(∏n
l=k

l−1
l−1+ρ

)
ρ

k−2+ρ · p
k
0,0∑n

k=2

(∏n
l=k

l−1
l−1+ρ

)
ρ

k−2+ρ

(∏k
l=2

l−1
l−1+ρ

) =

∑n
k=2

(∏k−1
l=2

l−1
l−1+ρ

)
ρ

k−2+ρ · p
k
0,0∑n

k=2
ρ

k−2+ρ
k−1
k−1+ρ

. (10)

This is constructed as follows. Note that pk0,0 describes the state of an ARG directly
after the gene conversion (looking backwards in time), which took the number of lineages
from k− 1 to k . Therefore, a detectable history with the gene conversion starting from a
sample size n will have a sequence of n− k coalescences, followed by the gene conversion
event, followed by sufficient subsequent changes of state to allow the gene conversion to
be detectable. These events, respectively, have probabilities

n∏
l=k

l − 1

l − 1 + ρ
,

ρ

k − 2 + ρ
, pk0,0.

The denominator, conditioning on a single gene conversion, is constructed in a similar way,
requiring first n − k coalescent events followed by the gene conversion event. However,
after the gene conversion event only a further k coalescences are required, with probability

n∏
l=k

l − 1

l − 1 + ρ
.

Figure 14 (a) shows that detection probabilities for gene conversion events behave very
similarly to those derived by Myers (2003, p.54) for detecting a single recombination,
though are consistently slightly lower, as the gene conversion requires more mutation
events to be detectable. In Figure 14 (b), the length of the conversion tract is varied; for
scenarios where either the conversion tract, or its complement, is particularly short, the
probability of detection decreases, as there is a lower probability of a mutation falling on
the shorter section. As the mutation rate is assumed to be uniform across the genome,
a conversion length of 1/3 gives the highest probabilities of detection. Note that the
asymptotic probability as θ −→ ∞ tends to the probability that a single recombination
changes the ARG topology (and hence agrees in the limit θ −→ ∞ with the probability
given by Myers).

(a) Varying n for several fixed values of θ
(colours), with breakpoints at z = 0.33, 0.67

(b) θ = 100 , varying the length of the con-
verted section. Note the graph has been mag-
nified for clarity. Mutation rate is uniform over
the genome, and the conversion tract is centred
about 0.5.

Figure 14. Probability of gene conversion being detectable.

15

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463724doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463724
http://creativecommons.org/licenses/by/4.0/


5. Discussion

In this article, we have calculated the probability of recovering the tree or ARG topology
under the coalescent with recombination, when the ARG topology is constrained to be
in the shape of a galled tree. Galled trees have several attractive combinatorial and
algorithmic properties that do not hold for general ARGs. For instance, there exists a
polynomial time algorithm for reconstructing a parsimonious galled tree from sequencing
data, if this is possible (Gusfield et al. 2004; Wang et al. 2001); there is a concise necessary
and sufficient condition for the sample to be consistent with a galled tree (Song 2006); if
a genealogy is in the shape of a galled tree, the sample can also be derived on a true tree
(with no recombination) if at most one recurrent mutation per site is allowed (Gusfield
2014, Theorem 8.12.1). We have explicitly calculated the probability of an ARG being
a galled tree, shedding light on how applicable these results might be in the analysis of
real data. Our results indicate that genealogies in the form of galled trees are reasonably
likely to be seen for ρ < 1 with moderate sample size.

Our results can also shed light on some theoretical properties of genealogical reconstruc-
tion algorithms. While some recently developed methods can handle impressive quantities
of sequencing data, they are based on heuristic methods, making it difficult to obtain the-
oretical insights into their performance. In particular, while tsinfer retains polytomies (i.e.
nodes with more than two child lineages) where the order of coalescence events cannot
be resolved unambiguously, many other algorithms resolve the order of events randomly.
Our results give a sense of how many such polytomies might be present in the history
of a dataset, and how likely recombination events are to be detectable for a given value
of evolutionary parameters. This provides an upper bound on how well genealogies can
be reconstructed, even if the algorithm utilises all of the available sequencing data to the
fullest extent.

In the absence of recombination, our results demonstrate that allowing a small number
of unresolved internal edges can greatly improve the probability of reconstructing the rest
of the tree correctly. This suggests that, for certain values of the parameters, there are
likely to be a relatively small number of edges in the genealogy which are not supported
by mutations and could be placed at many plausible positions.

For large sample sizes, the probability of recovering the tree or ARG topology with a
high level of certainty is minuscule, for reasonable values of the mutation rate (such as
those estimated for SARS-CoV-2). This strengthens the case for using Bayesian methods
to integrate over the uncertainty of branch placements, or utilising additional data to
resolve ambiguous event ordering. For instance, Ramazzotti et al. (2021) analysed variant
frequencies using SARS-CoV-2 intra-host sequencing data, in order to resolve the ordering
of transmission events in genealogies built using consensus sequences (i.e. at the level of
one sequence per infected host).

For tractability, our analysis has focused on the particular case where the ARG topology
is that of a galled tree, under the coalescent with recombination. A natural extension of
this work would be to consider general ARGs and other models, with more complex
scenarios that might include multiple loci or non-constant population size.
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Appendix A. Supplementary Material

A.1. Model for full knowledge of the ARG. This section presents the recursion
equations for the probability of fully recovering the ARG topology. If a uniform mutation
rate along the genome is assumed, with total mutation rate θ/2 and a breakpoint at
position z ∈ [0, 1] ; then type A mutations occur at rate θA/2 := z · θ/2 and type B with
rate θB/2 := (1− z) · θ/2 . It should be noted that the specific placement of the mutation
within each locus does not matter.

For the sake of clarity, the subscript indices are contracted so that only those changing
at each step are shown. For instance,

p̃
n0,nl−1,nf−1,r
i−1,j+1 = p

n0,nl−1,nf−1,r
i,j,k1,k2,l1,l2,m1,m2,e,a,b1,b2,c1,c2,d1,d2

,

and p̃n0,nl,nf+1,r indicates that none of the recombinant states have changed.
The index r tracks the number of open recombination loops, so there is a restriction

r = i+ j + k1 + k2 + l1 + l2 +m1 +m2 = e+ a+ b1 + b2 + c1 + c2 + d1 + d2,

with n ≥ 2r . Any values of p̃ out of these bounds are immediately set to 0.
For clarity, the main equation is broken up into several parts. As stated in the main

text, the form of the equation is

(total rate of moves that change ARG state) · p̃n0,nl−1,nf−1,r =∑
[rate of event that results in transition from states (i, j)] · (p of resultant state).

The total rate of moves that change the state of the ARG is

Rate =

((
nl
2

)
+
ρnl
2

+
θ

2
(nl − nf − 2r)

+
θA
2
(j + k2 + l1 + a+ c1 + d2) +

θB
2
(j + l1 +m2 + a+ b2 + c1)

)

Moves that change the state of the ARG include the following event types.

(1) Coalescences of non-recombinant lineages, with rate

CNR =

(
nf
2

)
p̃n0,nl−1,nf−2,r+nf (n− 2r − nf )p̃n0−1,nl−1,nf−1,r+

(
n− 2r − nf

2

)
p̃n0−2,nl−1,nf ,r.

(2) The first mutation of a non-recombinant lineage since its last coalescence,

MNR = (n− nf − 2r)
θ

2
p̃n0,nl,nf+1,r.

(3) A coalescence of one recombinant lineage, and one non-recombinant (taking care
to distinguish whether the non-recombinant lineage has had a mutation since its
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last coalescence),

CR = i · nf · p̃
n0,nl−1,nf−1,r
i−1,j+1 + i · (n− 2r − nf ) · p̃

n0−1,nl−1,nf ,r
i−1,j+1 + e · nf · p̃

n0,nl−1,nf−1,r
e−1,a+1

+ e · (n− 2r−nf ) · p̃
n0−1,nl−1,nf ,r
e−1,a+1 + k1 ·nf · p̃

n0,nl−1,nf−1,r
k1−1,l+1 + k1 · (n− 2r−nf ) · p̃

n0−1,nl−1,nf ,r

k1−1,l+1

+ b1 · nf · p̃
n0,nl−1,nf−1,r
b1−1,c+1 + b1 · (n− 2r − nf ) · p̃

n0−1,nl−1,nf ,r

b1−1,c+1 + k2 · nf · p̃
n0,nl−1,nf−1,r
k1+1,k2−1

+k2 · (n− 2r−nf ) · p̃
n0−1,nl−1,nf ,r

k1+1,k2−1 + b2 ·nf · p̃
n0,nl−1,nf−1,r
a+1,b2−1 + b2 · (n− 2r−nf ) · p̃

n0−1,nl−1,nf ,r

a+1,b2−1

+m2 · nf · p̃
n0,nl−1,nf−1,r
l1+1,m2−1 +m2 · (n− 2r − nf ) · p̃

n0−1,nl−1,nf ,r

l1+1,m2−1 + d2 · nf · p̃
n0,nl−1,nf−1,r
c1+1,d2−1

+d2 · (n−2r−nf ) · p̃
n0−1,nl−1,nf ,r

c1+1,d2−1 +m1 ·nf · p̃
n0,nl−1,nf−1,r
l1+1,m1−1 +m · (n−2r−nf ) · p̃

n0−1,nl−1,nf ,r

l1+1,m1−1

+ d1 · nf · p̃
n0,nl−1,nf−1,r
c1+1,d1−1 + d1 · (n− 2r − nf ) · p̃

n0−1,nl−1,nf ,r

c1+1,d1−1 + j · nf · p̃n0−1,nl−1,nf−1,r

+ j · (n− 2r−nf ) · p̃n0−2,nl−1,nf ,r+ a ·nf · p̃n0−1,nl−1,nf−1,r+ a · (n− 2r−nf ) · p̃n0−2,nl−1,nf ,r

+ l1 · nf · p̃n0−1,nl−1,nf−1,r + l1 · (n− 2r − nf ) · p̃n0−2,nl−1,nf ,r + l2 · nf · p̃n0−1,nl−1,nf−1,r

+ l2 · (n−2r−nf ) · p̃n0−2,nl−1,nf ,r+c1 ·nf · p̃n0−1,nl−1,nf−1,r+c1 · (n−2r−nf ) · p̃n0−2,nl−1,nf ,r

+ c2 · nf · p̃n0−1,nl−1,nf−1,r + c2 · (n− 2r − nf ) · p̃n0−2,nl−1,nf ,r.

(4) A mutation event that changes the state of a recombinant lineage,

MR = j · θA
2
p̃
n0,nl,nf ,r

j−1,k1+1 +a·
θB
2
p̃
n0,nl,nf ,r

a−1,b1+1 +k2 ·
θA
2
p̃
n0,nl,nf ,r

k1+1,k2−1+b2 ·
θB
2
p̃
n0,nl,nf ,r

b1+1,b2−1+j ·
θB
2
p̃
n0,nl,nf ,r

j−1,k2+1

+a · θA
2
p̃
n0,nl,nf ,r

a−1,b2+1 + l1 ·
θB
2
p̃
n0,nl,nf ,r

l1−1,m1+1+c1 ·
θA
2
p̃
n0,nl,nf ,r

c1−1,d1+1+m2 ·
θB
2
p̃
n0,nl,nf ,r
m1+1,m2−1+d2 ·

θA
2
p̃
n0,nl,nf ,r

d1+1,d2−1

+ l1 ·
θA
2
p̃
n0,nl,nf ,r

l1−1,m2+1 + c1 ·
θB
2
p̃
n0,nl,nf ,r

c1−1,d2+1 + l2 ·
θ

2
p̃
n0,nl,nf ,r

l1−1,m2+1 + c2 ·
θ

2
p̃
n0,nl,nf ,r

c1−1,d2+1.

(5) The coalescence of two recombinant lineages, which for a galled tree must be the
result of an open recombination loop closing. This requires a factor of 1/r in the
probabilities, as each left recombinant lineage must choose to coalesce with its
partner out of the r possible right recombinant lineages available,

CRR =
l2
r
·
(
e·p̃n0−1,nl−1,nf ,r−1

l2−1,e−1 +a·p̃n0−1,nl−1,nf ,r−1
l2−1,a−1 +b1·p̃

n0−1,nl−1,nf ,r−1
l2−1,b1−1 +b2·p̃

n0−1,nl−1,nf ,r−1
l2−1,b2−1

+ c1 · p̃
n0−2,nl−1,nf ,r−1
l2−1,c1−1 + c2 · p̃

n0−2,nl−1,nf ,r−1
l2−1,c2−1 + d2 · p̃

n0−1,nl−1,nf ,r−1
l2−1,m2−1 + d1 · p̃

n0−1,nl−1,nf ,r−1
l2−1,d1−1

)
+
m1

r
·
(
e · p̃n0,nl−1,nf ,r−1

m1−1,e−1 + a · p̃n0,nl−1,nf ,r−1
m1−1,a−1 + b1 · p̃

n0,nl−1,nf ,r−1
m1−1,b1−1 + b2 · p̃

n0,nl−1,nf ,r−1
m1−1,b2−1

+ c1 · p̃
n0−1,nl−1,nf ,r−1
m1−1,c1−1 + c2 · p̃

n0−1,nl−1,nf ,r−1
m1−1,c2−1 + d2 · p̃

n0,nl−1,nf ,r−1
m1−1,m2−1 + d1 · p̃

n0,nl−1,nf ,r−1
m1−1,d1−1

)
+
d1
r
·
(
i · p̃n0,nl−1,nf ,r−1

i−1,d1−1 + j · p̃n0,nl−1,nf ,r−1
j−1,d1−1 + k1 · p̃

n0,nl−1,nf ,r−1
k1−1,d1−1 + k2 · p̃

n0,nl−1,nf ,r−1
k2−1,d1−1

+m2 · p̃
n0,nl−1,nf ,r−1
m2−1,d1−1 ++l1 · p̃

n0−1,nl−1,nf ,r−1
l1−1,d1−1

)
+
c2
r
·
(
i · p̃n0−1,nl−1,nf ,r−1

i−1,c2−1 + j · p̃n0−1,nl−1,nf ,r−1
j−1,c2−1

+ k1 · p̃
n0−1,nl−1,nf ,r−1
k1−1,c2−1 + k2 · p̃

n0−1,nl−1,nf ,r−1
k2−1,c2−1 +m2 · p̃

n0−1,nl−1,nf ,r−1
l2,m2−1

+ l1 · p̃
n0−2,nl−1,nf ,r−1
l−1,c2−1

)
+
k1
r
·
(
b1 · p̃

n0,nl−1,nf ,r−1
k1−1,b1−1 + d2 · p̃

n0,nl−1,nf ,r−1
k1−1,m2−1 + c1 · p̃

n0−1,nl−1,nf ,r−1
k1−1,c1−1

)
+
m2

r
·
(
b · p̃n0,nl−1,nf ,r−1

m2−1,b1−1 + d2 · p̃
n0,nl−1,nf ,r−1
m2−1,d2−1 + c1 · p̃

n0−1,nl−1,nf ,r−1
m2−1,c1−1

)
+
l1
r
·
(
b · p̃n0−1,nl−1,nf ,r−1

l1−1,b1−1 + d2 · p̃
n0−1,nl−1,nf ,r−1
l1−1,m2−1 + c1 · p̃

n0−2,nl−1,nf ,r−1
l1−1,c1−1

)
.
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(6) The opening of a new recombination loop,

R =
ρ

2

(
(n− nf − 2r) · p̃n0,n+1,nf ,r+1

i+1,e+1 + nf · p̃
n0,n+1,nf−1,r+1
i+1,e+1

)
. (11)

Then the full equation can be expressed as
Rate · p̃n0,nl,nf ,r = CNR + CR + CRR +MNR +MR +R. (12)

Boundary data is given by p
2,nf ,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0 = 1 for nf = 0, 1, 2 and 0 otherwise.

This is solved by first setting r = R , n = 2 and iterating over the recombinant lineage
state indices in reverse alphabetical order, then iterating forward in n until the sample
size is reached, then backwards in r .

The computation time can be estimated using simple reasoning, despite some of the
recursions looking quite complex. If a quantity is recursively defined using k integer argu-
ments, and evaluation of the quantity for fixed values of the k arguments (m1,m2, ..,mk)
needs evaluation of some function g(m1,m2, ..,mk) , then two questions need to be consid-
ered: how many different arguments are there, and for each, what is g? Suppose we have
a lower triangular matrix in k dimensions, and for each argument we need to evaluate all
arguments smaller in each argument, then computation time will grow as k2 ’th power. If
we only need to refer to arguments smaller by a constant number, then it grows as k ’th
power.

The computation time needed to evaluate these recursions is of the order of n0 ·n2 ·R17

where R is the total number of recombinations in the history. This quickly becomes
unfeasibly large, but the restriction

r = i+ j + k1 + k2 + l1 + l2 +m1 +m2 = e+ a+ b1 + b2 + c1 + c2 + d1 + d2,

can be exploited to significantly reduce the computation time. If B(r) is the number of tu-
ples of eight non-negative integers that sum to r , then B(1, 2, 3, 4, 5) = (8, 36, 120, 330, 792) ,
a major decrease from r17 . Exploiting this gives a reduced computational time of the order
of n0 · n2 · B(R)2 .
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A.2. Probability of topology known, varying breakpoint.

Figure 15. Fixed θ = 100 , varying breakpoint position z across [0, 0.5] .
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A.3. Detection of a gene conversion. As observed in the main section, there is a
certain amount of flexibility as to the order of the A- and C -type mutations in the history.
Therefore, conditioning on the order of these mutations on both the E and F lineages
is required. Under the uniform mutation rate assumption, with mutations occurring as
competing Poisson processes, the probability of a type A mutation occurring before a
type C is θA/(θA + θC) , where as before θA = θ · length(A). Events on distinct lineages
are independent.

Due to the breakdown of symmetry, the states for each lineage are given separately.

Table 3. States described for recombinant edge E

State 0 No coalescence has occurred since the recombination.
State 1 There has been at least one coalescence since the recombination.

No mutations have occurred since the last coalescence.
State 2 The first of the A/C-type mutations has occurred

since the last coalescence.
State 3 The second of the A/C-type mutations has occurred

since the last coalescence. This mutation must be
different to the previous mutation in state 2.

State 4 E has reached state 3, and undergone one further coalescence.
State 5 Type B mutation has occurred since the last coalescence.

Table 4. States described for recombinant edge F

State 0 No coalescence has occurred since the recombination.
State 1 There has been at least one coalescence since the recombination.

No mutations have occurred since the last coalescence.
State 2 A B-type mutations has occurred since the last coalescence.
State 4 F has reached state 3, and undergone one further coalescence.
State 5 The first of the A/C-type mutations has occurred

since the last coalescence.
State 6 The second of the A/C-type mutations has occurred

since the last coalescence. Again this mutation must be
different to the previous mutation in state 5.

Note that due to the choice of state labels, F does not have a State 3 equivalent. Again,
we use the phrasing that the ARG being in state (i, j) means E is in state i and F is in
state j .

The recombination will be detectable if E reaches state 5, or F reaches state 6, or E is
in a state > 2 and F in a state > 1 . If the ARG reaches one of these absorbing states,
the subsequent probability of detection is given by qn , the probability of no further gene
conversion events in the sample. We have qn =

∏n
m=2(m− 1)/(m− 1 + ρ) .

Denote the first of the A or C type mutations on lineage E (resp. F ) as l1 (resp. r1 )
and the second as l2 (resp. r2 ).

If l2 6= r2 , the ARG in state (2, 5) has the recombination detectable immediately, i.e.
pn2,5 = qn . If l2 = r2 , we have the relation((

n

2

)
+
θl2 + θr2

2
+
ρn

2

)
pn2,5 =

((
n

2

)
− 1

)
pn−12,5 +

θr2
2
qn +

θl2
2
qn,
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and for every combination of li, ri :((
n

2

)
+
θl2 + θr1

2
+
ρn

2

)
pn2,4 =

((
n

2

)
− 1

)
pn−12,4 +

θr1
2
pn2,5 +

θl2
2
qn

((
n

2

)
+
θl2
2

+
ρn

2

)
pn2,2 =

(
n− 1

2

)
pn−12,2 + (n− 2)pn−12,4 +

θl2
2
qn((

n

2

)
+
θl1 + θr2

2
+
ρn

2

)
pn1,5 =

((
n

2

)
− 1

)
pn−11,5 +

θr2
2
qn +

θl1
2
pn2,5((

n

2

)
+ θB +

ρn

2

)
pn4,1 =

((
n

2

)
− 1

)
pn−14,1 + θBq

n

((
n

2

)
+
θl1 + θr1

2
+
ρn

2

)
pn1,4 =

((
n

2

)
− 1

)
pn−11,4 +

θr1
2
pn1,5 +

θl1
2
qn((

n

2

)
+
θB
2

+
ρn

2

)
pn3,1 =

(
n− 1

2

)
pn−13,1 + (n− 2)pn−14,1 +

θB
2
qn((

n

2

)
+
θl1
2

+
ρn

2

)
pn1,2 =

(
n− 1

2

)
pn−11,2 + (n− 2)pn−11,4 +

θl1
2
pn2,2((

n

2

)
+
θB + θr2

2
+
ρn

2

)
pn2,1 =

((
n

2

)
− 1

)
pn−12,1 +

θr2
2
pn3,1 +

θB
2
pn2,2((

n

2

)
+
θB + θl1

2
+
ρn

2

)
pn1,1 =

((
n

2

)
− 1

)
pn−11,1 +

θl1
2
pn2,1 +

θB
2
pn1,2((

n

2

)
+
θr2
2

+
ρn

2

)
pn0,5 =

(
n− 1

2

)
pn−10,5 + (n− 2)pn−11,5 +

θr2
2
qn((

n

2

)
+
θr1
2

+
ρn

2

)
pn0,4 =

(
n− 1

2

)
pn−10,4 + (n− 2)pn−11,4 +

θr1
2
pn0,5((

n

2

)
+
θB
2

+
ρn

2

)
pn4,0 =

(
n− 1

2

)
pn−14,0 + (n− 2)pn−14,1 +

θB
2
qn((

n

2

)
+
ρn

2

)
pn3,0 =

(
n− 2

2

)
pn−13,0 + (n− 2)(pn−14,0 + pn−13,1 )((

n

2

)
+
ρn

2

)
pn0,2 =

(
n− 2

2

)
pn−10,2 + (n− 2)(pn−10,4 + pn−11,2 )((

n

2

)
+
θl2
2

+
ρn

2

)
pn2,0 =

(
n− 1

2

)
pn−12,0 + (n− 2)pn−12,1 +

θl2
2
pn3,0((

n

2

)
+
θl1
2

+
ρn

2

)
pn0,1 =

(
n− 1

2

)
pn−10,1 + (n− 2)pn−11,1 +

θl1
2
pn0,2((

n

2

)
+
θB
2

+
ρn

2

)
pn1,0 =

(
n− 1

2

)
pn−11,0 + (n− 2)pn−11,1 +

θB
2
pn2,0
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((
n

2

)
+
ρn

2

)
pn0,0 =

(
n− 2

2

)
pn−10,0 + (n− 2)(pn−10,1 + pn−11,0 )
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