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ABSTRACT 21 

Inbreeding can have negative effects on survival and reproduction, which may be of 22 

conservation concern in small and isolated populations. However, the physiological 23 

mechanisms underlying inbreeding depression are not well-known. The length of telomeres, 24 

the DNA sequences protecting chromosome ends, has been associated with health or fitness 25 

in several species. We investigated effects of inbreeding on early-life telomere length in two 26 

small island populations of wild house sparrows (Passer domesticus) known to be affected by 27 

inbreeding depression. Using genomic and pedigree-based measures of inbreeding we found 28 

that inbred nestling house sparrows have shorter telomeres. This negative effect of inbreeding 29 

on telomere length may have been complemented by a heterosis effect resulting in longer 30 

telomeres in individuals that were less inbred than the population average. Furthermore, we 31 

found some evidence of stronger effects of inbreeding on telomere length in males than 32 

females. Thus, telomere length may reveal subtle costs of inbreeding in the wild and 33 

demonstrate a route by which inbreeding negatively impacts the physiological state of an 34 

organism already at early life-history stages. 35 

 36 

INTRODUCTION 37 

Inbreeding may have significant detrimental effects on survival, reproduction, and 38 

resistance to disease and other stressors in wild populations (Keller & Waller, 2002). Such 39 

decline in fitness resulting from an increase in genome-wide homozygosity is known as 40 

inbreeding depression (Charlesworth & Willis, 2009) and is of major concern in small and 41 

isolated populations, in particular of endangered species (Bozzuto, Biebach, Muff, Ives, & 42 

Keller, 2019; Harrisson et al., 2019; Hedrick & Kalinowski, 2000). Increased homozygosity 43 

can lead to reduced fitness due to expression of deleterious recessive alleles (“dominance 44 

hypothesis”) or increased homozygosity at loci with heterozygote advantage 45 
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(“overdominance hypothesis”, Charlesworth & Willis, 2009). Regardless of the genetic basis 46 

for inbreeding depression, it is difficult to identify and quantify the physiological 47 

mechanisms underlying the fitness costs of inbreeding (Fox & Reed, 2011; Kristensen, 48 

Pedersen, Vermeulen, & Loeschcke, 2010; Losdat, Arcese, Sampson, Villar, & Reid, 2016).  49 

Telomeres are short DNA tandem repeats that are found at the tips of most eukaryotic 50 

chromosomes (Blackburn & Gall, 1978; Červenák, Sepšiová, Nosek, & Tomáška, 2021). 51 

Telomeres shorten during cell division (Harley, Futcher, & Greider, 1990), but may also 52 

shorten due to several other reasons including physiological processes generating oxidative 53 

stress (Barnes, Fouquerel, & Opresko, 2019; Monaghan & Ozanne, 2018; Reichert & Stier, 54 

2017; von Zglinicki, 2002). The high guanine content of telomeres (50%) makes them 55 

particularly vulnerable to oxidative stress (Kawanishi & Oikawa, 2004). Short telomeres can 56 

trigger apoptosis and telomere attrition is considered a hallmark of aging (López-Otín, 57 

Blasco, Partridge, Serrano, & Kroemer, 2013), although the causal involvement of telomere 58 

shortening in organismal senescence is not well understood (Simons, 2015). However, 59 

telomere length (TL) may reflect the cumulative stress experienced by an individual 60 

(Bateson, 2016; Monaghan, 2014), and TL or TL shortening are associated with health or 61 

fitness in several species (Barrett, Burke, Hammers, Komdeur, & Richardson, 2013; 62 

Chatelain, Drobniak, & Szulkin, 2020; Froy et al., 2021; Heidinger, Kucera, Kittilson, & 63 

Westneat, 2021; Wilbourn et al., 2018). Thus, TL is increasingly used as a biomarker of 64 

somatic integrity in studies of physiological or evolutionary ecology (Bateson & Poirier, 65 

2019; Haussmann, 2010; Pepper, Bateson, & Nettle, 2018; Young, 2018).  66 

Inbreeding depression can be caused by reduced immune response (Charpentier, 67 

Williams, & Drea, 2008; Reid, Arcese, & Keller, 2003) and higher maintenance metabolism 68 

(Ketola & Kotiaho, 2009), which increases oxidative stress (de Boer et al., 2018a; Okada, 69 

Blount, Sharma, Snook, & Hosken, 2011). Thus, inbred individuals may experience higher 70 
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levels of oxidative stress (Kristensen, Sørensen, Kruhøffer, Pedersen, & Loeschcke, 2005; 71 

Pedersen et al., 2008) and thus have shorter telomeres (von Zglinicki, 2002). We therefore 72 

hypothesize that TL could provide an integrative measure of the somatic costs associated 73 

with inbreeding depression in wild populations, with inbred individuals having shorter 74 

telomeres than outbred individuals. However, the few studies investigating associations 75 

between inbreeding and TL have found equivocal results. In line with our expectations, 76 

Bebbington et al. (2016) found that homozygosity was negatively associated with TL in wild 77 

Seychelles warblers (Acrocephalus sechellensis) and Seluanov et al. (2008) reported that 78 

telomeres were shorter in inbred laboratory strains of Norway rats (Rattus norvegicus) in 79 

captivity compared to a single wild-caught rat. Many domesticated species are generally 80 

assumed to be more inbred than their wild counterparts (Bosse, Megens, Derks, de Cara, & 81 

Groenen, 2018; Moyers, Morrell, & McKay, 2018; Wiener & Wilkinson, 2011). However, 82 

several studies have found that telomeres were longer in inbred domesticated strains of 83 

laboratory mice (Mus spp. and Peromyscus spp., Hemann & Greider, 2000; Manning, 84 

Crossland, Dewey, & Van Zant, 2002; Seluanov et al., 2008), in domesticated strains of pearl 85 

millet (Pennisetum glaucum, Sridevi, Uma, Sivaramakrishnan, & Isola, 2002), in 86 

domesticated inbred chicken (Gallus gallus, O’Hare & Delany, 2009), and across several 87 

species of domesticated mammals (Pepke & Eisenberg, 2021) compared to non-domesticated 88 

species. However, there were no clear differences in TL between inbred and wild leporid 89 

strains (Forsyth, Elder, Shay, & Wright, 2005). Other studies found no association between 90 

pedigree-based inbreeding coefficients and TL or telomere attrition in humans (Homo 91 

sapiens, Mansour et al., 2011), wild sand lizards (Lacerta agilis, Olsson, Wapstra, & Friesen, 92 

2018), or wild natterjack toads (Epidalea calamita, Sánchez-Montes et al., 2020). Becker et 93 

al. (2015) reported a weak non-significant but positive association between inbreeding and 94 

TL in wild white-throated dippers (Cinclus cinclus). 95 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463797doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463797
http://creativecommons.org/licenses/by/4.0/


5 

 

These contrasting results suggest that the telomere dynamics of captive, domesticated 96 

species living in a controlled environment may not be representative of wild, free-living 97 

populations (Chatelain et al., 2020; Pepke & Eisenberg, 2021; Weinstein & Ciszek, 2002). 98 

For instance, captive populations may be less vulnerable to inbreeding because inbreeding 99 

depression is greater under stressful environmental conditions (Fox & Reed, 2011; Reed, 100 

Briscoe, & Frankham, 2002). Furthermore, captivity may in itself provide conditions that 101 

change the telomere dynamics of the populations (Eisenberg, 2011), e.g. Hemann and Greider 102 

(2000) attributed the longer telomeres of inbred mice to effects of captive breeding and not 103 

inbreeding per se. For instance, TL shortening rates may increase during metabolically costly 104 

processes such as reproduction (Sudyka, Arct, Drobniak, Gustafsson, & Cichoń, 2019; Wood 105 

et al., 2021) and inbreeding may reduce fecundity (Keller & Waller, 2002). Such effects have 106 

been suggested to explain the observation of longer adult TL in some inbred domesticated 107 

species (Eisenberg, 2011), which could be resolved by measuring TL in early-life. 108 

Furthermore, most of the studies of domesticated animals compared TLs of different 109 

populations or species and their results may not be extrapolated to natural variation in TL and 110 

inbreeding levels within wild populations. Indeed, TL can vary considerably within species 111 

(Tricola et al., 2018) and across closely related species (Pepke, Ringsby, & Eisenberg, 2021) 112 

in the wild. Finally, it is not known if outbreeding could be accompanied by a heterosis effect 113 

(hybrid vigor, e.g. Charlesworth & Willis, 2009) acting on TL. For instance, the observed 114 

fitness benefits of outcrossing inbred populations (Frankham, 2015) could be reflected in TL 115 

restoration (Nuzhdin & Reiwitch, 2002; Ozawa et al., 2019). 116 

In this study, we utilized a long-term metapopulation study to examine how 117 

inbreeding affects early-life TL in wild house sparrows (Passer domesticus). Inbreeding has 118 

been shown to reduce fitness components such as recruitment probability, adult lifespan, and 119 

both annual and lifetime reproductive success in this metapopulation (Billing et al., 2012; 120 
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Jensen, Bremset, Ringsby, & Sæther, 2007; Niskanen et al., 2020), but the physiological 121 

effects underlying these phenomena remain unknown. We expect that inbred individuals will 122 

have shorter telomeres if TL is a general biomarker of somatic integrity and health (e.g. 123 

Bebbington et al., 2016; Boonekamp, Simons, Hemerik, & Verhulst, 2013; Wilbourn et al., 124 

2018). The effects of inbreeding on TL might be sex-specific (Benton et al., 2018; Billing et 125 

al., 2012; de Boer et al., 2018a; de Boer, Eens, & Müller, 2018b) or depend on environmental 126 

conditions (Armbruster & Reed, 2005; Szulkin & Sheldon, 2007). However, TL is negatively 127 

associated with body size or growth rate within many species (Monaghan & Ozanne, 2018; 128 

Ringsby et al., 2015) and may change with age (Hall et al., 2004; Remot et al., 2021) or vary 129 

between sexes (Barrett & Richardson, 2011; Remot et al., 2020) and habitat quality 130 

(Angelier, Vleck, Holberton, & Marra, 2013; McLennan et al., 2021; Wilbourn et al., 2017). 131 

We therefore account for body size (measured as tarsus length), age, sex, and habitat type, 132 

and test for an interaction between inbreeding levels and sex or habitat type, when 133 

investigating the association between TL and inbreeding. We use three different measures of 134 

inbreeding; marker-based estimates (n=371) which are better at capturing homozygosity and 135 

inbreeding caused by distant ancestors not included in a pedigree, and pedigree-based 136 

estimates (Kardos, Taylor, Ellegren, Luikart, & Allendorf, 2016) for which larger samples 137 

size may be obtained from long-term field studies (n=1195). Finally, to investigate a potential 138 

heterosis effect on TL, we test if the association between TL and inbreeding is different 139 

among outbred and inbred individuals. 140 

 141 

MATERIAL AND METHODS 142 

Study system 143 

This study was conducted in two natural populations of house sparrows in northern 144 

Norway. On the island of Hestmannøy (66°33’N, 12°50‘E), the sparrows live around dairy 145 
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farms, where they nest inside barns in cavities or nest boxes. The island is characterized by 146 

cultivated grassland, mountains, forest, and heathland. On the island of Træna (66°30’N, 147 

12°05‘E), 34 km further from the mainland, the sparrows live in gardens of a small human 148 

settlement and nest in nest boxes. This island is dominated by heathland, sparse forest, and 149 

gardens. The natural breeding environment for house sparrows is human habitation (Hanson, 150 

Mathews, Hauber, & Martin, 2020) and they have evolved their commensal relationship with 151 

humans for millennia (Ravinet et al., 2018). While human presence or farming provide the 152 

natural basis of existence for house sparrows (Ringsby, Sæther, Jensen, & Engen, 2006), 153 

demographic characteristics, breeding densities, and inbreeding rates are comparable to other 154 

small isolated wild animal populations (Araya-Ajoy et al., 2021; Jensen et al., 2007; 155 

Niskanen et al., 2020). In the years 1994-2013 (on Hestmannøy) and 2004-2013 (on Træna), 156 

nestlings at the age of 5-14 days were ringed with a unique combination of color rings for 157 

identification. Nestlings were also blood sampled by brachial venipuncture, and 158 

tarsometatarsus (tarsus) was measured with slide calipers to the nearest 0.01 mm. Tarsus 159 

length is here used as an index of body size (Rising & Somers, 1989; Senar & Pascual, 1997). 160 

Blood samples (25 μL) were stored in 96% ethanol at room temperature in the field and at -161 

20°C in the laboratory until DNA extraction (described in Pepke et al., submitted 2021b). 162 

Birds that were resighted or recaptured in the year following hatching (i.e. from 1995-2014 163 

on Hestmannøy and from 2005-2014 on Træna) were categorized as first-year survivors. 164 

Telomere length measurements 165 

Relative erythrocyte telomere length (TL) was measured in DNA derived from whole 166 

blood samples (n=2746 nestlings) using the qPCR method (Cawthon, 2002) as described in 167 

Pepke et al. (submitted 2021a). For this study, we included only individuals with two known 168 

parents and at least two known grandparents, or for which genomic inbreeding coefficients 169 

could be estimated (described below), resulting in a sample size of n=1370 individuals 170 
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(n=1161 from Hestmannøy and n=209 from Træna). TL was determined relative to the 171 

amount of a non-variable gene (GAPDH) and a reference sample (Criscuolo et al., 2009). All 172 

samples were randomized and run in triplicates on 96-well plates. All samples were 173 

processed within a few months by the same researcher (MLP) to reduce technical effects. 174 

Relative TL was computed using qBASE (Hellemans, Mortier, De Paepe, Speleman, & 175 

Vandesompele, 2007) while controlling for inter-run variation. All individual plate 176 

efficiencies were within 100±10% (see Pepke et al., submitted 2021a). Sex was determined 177 

by amplification of the CHD-gene as described in Jensen et al. (2007). 178 

Microsatellite pedigree construction  179 

Microsatellite (MS) pedigrees (n=1857 individuals from Hestmannøy and n=342 from 180 

Træna including non-phenotyped ancestors) were constructed based on 13 polymorphic 181 

microsatellite markers using CERVUS 3.0 (Kalinowski, Taper, & Marshall, 2007) as 182 

described in Billing et al. (2012). Maximum pedigree depth was 13 generations. We 183 

calculated inbreeding coefficients (FPED), which estimate the expected proportion of an 184 

individual’s genome that is identical by descent (IBD), based on the MS pedigree for 185 

individuals with two known parents and at least two known grandparents (n=1057 from 186 

Hestmannøy and n=138 from Træna, Table 1) using the R package pedigree (Coster, 2012). 187 

We also selected a subset of individuals with at least two full ancestral generations (i.e. four 188 

known grandparents) to only include the most robust estimates of FPED (n=313 from 189 

Hestmannøy and n=7 from Træna).  190 

Genomic inbreeding estimation 191 

Starting from year 1997 (Hestmannøy) or 2004 (Træna), birds that survived until 192 

recruitment (n=275 from Hestmannøy and n=96 from Træna) were genotyped for 200,000 193 

Single Nucleotide Polymorphisms (SNPs) as described in Lundregan et al. (2018). Two 194 

genomic inbreeding coefficients were then estimated using 118,810 autosomal SNPs not in 195 
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strong linkage disequilibrium, as described in Niskanen et al. (2020). The weighted average 196 

homozygosity over all loci from the genomic relationship matrix (FGRM) was estimated for 197 

the whole metapopulation simultaneously using the GCTA software (Yang, Lee, Goddard, & 198 

Visscher, 2011). FGRM gives more weight to homozygotes of the minor allele than of the 199 

major allele, and it is an estimate of the correlation between homologous genes of the two 200 

gametes of an individual relative to the current population (Yang et al., 2011). FGRM can be 201 

negative if the probability that the two homologous genes of an individual are IBD is smaller 202 

than that of two homologous genes being drawn at random from the reference population 203 

(Wang, 2014; Yang et al., 2011). Thus, the individuals with the smallest estimates of FGRM 204 

are expected to be outbred (hybrids) because of e.g. mating involving immigrants (Wang, 205 

2014). The proportion of the genome within runs-of-homozygosity (FROH ranging from 0 to 206 

1, McQuillan et al., 2008) was estimated using the PLINK software (Purcell et al., 2007). 207 

ROH arise through mating of individuals that are IBD, and may therefore be used to estimate 208 

inbreeding (Curik, Ferenčaković, & Sölkner, 2014). 209 

Statistical analyses 210 

To test whether TL was affected by inbreeding, we fitted linear mixed models 211 

(LMMs) using the package lme4 (Bates, Mächler, Bolker, & Walker, 2015) in R v. 3.6.3 (R 212 

Core Team, 2020). TL (response variable) was log10-transformed to conform to the 213 

assumption of normally distributed residuals and the models were fitted with a (continuous) 214 

fixed effect of one of the inbreeding coefficients (FPED [n=1195], FPED with at least two full 215 

generations known [n=320], FGRM [n=371], or FROH [n=371], see Table 1 for sample size 216 

details). Since genomic estimators of inbreeding (FGRM and FROH) were only available for 217 

recruits (first-year survivors), we tested whether the relationship between TL and FPED varied 218 

between survivors (“1”, n=206) and non-survivors (“0”, n=989) by including an interaction 219 

effect between FPED and first-year survival. Tarsus length increases with nestling age, so 220 
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tarsus length was age-corrected by taking the residuals from a regression of tarsus length on 221 

age and age squared. This allowed us to include both tarsus length and age in the models 222 

describing variation in TL. Thus, age-standardized tarsus length, fledgling age at sampling (in 223 

number of days), hatch day (ordinal date mean centered across years), population identity 224 

(categorical: Hestmannøy or Træna), and sex (categorical: male or female) were included as 225 

fixed effects in all models. We tested whether the effect of inbreeding on TL varied between 226 

sexes and populations by including two-way interaction terms between the inbreeding 227 

coefficient and sex or population identity. Random intercepts were fitted for year and brood 228 

identity to account for the non-independence of nestlings from the same year and brood. This 229 

also controls for within-brood effects of inbreeding levels (Olsson et al., 2018). We then 230 

tested whether the inclusion of the inbreeding coefficient and interaction terms improved the 231 

baseline model (without the inbreeding coefficient) by comparing the resulting 5 candidate 232 

models using Akaike’s information criterion corrected for small sample sizes (AICc, Akaike, 233 

1973; Hurvich & Tsai, 1989). Akaike weights (w) and evidence ratios (ER) were calculated to 234 

determine the relative fit of models to the data (Burnham & Anderson, 2002). To investigate 235 

heterosis effects on TL, we tested if the slopes of the regression between FGRM and TL 236 

differed between individuals that were more inbred than on average (FGRM > mean FGRM) and 237 

individuals that were less inbred than average (FGRM < mean FGRM). We did this by testing if 238 

the inclusion of a regression break point at the mean FGRM improved the models by 239 

comparing the resulting 9 candidate models using AICc. Models were validated visually 240 

using diagnostic plots of residuals, and model parameters are from models refitted with 241 

restricted maximum likelihood (REML). Estimates are reported with standard errors (SE) and 242 

95% confidence intervals (CI). Regression lines were visualized using ggplot2 (Wickham, 243 

2016). 244 

 245 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.463797doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463797
http://creativecommons.org/licenses/by/4.0/


11 

 

RESULTS 246 

Individual MS pedigree-based inbreeding coefficients (FPED) varied from 0.000-0.250 247 

(mean 0.007, 16.9% non-zero values). The highest ranked model explaining variation in TL 248 

included a negative effect of FPED, but only slightly improved the fit of the baseline model 249 

(∆2:1AICc=0.8 [subscripts denote which ranked models are compared], w1=0.36, 250 

ER1=w1/w2=1.49, Table S1 in the supporting information). Thus, there was a tendency for TL 251 

to be shorter in more inbred sparrows (βF_PED=-0.169±0.101, CI=[-0.366, 0.028], n=1195, 252 

Fig. 1a and Table 2). The model ranked third (∆3:1AICc=1.3) indicated that TL was less 253 

associated with FPED in males than in females (βF_PED*sex[female]=-0.167±0.196, CI=[-0.549, 254 

0.216]), while the model ranked fourth (∆4AICc=1.9) indicated that TL was less associated 255 

with FPED in the Hestmannøy population than in the Træna population 256 

(βF_PED*island[Hestmannøy]=0.115±0.314, CI=[-0.498, 0.728]). However, due to high uncertainty 257 

in these parameter estimates, these effects are not deemed reliable. 258 

When only including individuals with at least 2 full ancestral generations known 259 

(33.8% non-zero values), the model with FPED was ranked second (∆2:1AICc=1.1, βF_PED=-260 

0.205±0.198, CI=[-0.588, 0.189], n=320, Fig. 1b, Table S2-3) and the baseline model was 261 

highest ranked.  262 

There was a tendency for the negative effect of FPED on TL to be weaker in first-year 263 

survivors (n=206, mean TL=0.95±0.02, mean FPED=0.010±0.003) than in non-survivors 264 

(n=989, mean TL=0.97±0.01, mean FPED=0.007±0.001, βF_PED*first-year survival=0.304±0.201, 265 

CI=[-0.089, 0.697], n=1195, Fig. 1c, Table S4). This effect was uncertain with a CI 266 

overlapping zero. This suggests that the following analyses using genomic estimators of 267 

inbreeding in recruits were not biased towards stronger inbreeding effects in recruits. 268 

Genomic inbreeding coefficient (FGRM) estimates varied from -0.200 to 0.300 (mean 269 

0.016). The highest ranked model (∆2:1AICc=2.1, Table S5) showed that TL was shorter in 270 
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more inbred sparrows (βF_GRM=-1.517±0.293, CI=[-2.150, -0.920], n=371, Fig. 1d, and Table 271 

3). In addition, the effect of FGRM on TL was stronger in the Træna population 272 

(βF_GRM*island[Hestmannøy]=0.824±0.339, CI=[0.142, 1.529], Table 3) and in males 273 

(βF_GRM*sex[female]=0.644±0.314, CI=[0.034, 1.262], Table 3).  274 

Including a break point at the mean FGRM improved the model compared to a model 275 

with no break point (comparing models without interaction terms which were ranked 8 and 5: 276 

∆8:5AICc=4.5, see Table S6). The highest ranked model (∆2:1AICc=3.1, Table S6) revealed a 277 

strong negative association between TL and FGRM among individuals with FGRM<0.016 but no 278 

significant association among inbred individuals with FGRM>0.016 (Fig. 1e and Table 4). This 279 

indicates that a heterosis effect resulting in longer telomeres in outbred individuals may 280 

explain the negative association found between inbreeding and TL. This model also included 281 

an interaction term suggesting that this heterosis effect was stronger in the Træna population 282 

(Table 4). 283 

The runs-of-homozygosity inbreeding coefficient (FROH) estimates varied from 0.000-284 

0.240 (mean 0.010, 73% non-zero values). The best model provided evidence for a negative 285 

effect of FROH on TL (βF_ROH=-1.148±0.512, CI=[-2.144, -0.153], n=371, Fig. 1f, Table S7 286 

and 5). This model also indicated that the negative effect of FROH tended to be stronger in 287 

males (βF_ROH*sex [female]=0.915±0.610, CI=[-0.270, 2.102]). 288 

Overall, FPED was not a good predictor of genomic estimators of inbreeding (Fig. 289 

S1a,c; Pearson’s rP=0.05, n=371), but its relationships with FGRM and FROH were improved 290 

when including only individuals with at least two generations known (Fig. S1b,d; rP>0.30, 291 

n=59). FGRM and FROH were strongly correlated (Fig. S1e,f; rP=0.7, n=371). 292 

 293 

DISCUSSION 294 
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We found evidence across multiple complementary measures of inbreeding that more 295 

inbred house sparrow nestlings had shorter telomeres (Fig. 1). Individual differences in TL 296 

are established early in life (Entringer, de Punder, Buss, & Wadhwa, 2018), are heritable 297 

(Dugdale & Richardson, 2018; Pepke et al., submitted 2021a), and are positively associated 298 

with fitness in some species (Heidinger et al., 2012; Wilbourn et al., 2018). Thus, short 299 

telomeres in more inbred individuals may therefore underpin a physiological basis of 300 

inbreeding depression in fitness components that has been found in this species (Billing et al., 301 

2012; Jensen et al., 2007; Niskanen et al., 2020) and in other wild animal populations (Keller 302 

& Waller, 2002).  303 

The effect of inbreeding on TL in house sparrows was negative across all measures of 304 

inbreeding, but strongest when using genomic levels of inbreeding (Fig. 1d-f), probably 305 

because they are better at capturing homozygosity causing inbreeding depression compared 306 

to using a pedigree-based estimator (Fig. 1a-c, Alemu et al., 2021; Huisman, Kruuk, Ellis, 307 

Clutton-Brock, & Pemberton, 2016; Kardos et al., 2016). Mating between full siblings or 308 

between parent and offspring (F=0.25) resulted in a severe reduction in (relative) TL of 58% 309 

(FGRM), 48% (FROH) or 11% (FPED) compared to breeding between unrelated individuals 310 

(Tables 2, 3, and 5). TL may be under strong selection in natural populations (Voillemot et 311 

al., 2012). Consequently, strong inbreeding depression is expected for fitness components or 312 

traits that are under strong selection (Bérénos, Ellis, Pilkington, & Pemberton, 2016; DeRose 313 

& Roff, 1999), The analyses using genomic estimators of inbreeding were limited to recruited 314 

individuals, but the negative effect of inbreeding on TL may be even stronger if very inbred 315 

individuals, presumably with short telomeres, do not survive their first year and were thus 316 

excluded from our analyses (Jensen et al., 2007; Wilbourn et al., 2018). There was a tendency 317 

for such an effect when using pedigree-based levels of inbreeding (Fig. 1c and Table S4). We 318 

also found some evidence that inbreeding had stronger negative effects on TL in males than 319 
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females (Tables 3 and 5). Such sex-specific effects of inbreeding are known from other 320 

species (de Boer et al., 2018a; de Boer et al., 2018b; Janicke, Vellnow, Sarda, & David, 321 

2013), but have rarely been observed early in life. There was a weak tendency for longer TL 322 

in males than females (Tables 2-5), which has been observed in similar house sparrow 323 

populations (Pepke et al., submitted 2021b). Thus, males may be better buffered against the 324 

effects of inbreeding on TL. However, no sex-specific differences in inbreeding depression 325 

were observed in adult sparrows across this study metapopulation (Niskanen et al., 2020). 326 

Increased inbreeding may be accompanied by population decline in small populations 327 

(Bozzuto et al., 2019; Chen, Cosgrove, Bowman, Fitzpatrick, & Clark, 2016; Feng et al., 328 

2019), which can drive populations to extinction (O’Grady et al., 2006; Saccheri et al., 1998; 329 

Wright, Tregenza, & Hosken, 2007). Niskanen et al. (2020) showed that inbreeding 330 

depression in adult sparrows in our study system varied little across years or across the 331 

different island environments inhabited by these house sparrows. Hence, the strength of 332 

inbreeding depression is similar between populations, but due to harboring more inbred 333 

individuals, the relative effect is stronger in smaller populations (Niskanen et al., 2020). 334 

Small declining populations may be characterized by gradual population-wide and trans-335 

generational telomere erosion. For instance, Dupoué et al. (2017) observed shorter TL along 336 

an extinction risk gradient in populations of common lizards (Zootoca vivipara) that are 337 

disappearing from low altitudes at their southern range limit, presumably due to climate 338 

warming (Sinervo et al., 2010). Combined, these results suggest that TL may represent a 339 

potential physiological biomarker or molecular tool in conservation genetics addressing the 340 

viability of some small animal populations (Bebbington et al., 2016; Bergman et al., 2019; 341 

Dupoué et al., 2017; Madliger, Franklin, Love, & Cooke, 2020).  342 

The negative effect of FGRM on TL (Fig. 1d) was stronger among individuals that were 343 

less related than the average population (Fig. 1e). This suggests that longer telomeres in 344 
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outbred individuals may partly be attributed to a general heterosis effect (Charlesworth & 345 

Willis, 2009) involving mating between immigrants and native individuals (Dickel et al., 346 

2021; Ebert et al., 2002). In our study metapopulation, the proportion of dispersers among 347 

recruits can be high among the island populations (0.2 on average ranging from 0.0-1.0 348 

across years and islands, Ranke et al., 2021; Saatoglu et al., 2021), and hence most islands are 349 

not strongly differentiated (Niskanen et al., 2020). We found that the negative effect of FGRM 350 

on TL was stronger in the Træna population (Table 3-4). Træna is known to have a higher 351 

proportion of immigrants than Hestmannøy (Ranke et al., 2021), which may contribute to a 352 

stronger effect of heterosis in this population (Table 4). Furthermore, the gardens of Træna 353 

expose the sparrows to a different environment than the farms on Hestmannøy (Araya-Ajoy 354 

et al., 2019; Pärn, Ringsby, Jensen, & Sæther, 2012). Inbreeding depression is expected to 355 

have more severe consequences under environmental stress (Armbruster & Reed, 2005; Reed 356 

et al., 2002), such as harsh weather or competition (de Boer et al., 2018a; Fox & Reed, 2011; 357 

Marr, Arcese, Hochachka, Reid, & Keller, 2006). Telomeres shorten due to environmental 358 

stressors such as harsh abiotic conditions (Chatelain et al., 2020). We speculate that 359 

environmental differences between the habitats of the two sparrow populations may explain 360 

the exacerbated effects of inbreeding on TL in the Træna population. For instance, in juvenile 361 

Seychelles warblers a negative relationship between homozygosity and TL was found only in 362 

poor seasons, i.e. when food availability was low (Bebbington et al., 2016). In adult 363 

Seychelles warblers, the effect of homozygosity on TL was consistently negative across 364 

seasons, suggesting that the negative effects of inbreeding accumulate through life and are 365 

reflected in telomere erosion (Bebbington et al., 2016). Here, we showed that inbreeding 366 

manifests in TL already at the nestling stage in a similar wild passerine. 367 

We measured TL in blood, thus it is possible that inbreeding or heterosis only affected 368 

telomeres in erythrocytes (Manning et al., 2002; Olsson, Geraghty, Wapstra, & Wilson, 369 
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2020). However, this is unlikely because TLs often correlate well across tissues within the 370 

organism (Daniali et al., 2013; Demanelis et al., 2020; Reichert, Criscuolo, Verinaud, Zahn, 371 

& Massemin, 2013), especially in early-life (Prowse & Greider, 1995). Although genomic 372 

inbreeding estimates were only available for first-year survivors, we may have avoided 373 

confounding effects of selective mortality of inbred individuals at much older ages by 374 

measuring TL already at the nestling stage (Hemmings, Slate, & Birkhead, 2012; Sánchez-375 

Montes et al., 2020). Furthermore, since the mutation accumulation theory of senescence 376 

predicts that deleterious effects of inbreeding increase with age (Charlesworth & Hughes, 377 

1996; Keller, Reid, & Arcese, 2008), we may expect that the effect on TL is persistent and 378 

potentially stronger in adult sparrows. Thus, future studies are required to investigate if 379 

inbreeding leads to persistently eroded TL throughout life, and if there are combined fitness 380 

consequences of any interaction between TL and inbreeding in wild populations. Even in the 381 

absence of a mechanism directly linking inbreeding and TL via the effects of oxidative stress 382 

(cf. the introduction), we may find inbred individuals to have short telomeres, because 383 

inbreeding impairs other physiological processes that affects both fitness and TL (Bebbington 384 

et al., 2016). Thus, the conflicting evidence in the literature of an effect of inbreeding on TL 385 

(reviewed in the introduction) suggests that an experimental procedure is needed to further 386 

elucidate the mechanisms underlying the correlation reported here (Manning et al., 2002), 387 

especially in wild populations. 388 

In conclusion, the negative associations between inbreeding levels and TL found in 389 

this study suggest that TL may reveal subtle somatic costs of inbreeding in wild populations, 390 

and thereby demonstrates a potential route by which inbreeding negatively impacts the 391 

physiological state of an organism in early life. The observation of a potential heterosis effect 392 

on TL suggests that maintenance of dispersal within this metapopulation is important for 393 

mitigating the negative effects of inbreeding. 394 
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TABLES AND FIGURES 865 

Table 1: Number of nestling house sparrows of each sex and in total with early-life telomere 866 

length and inbreeding coefficient measurements within each population (Hestmannøy and 867 

Træna) for each measure of inbreeding (microsatellite pedigree-based inbreeding coefficient 868 

[FPED], genomic inbreeding coefficient [FGRM], and runs-of-homozygosity [FROH]). Number 869 

of individuals with at least two known full ancestral generations (gen.) are shown. Number of 870 

individuals with FGRM values above and below the mean FGRM, which is used as a break point 871 

to differentiate individuals that were more and less inbred than average, respectively, are also 872 

shown. 873 

Island population: Hestmannøy Træna  
 Males Females Sum: Males Females Sum: Sum: 
FPED (≥1.5 gen.) 511 546 1057 78 60 138 1195 
FPED (≥2 full gen.) 148 165 313 4 3 7 320 
FGRM 140 135 275 49 47 96 371 
FGRM > 0.016 43 63 106 26 32 58 164 
FGRM < 0.016 97 72 169 23 15 38 207 
FROH 140 135 275 49 47 96 371 
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 875 

Fig. 1: Associations between early-life telomere length (log10-transformed) and various 876 

individual measures of inbreeding in wild house sparrows: a) microsatellite pedigree-based 877 

inbreeding coefficient (FPED), b) FPED for individuals with at least two full ancestral 878 

generations known, c) testing for an interaction effect between FPED and first-year survival 879 

(survivors: n=206 in grey, dotted regression line; non-survivors: n=989 in black, solid 880 

regression line), d) genomic inbreeding coefficient FGRM, e) regression with a break point at 881 

the mean FGRM (0.016), and f) runs-of-homozygosity FROH. Black lines show the predicted 882 

effect of the inbreeding coefficient on TL from LMMs described in the text and the grey area 883 

shows 95% confidence intervals. Note that the y-axis is not scaled equally across panels and 884 

that color of points are graduated for visibility. 885 
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Table 2: Estimates, standard errors (SE), lower and upper 95% confidence intervals (CI) 887 

from the highest ranked model of FPED predicting variation in early-life TL (n=1195, see 888 

Table S2 and Fig. 1a). The model included random intercepts for brood identity (ID) and 889 

year. Estimates with CIs not overlapping 0 are shown in italics. 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

Table 3: Estimates, standard errors (SE), lower and upper 95% confidence intervals (CI) 900 

from the highest ranked model of FGRM predicting variation in early-life TL (n=371, see 901 

Table S6 and Fig. 1d).  902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

Response variable: log10(TL) Estimate SE Lower CI Upper CI 
intercept -3.1E-4 0.037 -0.072 0.071 
inbreeding coefficient (FPED) -0.169 0.101 -0.366 0.028 
tarsus length -0.003 0.002 -0.008 0.001 
sex [female] -0.006 0.006 -0.017 0.005 
island identity [Hestmannøy] 0.025 0.012 0.001 0.049 
age -0.003 0.002 -0.007 0.001 
hatch day -1.4E-4 1.5E-4 -4.4E-4 1.7E-4 
σ2

brood ID (n=500) 0.002  0.001 0.003 
σ2

year (n=20) 0.003  0.001 0.006 
Marginal R2 / Conditional R2: 0.014 / 0.393 

Response variable: log10(TL) Estimate SE Lower CI Upper CI 
intercept 0.069 0.038 -0.004 0.145 
inbreeding coefficient (FGRM ) -1.517 0.293 -2.150 -0.920 
tarsus length -0.001 0.005 -0.011 0.009 
sex [female] -0.016 0.011 -0.039 0.006 
island identity [Hestmannøy] -0.036 0.016 -0.068 -0.004 
age -0.006 0.003 -0.012 4.6E-4 
hatch day -3.3E-4 2.8E-4 -0.001 2.1E-4 
FGRM * island [Hestmannøy] 0.824 0.339 0.142 1.529 
FGRM * sex [female] 0.644 0.314 0.034 1.262 
σ2

brood ID (n=273) 0.004  0.002 0.006 
σ2

year (n=17) 0.001  0.000 0.003 
Marginal R2 / Conditional R2:  0.085 / 0.512 
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Table 4: Estimates, standard errors (SE), lower and upper 95% confidence intervals (CI) 911 

from the highest ranked model from Table S7 including a break point at FGRM=0.016 (n=371, 912 

see also Table S1). These effects of FGRM are shown in Fig. 1e. 913 

 914 

 915 

Table 5: Estimates, standard errors (SE), lower and upper 95% confidence intervals (CI) 916 

from the highest ranked model from of FROH predicting variation in early-life TL (n=371, see 917 

Table S8 and Fig. 1f). 918 

 919 

Response variable: log10(TL) Estimate SE Lower CI Upper CI 
intercept 0.021 0.037 -0.051 0.095 
inbreeding coefficient (FGRM )<0.016 -2.177 0.372 -3.051 -1.379 
inbreeding coefficient (FGRM )>0.016 0.189 0.498 -0.780 1.153 
tarsus length -0.001 0.005 -0.011 0.008 
sex [female] -0.006 0.010 -0.027 0.014 
island identity [Hestmannøy] -0.009 0.016 -0.041 0.024 
age -0.005 0.003 -0.011 0.001 
hatch day -3.7E-4 2.7E-4 -0.001 1.5E-4 
FGRM<0.016 * island [Hestmannøy] 1.562 0.465 0.610 2.576 
FGRM>0.016 * island [Hestmannøy] -0.026 0.561 -1.114 1.061 
σ2

brood ID (n=273) 0.003  0.001 0.005 
σ2

year (n=17) 0.001  0.000 0.003 
Marginal R2 / Conditional R2:    0.106 / 0.458 

Response variable: log10(TL) Estimate SE Lower CI Upper CI 
intercept 0.051 0.040 -0.027 0.130 
inbreeding coefficient (FROH) -1.148 0.512 -2.144 -0.153 
tarsus length -0.001 0.005 -0.011 0.010 
sex [female] -0.018 0.012 -0.041 0.005 
island identity [Hestmannøy] -0.020 0.016 -0.052 0.012 
age -0.005 0.003 -0.012 0.001 
hatch day -2.9E-4 3.0E-4 -0.001 2.9E-4 
FROH * sex [female] 0.915 0.610 -0.270 2.102 
σ2

brood ID (n=273) 0.006  0.004 0.008 
σ2

year (n=17) 0.002  4.6E-4 0.004 
Marginal R2 / Conditional R2:    0.029 / 0.579 
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