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Abstract

The human ability to introspect on thoughts, perceptions or actions − metacognitive ability − has

become a focal topic of both cognitive basic and clinical research. At the same time it has become

increasingly clear that currently available quantitative tools are limited in their ability to make

unconfounded inferences about metacognition. As a step forward, the present work introduces a

comprehensive framework and model of metacognition that allows for inferences about metacognitive

noise and metacognitive biases during the readout of type 1 decision values or at the confidence

reporting stage. The model assumes that confidence results from a continuous but noisy and potentially

biased transformation of decision values, described by a confidence link function. A canonical set of

metacognitive noise distributions is introduced which differ, amongst others, in their predictions about

metacognitive sign flips of type 1 decision values. Successful recovery of model parameters is

demonstrated and the model is validated on an empirical data set. In particular, it is shown that

metacognitive noise and bias parameters correlate with conventional behavioral measures. Crucially, in

contrast to these conventional measures, metacognitive noise parameters inferred from the model are

shown to be independent of type 1 performance. This work is accompanied by a toolbox (ReMeta) that

allows researchers to estimate key parameters of metacognition in confidence datasets.
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Introduction

The human ability to judge the quality of one’s own choices, actions and percepts by means of

confidence ratings has been subject to scientific inquiry since the dawn of empirical psychology (Pierce

and Jastrow, 1885; Fullerton and Cattell, 1892), albeit it has long been limited to specific research niches.

More recently, research on human confidence, and metacognition more generally, has accelerated and

branched off to other domains such as mental illnesses (Rouault et al., 2018; Hoven et al., 2019; Moritz

and Lysaker, 2019; Seow et al., 2021) and education (Fleur et al., 2021). Two main quantitative

characteristics have emerged to describe subjective reports of confidence: metacognitive bias and

metacognitive sensitivity.

Fullerton and Cattell (1892) already noted that “different individuals place very different meanings on

the degree of confidence. Some observers are nearly always quite or fairly confident, while others are

seldom confident.” (p. 126). Technically, metacognitive biases describe a general propensity of observers

towards lower or higher confidence ratings, holding the accuracy of the primary actions − type 1

performance − constant. From a perspective of statistical confidence, i.e. assuming that observers use

confidence ratings to report probability correct, an observer is often considered underconfident or

overconfident if confidence ratings are systematically below or above the objective proportion of correct

responses.

Metacognitive biases of this type have been quite extensively studied in the judgement and decision

making literature, in which they became known under the term calibration (Lichtenstein et al., 1977). A

central finding is that humans have a tendency towards overestimating their probability of being correct

(overconfidence bias), in particular in general knowledge questions (Lichtenstein et al., 1977, 1982;

Harvey, 1997; but see Gigerenzer et al., 1991). More recently, overconfidence in decisions has been

studied in psychiatric diseases, suggesting, for instance, underconfidence in individuals with depression

(Fu et al., 2005, 2012; Fieker et al., 2016) and overconfidence in schizophrenic patients (Moritz and

Woodward, 2006a; Köther et al., 2012; Moritz et al., 2014).

While the measurement of metacognitive biases is rarely problematized (more on this below), the

intricacies of measuring metacognitive sensitivity have been the subject of critical discussion and have

spurred a number of methodological developments (Nelson, 1984; Galvin et al., 2003; Maniscalco and

Lau, 2012, 2014; Fleming and Lau, 2014). The issue is not the measurement of sensitivity per se: defining

metacognitive (or type 2) sensitivity as the ability to discriminate between one’s correct and incorrect

responses, it is readily possible to compute this quantity using the logic of receiver operating curve

analyses (type 2 ROC; Clarke et al., 1959; Pollack, 1959). The main issue is that metacognitive sensitivity,

according to this definition, is strongly influenced by type 1 performance. The lower type 1 performance,

the higher will be the number of guessing trials and thus the higher will also be the expected number of

trials in which observers assign low confidence to accidental correct guesses. Expected metacognitive
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sensitivity thus strongly depends on type 1 performance. Indeed, the importance of such type 1

performance confounds has been demonstrated in a recent meta-analysis of metacognitive performance

aberrancies in schizophrenia (Rouy et al., 2020). The authors found that a previously claimed

metacognitive deficit in schizophrenia was present only in studies that did not control for type 1

performance.

A potential solution to the problem of type 1 performance confounds was proposed by Maniscalco and

colleagues through a measure called meta-d’ (Rounis et al., 2010; Maniscalco and Lau, 2012, 2014). The

idea of meta-d’ is to express metacognitive performance in terms of the type 1 sensitivity that an ideal

metacognitive observer would need in order to achieve the observed type 2 hit and false alarm rates.

Since meta-d’ is expressed in units of d’, it can be directly compared to − and normalized by − type 1

sensitivity. The introduction of this new measure, which is used either as a ratio measure

(Mratio = meta-d’ / d’) or as a difference measure (Mdiff = meta-d’ / d’), has since been widely used in the

metacognition literature. Fleming and Lau (2014) coined the term referred metacognitive efficiency for

such normalized measures.

Recently, however, these normalized measures have come under scrutiny. Bang et al. (2019) showed that

the type 1 performance independence of Mratio breaks down completely with the simple assumption of a

source of metacognitive noise that is independent of sensory noise. Guggenmos (2021) confirmed in a

recent systematic analysis of empirical (Confidence Database; Rahnev et al., 2020) and simulated data

that Mdiff is heavily dependent on type 1 performance. While Mratio is more stable across different type 1

performance levels, it is not entirely independent either. The very same factor (metacognitive noise) that

therefore plausibly introduces interindividual differences in metacognitive performance, might obviate a

type-1-performance-independent measurement of metacognitive efficiency in this way. Apart from type

1 performance, a recent study has shown that in empirical data the overall level of confidence likewise

affects Mratio (Xue et al., 2021) − a confound that may be caused by different levels of metacognitive

noise when overall confidence is low or high (Shekhar and Rahnev, 2021).

Here I argue that an unbiased estimation of latent metacognitive parameters requires a mechanistic

forward model − a process model which specifies the transformation from stimulus input to the

computations underlying confidence reports and which considers sources of metacognitive noise. In the

current work, I introduce such a model. It allows researchers to make parametric inferences about

metacognitive inefficiencies either during readout or during report, as well as about different types of

metacognitive biases. The basic structure of the model is shown in Figure 1. It comprises two distinct

levels for type 1 decision making (sensory level) and type 2 metacognitive judgments (metacognitive

level).

A few key design choices deserve emphasis. First, the model assumes that confidence is a second-order

process (Fleming and Daw, 2017) which assesses the evidence that guided type 1 behavior. In the

proposed nomenclature of Maniscalco and Lau (2016) it corresponds to a hierarchical model and not to a
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single-channel model in that it considers additional sources of metacognitive noise. A consequence of

the hierarchical structure is that it is essential to capture the processes underlying the decision values at

the type 1 level as precisely as possible, since decision values are the input to metacognitive

computations. In the present model, this includes an estimate of both a sensory bias and a sensory

threshold, both of which will influence type 1 decision values.

Second, recent work has demonstrated that metacognitive judgements are not only influenced by

sensory noise, but also by metacognitive noise (Bang et al., 2019; Shekhar and Rahnev, 2021). In the

present model, I therefore consider sources of metacognitive noise either during the readout of type 1

decision values or during report.

Third, human confidence ratings are often subject to metacognitive biases, which can lead to the

diagnosis of underconfidence or overconfidence. I consider three different parameters that can be

interpreted as metacognitive biases either at readout, at the stage of confidence computation or during

report. The interpretation of these parameters as metacognitive biases entails the assumption that

observers aim at reporting probability correct with their confidence ratings (statistical confidence;

Hangya et al., 2016). Although I discuss link functions that deviate from this assumption, in the main

model outlined here, the transformation of sensory evidence to confidence therefore follows the logic of

statistical confidence.

I demonstrate the issues of conventional measures of metacognitive ability and metacognitive bias, in

particular their dependency on type 1 performance, and show that the process model approach can lead

to unbiased inferences. Finally, I validate the model on a recently published empirical dataset (Shekhar

and Rahnev, 2021). I illustrate for this dataset how model parameters can describe different facets of

metacognition and assess the relationship of these parameters to conventional measures of

metacognitive ability and metacognitive bias.

This article is accompanied by a toolbox − the Reverse engineering of Metacognition (ReMeta) toolbox,

which allows researchers to apply the model to standard psychophysical datasets and make inferences

about the parameters of the model. It is available at github.com/m-guggenmos/remeta.
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Figure 1. Computational model. Input to the model is the stimulus variable x, which codes the stimulus category

(sign) and the intensity (absolute value). Type 1 decision-making is controlled by the sensory level. The processing

of stimuli x at the sensory level is described by means of sensory noise (σs), bias (δs) and threshold (ϑs) parameters.

The output of the sensory level is the decision value y, which determines type 1 decisions d and provides the input

to the metacognitive level. At the metacognitive level it is assumed that the dominant source of metacognitive

noise is either noise at the readout of decision values (noisy-readout model) or at the reporting stage (noisy-report

model). In both cases, metacognitive judgements are based on the absolute decision value |y|, leading to an

internal representation of metacognitive evidence ẑ. While the “readout” of this decision value is considered

precise for the noisy-report model (z = ẑ), it is subject to metacognitive readout noise in the noisy-readout model

(z ∼ fm(ẑ; σm), where σm is a metacognitive noise parameter). Moreover, the readout might be subject to a first

metacognitive bias described by the additive parameter δm. Finally, a link function − described by the confidence

slope 𝜑m − transforms metacognitive evidence to confidence ĉ. In the case of a noisy-report model, the dominant

metacognitive noise source is during the report of confidence, i.e. confidence reports c are noisy expressions of the

internal confidence representation ĉ.

Results

Results are structured in three parts. The first part introduces the architecture and the computational

model, from stimulus input to type 1 and type 2 responses. The second part provides the mathematical

basis for model inversion and parameter fitting and systematically assess the success of parameter

recovery as a function of sample size and varied ground truth parameter values. Finally, in the third part,

the model is validated on an empirical dataset (Shekhar and Rahnev, 2021).
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1 Computational model

1.1 Computing decision values

For the model outlined here, the task space is restricted to two stimulus categories referred to as S− and

S+. Stimuli are described by the stimulus variable x, the sign of which codes the stimulus category and the

absolute value |x| codes the intensity of the stimulus. The sensory level computes decision values ŷ from

the stimulus input x as follows:

The sensory bias parameter δs∈ℝ captures systematic preferences for one response category (Figures

2A,B,D). In addition, the sensory threshold ϑs ∈ℝ+ defines the minimal stimulus intensity which is

necessary to drive the system, i.e. above which the observer’s type 1 choices can be better than chance

level (Figures 2C,D). Note that a sensory threshold parameter should only be considered if the stimulus

material includes intensity levels in a range at which participants perform close to chance. Otherwise the

parameter cannot be estimated and should be omitted, i.e. Equation (1) reduces to ŷ = x − δs.

In the model described here (henceforth referred to as the primary model) I assume that decision values

can be linearly constructed from the stimulus variable x. In practise, this may often be too strong of an

assumption and it may thus be necessary to allow for a nonlinear transformation of x (‘nonlinear

transduction’, see e.g. Dosher and Lu, 1998). In supplementary section 1.1, I address this possibility with

an additional nonlinear transformation parameter γs.

The final decision value y is subject to sources of sensory noise σs, described by a logistic distribution

fs(y):

Equation 2 is parameterized such that σs corresponds to the standard deviation of the logistic

distribution. Figures 2E and 2F show two examples with low and high sensory noise σs, respectively. The

logistic distribution was chosen over the more conventional normal distribution due to its explicit

analytic solution of the cumulative density − the logistic function. In practise, both distributions are

highly similar and which one is chosen is unlikely to matter.

In the primary model I assume that sensory noise σs is constant across the stimulus intensity spectrum.

In supplementary section 1.2 I extend this notion to signal-dependent noise.

Type 1 decisions d between the stimulus categories S+ and S− are based on the sign of y:
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Figure 2. Simulated data exemplifying the effect of different model parameters of the sensory level on the

probability of choosing S+. Data are generated for 100 simulated observers and 10000 trials per observer. The

probability of choosing S+ is computed as the proportion of choices for S+ for each simulated stimulus intensity.

Shaded areas reflect the standard deviation across observers. Note that as an alternative to this simulation, choice

probabilities can also be analytically computed by the posterior given in Equation 6. (A) A negative sensory bias δs

shifts responses towards the stimulus category S−. (B) A positive sensory bias δs shifts responses towards the

stimulus category S+. (C) Threshold ϑs. Stimulus intensities below the threshold lead to chance-level performance.

(D) Bias δs and threshold ϑs. Example for simultaneous non-zero values of the bias and threshold parameter. (E)

Model with a relatively low level of sensory noise σs. (F) Model with a relatively high level of sensory noise σs.

1.2 From decision values to metacognitive evidence

The decision values computed at the sensory level constitute the input to the metacognitive level. I

assume that metacognition leverages the same sensory information that also guides type 1 decisions (or

a noisy version thereof). Specifically, metacognitive judgements are based on a readout of absolute

decision values |y|, respecing a metacognitive bias in the form of a readout term δm∈ℝ:

Henceforth I refer to ẑ as metacognitive evidence. Figure 3A illustrates the effect of the readout term δm

on confidence.
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1.3 The link function: from metacognitive evidence to confidence

The transformation from metacognitive evidence to predicted confidence ĉ is described by a link

function. A suitable link function must be bounded, reflecting the fact that confidence ratings always

have lower and upper bounds, and increase monotonically.

I assume that observers aim at reporting probability correct, leading to a logistic link function in the case

of the logistic sensory noise distribution (Equation 2). Without loss of generality, I use the range [0;1] for

confidence ratings, such that a confidence of 0 indicates chance level probability (0.5) and a confidence

of 1 the expectation of perfect type 1 performance. With these constraints and using the simple

mathematical relationship between the logistic function and the tangens hyperbolicus, one arrives at the

following link function:

Note that I use the variable z as opposed to ẑ, to indicate that the metacognitive evidence that enters

the link function may be a noisy version of ẑ (see the description of the noisy-readout model below). The

confidence slope 𝜑m∈ℝ+ describes the steepness of the relationship between decision values and

confidence (Figure 3B) and may be interpreted as a metacognitive bias (see Result section 1.5). For

𝜑m = 1, Equation 5 describes confidence as computed by an ideal metacognitive observer.

Many other link functions are conceivable, which do not assume that observers aim at expressing

confidence as probability correct. In particular, such link functions may not involve an estimate of

sensory noise σs.  Supplementary section 2 provides an overview of alternative link functions.

I refer to ĉ as the predicted confidence, which may be different from the ultimately reported

confidence c. This distinction becomes important when metacognitive noise is considered at the level of

the report (see Result section 1.7).
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Figure 3. Metacognitive parameters and link function. Confidence data are generated for 100 simulated observers

(10000 trials per observer) with noise added to confidence reports (see section 1.7). Shaded areas reflect the

standard deviation across observers. Note that 𝜑m equals 1 for the link function of an ideal observer. (A) Readout

term δm. The readout term is an additive term for the readout of decision values. Note that the readout term

applies already at the level of decision values and hence does not affect the relationship between metacognitive

evidence and confidence. Here, its effect is only visible in terms of a reduced maximum (δm < 0) and increased

minimum (δm > 0) level of metacognitive evidence. (B) Confidence slope 𝜑m. A higher confidence slope leads to a

steeper relationship between type 1 decision values and confidence. When assuming that an observer aims at

computing a probability correct, the confidence slope may be interpreted as underconfidence (𝜑m < 1) or

overconfidence (𝜑m > 1). (C) Metacognitive noise σm (here: noise at the stage of the report; cf. section 1.7). Higher

metacognitive noise flattens the relationship between type 1 decision values and confidence. Note that the link

function itself remains unaffected - the change in confidence is due to noise at the level of the confidence report,

i.e. after the link function transformation.

1.4 Metacognitive biases

Metacognitive biases describe a systematic discrepancy between objective type 1 performance and

subjective beliefs thereof (expressed via confidence ratings). Holding type 1 performance constant,

overconfident observers systematically prefer higher confidence ratings, while underconfident observers

systematically prefer lower confidence ratings. Importantly, metacognitive biases are orthogonal to the
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metacognitive sensitivity of an observer. For instance, an underconfident observer who consistently

chooses the second-lowest confidence rating for correct choices could have high metacognitive

sensitivity nevertheless, as long as they consistently choose the lowest rating for incorrect choices.

Both δm and 𝜑m and in the model can be readily interpreted as a form of metacognitive bias. The readout

term δm corresponds to an additive bias for the readout of decision values. As a result, metacognitive

evidence is systematically increased or decreased by a constant δm. For δm < 0, the readout term

corresponds to a metacognitive threshold, i.e. the metacognitive level is only sensitive to absolute

decision values above δm.

The confidence slope 𝜑m can either be regarded as a multiplicative bias for metacognitive evidence z or

for the subject’s belief about their own sensory noise σs. Applying the latter view, a value of 𝜑m > 1 would

suggest that the observer underestimated sensory noise σs and hence shows overconfidence, whereas a

value of 𝜑m > 1 implies that the observer overestimated σs and thus is underconfident.

In addition, one may consider a multiplicative bias parameter − a confidence scaling parameter λm −
outside of the tangens hyperbolicus in Equation 5, i.e. λm·tanh(..). As opposed to the confidence slope

𝜑m, which describes a scaling bias with respect to the internal estimate of sensory noise σs or

metacognitive evidence z, λm describes a scaling bias of confidence at the stage of the report. As for the

confidence slope 𝜑m, values of λm < 1 and λm > 1 reflect under- and overconfidence, respectively. The

parameter λm is not part of the primary model, but it is part of the additional parameters specified in

supplementary section 1.

To assess how the three metacognitive bias parameters relate to conventional measures of under- and

overconfidence, I computed calibration curves (Lichtenstein et al., 1977) for a range of parameter values

(Figure 4, left panels). A first observation concerns the case in which no metacognitive biases are present

(i.e., δm = 0, 𝜑m = 1, λm = 1; black lines). One could assume that calibration curves for bias-free observers

are identical to the diagonal, such that objective and subjective accuracy are identical. This is not the

case − the calibration curve is tilted towards overconfidence. This may seem surprising, but reflects

exactly what is expected for a bias-free statistical confidence observer. This is best understood for the

extreme case when the subjective probability correct is arbitrarily close to 1. Even for very high ratings of

subjective probability there is − due to sensory noise − a certain finite probability that associated type 1

choices have been incorrect. Hence, objective type 1 performance is expected to be below the subjective

probability in these cases. Importantly, relative to this bias-free observer all three metacognitive

parameters yield calibration curves that resemble under- and overconfidence given appropriate choices

of the parameter values (underconfidence: dotted lines; overconfidence: dashed lines).

As mentioned previously, metacognitive sensitivity (AUROC2, meta-d’) is strongly dependent on type 1

performance. How do metacognitive biases perform in this regard, when measured in a model-free

manner from choice and confidence reports? To find out, I simulated confidence biases for a range of
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metacognitive bias parameter values and type-1-performance levels (by varying the sensory noise

parameter). Confidence biases were computed as the difference between subjective probability correct

(by linearly transforming confidence from rating space [0; 1] to probability space [0.5; 1]) and objective

probability correct. As shown in the middle panels of Figure 4, these results showcase the limits of

naively measuring confidence biases in this way. Again, the bias-free observers shows an apparent

overconfidence bias. In addition, this bias increases as type 1 performance decreases, reminiscent of the

classic hard-easy effect for confidence (Lichtenstein and Fischhoff, 1977; for related analyses, see Soll,

1996; Merkle, 2009; Drugowitsch, 2016; Khalvati et al., 2021). At chance level performance, the

overconfidence bias is exactly 0.25.

The value of 0.25 can be understood in the context of the ‘0.75 signature’ (Hangya et al., 2016; Adler and

Ma, 2018). When evidence discriminability is zero, an ideal Bayesian metacognitive observer will show

an average confidence of 0.75 and thus an apparent (over)confidence bias of 0.25. Intuitively this can be

understood from the fact that Bayesian confidence is defined as the area under a probability density in

favor of the chosen option. Even in the case of zero evidence discriminability, this area will always be at

least 0.5 − otherwise the other choice option would have been selected, but often higher.

The overconfidence bias leads to another peculiar case, namely that the bias of truly underconfident

observers (i.e., δm < 0, 𝜑m < 1, or λm < 1) can show a sign flip from over- to underconfidence as

performance increases from chance level to perfect performance (dotted lines in the middle panels of

Figure 4). Overall, the simulation underscores that metacognitive biases are just as confounded by type 1

behavior as metacognitive sensitivity.

Is it possible to recover unbiased estimates for the metacognitive bias parameters by inverting the

process model? To find out, I again simulated data for a range of type-1-performance levels and true

values of the bias parameters. In each case, I fitted the model to the data to obtain estimates of the

parameters. As shown in the right panels of Figure 4, parameter recovery was indeed unbiased across

the type 1 performance spectrum, with certain deviations only for extremely low or high type 1

performance levels. This demonstrates that, in principle, unbiased inferences about metacognitive biases

are possible in a process model approach, under the assumption that the fitted model is a sufficient

approximation of the empirical generative model.
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Figure 4. Metacognitive biases in the model. Grey shades indicate areas of overconfidence according to the

model. Grey stripes areas indicate additional areas that would be classified as overconfidence in conventional

analyses of confidence data. Simulations are based on a noisy-report + Beta distribution model. Metacognitive

noise was set close to zero for simplicity. (Left panels) Calibration curves. Calibration curves compute the

proportion of correct responses (objective probability correct) for each interval of subjective confidence reports.

For this analysis, confidence was transformed from rating space [0; 1] to probability space [0.5; 1] and divided in

100 intervals with bin size 0.01. Calibration curves above and below the diagonal indicate under- and overconfident

observers, respectively. Average type 1 performance for this simulation was around 70%. (Middle panels)

Confidence bias in dependence of type 1 performance. Different levels of type 1 performance were simulated by

sweeping the sensory noise parameter between 0.01 and 50. Confidence bias was computed as the difference

between subjective probability correct and objective proportion correct. (Right panels) Recovery of metacognitive

bias parameters in dependence of performance. Shades indicate standard deviations.

1.5 Confidence criteria

In the model outlined here, confidence results from a continuous transformation of metacognitive

evidence, described by a parametric link function (Equation 5). The model thus has no confidence

criteria. However, it would be readily possible to replace the tangens hyperbolicus with a stepwise link

function where each step is described by the criterion placed along the z-axis and the respective

confidence level (cf. Supplementary section 2; alternatively, one can assume equidistant confidence

levels, thereby saving half of the parameters). Such a link function might be particularly relevant for
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discrete confidence rating scales where participants associate available confidence ratings with often

idiosyncratic and not easily parameterizable levels of metacognitive evidence.

However, even for the parametric link function of a statistical confidence observer it is worth considering

two special confidence criteria: a minimum confidence criterion, below which confidence is 0, and a

maximum criterion, above which confidence is 1. Indeed, the overproportional presence of the most

extreme confidence ratings that is often observed in confidence datasets (cf. Confidence Database;

Rahnev et al., 2020) may motivate such criteria.

My premise here is that these two specific criteria can be described as an implicit result of metacognitive

biases. In general, when considering an ideal statistical confidence observer and assuming continuous

confidence ratings, the presence of any criterion reflects suboptimal metacognitive behavior − including

a minimum or maximum confidence criterion. According to Equation 5, an ideal observer’s confidence

should never be exactly 1 (for finite sensory noise) and should only ever be 0 when metacognitive

evidence is exactly zero, which makes a dedicated criterion for this case likewise superfluous.

Importantly, a minimum confidence criterion is implicit to the readout term δm. As explained above, a

negative value of δm effectively corresponds to a metacognitive threshold, such that metacognitive

evidence z (and hence confidence) is zero for decision values smaller than δm. While a maximum

confidence criterion is not covered by the primary model, it can be realized by the optional confidence

scaling parameter λm considered in the previous section. Specifically, assuming λm > 1, the maximum

criterion is the point along the metacognitive evidence axis at which a link function of the form

λm·tanh(..) becomes exactly 1. In sum, both a minimum and a maximum confidence criterion can be

implemented as a form of a metacognitive bias.

1.6 Metacognitive noise: noisy-readout models

A key aspect of the current model is that the transformation from sensory decision values to confidence

reports is subject to sources of metacognitive noise. In this section, I first consider a model of type

noisy-readout, according to which the metacognitive noise mainly applies to the metacognitive readout

of absolute sensory decision values (i.e., ẑ). The final metacognitive evidence z is thus a noisy version of

ẑ. By contrast, the additional noise of reporting the confidence is considered negligible and the predicted

confidence estimate ĉ resulting from the link function is equal to the reported confidence c.

Metacognitive noise is defined by a probability distribution and a metacognitive noise parameter σm. The

appropriate noise distribution for such readout noise is an open empirical question. Here, I introduce a

family of potential candidates. A key consideration for the choice of a noise distribution is the issue of

sign flips. Specifically, one could assume the metacognitive level initially deals with signed decision

values, such that metacognitive noise can cause sign flips of these decision values. For instance, while an

observer may have issued a type 1 response for stimulus category S+, readout noise could flip the sign of

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.10.463812doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?scLtLZ
https://www.zotero.org/google-docs/?scLtLZ
https://doi.org/10.1101/2021.10.10.463812
http://creativecommons.org/licenses/by/4.0/


the decision value towards S− at the metacognitive level. This scenario is akin to the case of error

monitoring in the sense that an observer − by virtue of their metacognitive representation − will think to

have made an error in their type 1 response (note that this is to be distinguished from post-decisional

evidence accumulation, in which sign flips are based on new information, not noise).

How would an observer indicate their confidence in the case of a metacognitive sign flip? Unless

confidence rating scales include the possibility to indicate errors (which I do not consider here), the only

sensible response would be to indicate a confidence of 0, since confidence ratings apply to the choice

made and not to the choice one would have hypothetically made based on a subsequent metacognitive

representation. Overall, I thus take the following stance. Either one accepts the possibility of sign flips,

but then only considers metacognitive evidence for the chosen option, which would be zero in the case

of a sign flip; or, one rejects the possibility of sign flips altogether and assumes that the nature of

metacognitive readout noise makes sign flips impossible. I assume that one of the two possibilities is

true, thereby justifying the decision to only consider absolute decision values ẑ = |y| for the chosen

option at the metacognitive level.

If one accepts the possibility of sign flips, but assumes metacognitive evidence for the chosen stimulus to

be zero in these instances, one arrives at the concept of a censored (or rectified) distribution. If a

distribution is (left-)censored at zero, all negative parts of the distribution are assigned to the probability

mass of zero, resulting in a distribution with a discrete term (at z = 0) and a continuous term (z > 0)

(Figure 5A). The probability of z being exactly zero is thus equal to the cumulative density of the normal

distribution at zero. An alternative is a double exponential distribution, which allows for tail asymmetry.

In particular, I here consider the Gumbel distribution which has a pronounced right tail, a property that

fits recent observations regarding the skewed nature of metacognitive noise (Shekhar and Rahnev, 2021;

Xue et al., 2021). Mathematical definitions of all distributions are listed in supplementary Table S2.

As outlined above, the second possibility is that the nature of metacognitive readout noise makes sign

flips impossible, sparing the necessity of censoring. This required noise distributions that are bounded at

zero, either naturally or by means of truncation. I first consider truncated distributions, in particular the

truncated normal and the truncated Gumbel distribution (Figure 5B). Truncating a distribution means to

cut off the parts of the distribution outside the truncation points (here the range below zero) and to

renormalize the remainder of the distribution to 1.

While truncated distributions behave well mathematically, compared to censored distributions it is much

less clear how a natural process could lead to a truncated metacognitive noise distribution. Truncated

distributions occur when values outside of the bounds are discarded, which clearly does not apply to

confidence ratings. I thus consider truncated distributions as an auxiliary construct at this point that may

nevertheless qualify as an approximation to an unknown natural process.
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Finally, there are many candidates of probability distributions that are naturally bounded at zero,

perhaps the most prominent one being the log-normal distribution. In addition, I consider the Gamma

distribution (Figure 5C), which has a more pronounced lower tail and is also the connatural counterpart

to the Beta distribution for noisy-report models (see next section).

Figure 5. Metacognitive noise. Considered noise distributions are either censored, truncated or naturally bounded.

In case of censoring, protruding probability mass accumulates at the bounds (depicted as bars with a darker shade;

the width of these bars was chosen such that the area corresponds to the probability mass). The parameter σm and

the distributional mode was set to ⅓ in all cases. (A - C) Noisy-readout models. Metacognitive noise is considered

at the level of readout, affecting metacognitive evidence z. Only a lower bound at z = 0 applies. (D - F) Noisy-report

models. Metacognitive noise is considered at the level of the confidence report, affecting internal confidence

representations c. Confidence reports are bounded between 0 and 1.

1.7 Metacognitive noise: noisy-report models

In contrast to noisy-readout models, a noisy-report model assumes that the readout noise of decision

values is negligible (z = ẑ) and that the dominant source of metacognitive noise occurs at the reporting

stage (c ∼ fm(ĉ)). Reporting noise itself may comprise various different sources of noise, occurring e.g.

during the mental translation to an experimental confidence scale or in the form of visuomotor noise

(when using a mouse cursor to indicate a continuous confidence rating).

A hard constraint for reporting noise is the fact that confidence scales are typically bounded between a

minimum and a maximum confidence rating (reflecting the bounds [0; 1] for c in the present model).

Reported confidence cannot be outside these bounds, regardless of the magnitude of reporting noise. As

in the case of the noisy-readout model, one may consider either censored (Figure 5D), truncated (Figure

5E) or naturally bounded distributions (Beta distribution; Figure 5F) to accommodate this constraint.
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1.8 Metacognitive noise as a measure of metacognitive ability

As outlined above, I assume that metacognitive noise can be described either as variability during

readout or report. In both cases, metacognitive noise is governed by the parameter σm. Higher values of

σm will lead to a flatter relationship between reported confidence and decision values, i.e. confidence

ratings become more indifferent with regard to different levels of internal sensory evidence (Figure 3B).

The behavior of the metacognitive noise parameter is closely related to the concept of metacognitive

efficiency (Fleming and Lau, 2014), a term coined for two measures of metacognitive ability that aim at

being invariant to type 1 performance: Mratio and Mdiff. As outlined in the introduction, the independence

of type 1 performance has been contested for both measures, on the basis of empirical data and as well

as in simulations that consider the presence of metacognitive noise (Bang et al., 2019; Guggenmos,

2021).

Here, I was interested in two main questions: can metacognitive noise σm be truthfully recovered

regardless of type 1 performance? And further, to what degree are metacognitive noise σm and

metacognitive efficiency correlated and thus potentially capture similar constructs?

To assess the type 1 performance dependency, I simulated data with varying levels of sensory noise σs

and five different values of σm. In each case I computed Mratio on the data and also fitted the model to

recover metacognitive noise . As shown in Figures 6A (noisy-report) and S3A (noisy-readout), one can1

reproduce the type 1 performance dependency of Mratio, which is characterized by an initial increase and

a subsequent decrease of Mratio as type 1 performance increases (Guggenmos, 2021).

By contrast, as shown in Figure 6B for the noisy-report model, the parameter σm is recovered without

bias across a broad range of type 1 performance levels and at different levels of generative

metacognitive noise. For the noisy-readout model, recovery likewise works also well across a large range

of type 1 performance levels; however, for very low or very high type 1 performance, recovery becomes

biased and unstable (Supplementary Figure S5B). A likely reason is related to the inversion of the link

function, which is necessary for parameter inference in noisy-readout models: since the link function is

dependent on sensory noise σs, its inversion becomes increasingly ambiguous as σs becomes either very

small or very large. However, apart from these extremal cases under the noisy-readout model, σm is

largely unbiased and is thus a promising candidate to measure metacognitive ability independent of type

1 performance.

1 Note that I focus on Mratio, as the type 1 performance dependency is even more severe for Mdiff (Guggenmos,
2021).
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Figure 6. Metacognitive noise σm (noisy-report model) in comparison to conventional measures of metacognitive

performance. Simulations for this figure were performed with a noisy-report model and a Beta distribution for

metacognitive noise. Differences to other noise distributions are negligible. (A, B) Type 1 performance dependency.

Different performance levels were induced by varying the sensory noise of the forward model. Five different levels

of metacognitive noise were tested, ranging from relatively little metacognitive noise (σm= 0.1) to relatively high

metacognitive noise (σm= 0.5). While Mratio decreased with increasing type 1 performance (panel A), the recovered

metacognitive noise parameter σm was largely independent of type 1 performance (panel B). Shaded areas indicate

standard deviations across 100 simulated subjects. (C, D) Relationship between metacognitive noise and

conventional measures of metacognitive performance. Simulated data were generated with a range of varying

metacognitive noise parameters σm (0 to 0.5 in steps of 0.01) and constant sensory noise (proportion correct

responses: 0.82). Based on these data, AUROC2 values and Mratio values were computed as measures of

metacognitive sensitivity and efficiency, respectively. There is a clear negative correspondence between σm and

both measures of metacognitive performance, reflecting the fact that metacognitive performance decreases with

higher metacognitive noise.

Despite the fact that Mratio may not be entirely independent of type 1 performance, it is fairly likely that it

will capture the metacognitive ability of observers to some degree. It is thus interesting to assess the

relationship between the model-based measure of metacognitive noise (σm) and Mratio. To this aim, I

performed a second simulation which kept type 1 performance constant at around 82% correct by using

a fixed sensory noise parameter (σs = 0.5) and only varied the true underlying σm across a broad range

between σm = 0.01 and σm = 0.5 in steps of 0.01. In addition, Mratio was computed for each simulated

observer. As shown in Figures 6C and 6D, there was indeed a strong negative correlation between σm and

Mratio (r = −0.983), as well as between σm and AUROC2 (r = −0.979). The negative sign of the correlation is

expected since a higher degree of noise should lead to more imprecise confidence ratings and thus

reduced metacognitive performance.
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2 Parameter fitting

Parameter fitting proceeds in a two-stage process. First, parameters of the sensory level are fitted by

maximizing the likelihood of the model with respect to the observed type 1 decisions. Second, using the

decision values predicted by the sensory level, the parameters of the metacognitive level are fitted by

maximizing the likelihood with respect to observed confidence reports. The two levels are thus fitted

independently.

In the following, the capital letter D denotes observed type 1 decisions and the capital letter C denotes

observed confidence ratings. The set of parameters of the sensory level is denoted as 𝓟s:={σs, δs, ϑs} and

the set of parameters of the metacognitive level as 𝓟m:={σm, δm, 𝜑m}.

2.1 Sensory level

At the sensory level, sensory noise is considered to follow a logistic distribution (Equation 2). The

likelihood ℒ of a particular type 1 decision D for stimulus x has an analytic solution given by the logistic

function:

where ŷ(x; ϑs, δs) is given by Equation 1. By maximizing the (cumulative) likelihood, one obtains

estimates for ϑs, δs and σs.

2.2 Metacognitive level

Parameter inference at the metacognitive level requires the output of the sensory level (decision values

y), an estimate of sensory noise σs and empirical confidence ratings C. By running the model in a

feed-forward model and using the fitted sensory parameters, the likelihood of confidence ratings is

evaluated either at the stage of readout (noisy-readout model) or report (noisy-report model).

Special consideration is necessary for the noisy-readout model in which the significant metacognitive

noise source is assumed at the level of an unobserved variable − metacognitive evidence. For this

reason, the model has to be inverted from the point of the observed variable (here confidence ratings)

into the space of the latent variable (metacognitive evidence). A consequence of this is that the link

function that transforms metacognitive decision values to confidence ratings must be strictly

monotonically increasing in the noisy-readout scenario, as model inversion would otherwise be

ambiguous.

Using the link function considered for this work, the tangens hyperbolicus (Equation 5), the inversion is

as follows:
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The condition of strict monotonicity is also the reason why the readout term δm is not considered a

parameter of the link function: since confidence has a lower bound of 0, a hypothetical function of the

form ĉ = tanh(z − δm) would have to be rectified to 0 for all z < δm and thus would be non-invertible.

Importantly, the likelihood ℒ (C | 𝓟m ) of observed confidence ratings C given parameters 𝓟m  not only

depends on the uncertainty of the model prediction for metacognitive decision values ẑ (y), but also on

the uncertainty of decision values y. Computing the likelihood ℒ (C | 𝓟m ) thus requires an integration

over the probability density fs(y) of all valid decision values y:

Valid decision values are those congruent with the empirical choice D.

In case of the noisy-report model, the likelihood can be directly computed with respect to the observed

variable C, i.e. without inversion of the link function:

2.3 Parameter recovery

Parameter recovery is an important part of model validation and refers to the process of generating data

from the model with known parameters and then recovering those parameters through model fitting.

Here, I tested parameter recovery by generating data with the forward model across a range of sample

sizes and true parameter values.

In a first analysis, each of the six considered parameters of the primary model (σs, ϑs, δs, σm, δm, 𝜑m) was

to 0.2 in the generative model and parameter recovery was tested for a range of sample sizes between

500 and 10,000 trials. As shown in Supplementary Figure S6, parameter recovery was unbiased such that

the parameter average across 1000 iterations of this procedure was always close to 0.2. Second, as one

would expect, the precision of parameter reconstruction increased with sample size.

Since a generic parameter value of 0.2 is necessarily arbitrary, in a second analysis the sample size was

fixed to 10,000 and the generative parameter values were systematically varied. As shown in

Supplementary Figure S7, this analysis confirmed that parameter recovery was accurate across a sensible

range for all parameters.

3 Application to an empirical dataset

To test the proposed model on real-world empirical data, I used a data set recently published by Shekhar

and Rahnev (2021) which has a number of advantageous properties for a modeling approach. First, a

high number of 2800 trials was measured for each of the 20 participants, enabling a precise estimate of

computational parameters (cf. Supplementary Figure S6). Second, the task design comprised multiple
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stimulus intensities, which is an important prerequisite for process models. And third, participants rated

their confidence on a continuous scale. While the model works well with discrete confidence ratings,

only continuous confidence scales harness the full expressive power of the model. In each trial,

participants indicated whether a Gabor patch imposed on a noisy background was tilted

counterclockwise or clockwise from a vertical reference and simultaneously rated their confidence on a

continuous scale. The average performance was 77.7% correct responses.

Figure 7A visualizes the overall model fit at the sensory level. The posterior, defined as the probability of

choosing S+, closely matches the model fit. The average posterior probability shows a slight y-offset,

reflecting a negative mean sensory bias towards S+ (δs = −0.06 ± 0.03) and serving as a validation that the

model parameter sensibly captured the psychometric curve. Since no stimulus intensities near

chance-level performance were presented to participants, a sensory threshold parameter was not fitted.

At the metacognitive level, I compared noisy-readout and noisy-report models in combination with the

metacognitive noise distributions introduced in Result sections 1.6 and 1.7. The model evidence was

computed based on the Akaike information criterion (AIC; Akaike, 1974). As shown in Figure 7B, with the

exception of censored distributions, all models performed at a similar level. Seven of the 10 tested

models were the winning model for at least one participant (Figure 7C).

Interestingly, there were quite clear patterns between the shapes of individual confidence distributions

and the respective winning model (Supplementary Figure S8). For instance, a single participant was best

described by a noisy-report+Beta model, and indeed the confidence distribution of this participant is

quite unique and plausibly could be generated by a Beta noise distribution (participant 7). Participants

who were best fitted by noisy-readout models have quite specific confidence distributions with

pronounced probability masses at the extremes and very thin coverage at intermediate confidence levels

(participants 4-6, 8, 10, 12, 13, 19) − except those, for which the lognormal readout noise distribution

was optimal (participants 11 and 16). Finally, a single participant was best fitted by a censored

distribution (participant 14), contrary to the general tendency. This participant likewise had a fairly

idiosyncratic confidence distribution characterized by the combination of a probability mass centered at

mid-level confidence ratings and a prominent probability mass at a confidence of 1. While a more

detailed analysis of individual differences is beyond the scope of this paper, these examples may point to

distinct phenotypes of metacognitive noise.
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Figure 7. Model performance and relationship between model-based parameters and behavioural measures. (A)

Posterior probability (choice probability for S+) as a function of normalized signed stimulus intensity. Model-based

predictions closely follow the empirical data. Means and standard errors (across subjects) were computed for the

three difficulty levels of each stimulus category. The fit is based on a logistic function with a bias parameter. (B)

Akaike information criterion (AIC) for different metacognitive noise distributions. Note that AIC values represent

the model evidence of the metacognitive level (sensory levels are identical between models). Error bars indicate

standard errors of the mean. (C) Breakdown of the best-fitting models for all participants. (D-G) Winning model

(noisy report + truncated Gumbel). (D) Empirical confidence is well-fitted by model-based predictions of

confidence. Model-based predictions are based on an average of 1000 runs of the generative model. Error bars

represent SEM. (E) Relationship of empirical Mratio and model-based metacognitive noise σm. (F) Relationship of the

empirical confidence bias and model-based confidence slope 𝜑m. The readout term parameter was partialed out

from the confidence bias. (G) Relationship of the empirical confidence bias and model-based readout term δm. The

confidence slope parameter was partialed out from the confidence bias.

In the next step, I inspected the winning metacognitive model (noisy report + truncated Gumbel) in more

detail. While the selection of this specific model is arbitrary due to the similar performance of several

other models, it serves the illustrative purpose and the differences between these models were overall

negligible.

I first compared confidence ratings predicted by the model with empirical confidence ratings across the

range of experimental stimulus intensities. As shown in Figure 7D, model-predicted confidence tracked

behavioral confidence quite well (Figure 7D). This included a slight confidence bias towards S+, which

itself is likely a result of the general sensory bias towards S+.

I then compared the fitted parameter values of the model with conventional behavioral measures of

metacognition. In Result section 1.8, a tight inverse relationship between metacognitive efficiency (Mratio)
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and the metacognitive noise parameter σm was demonstrated for simulated data. As shown in Figure 7E,

for the empirical data there was likewise a negative relationship, although weaker (rPearson = −0.45,

p = 0.045). Note that this relationship is by no means self-evident, as Mratio values are based on

information that is not available to a process model: which specific responses are correct or incorrect. I

will elaborate more on this aspect in the discussion, but assert for now that metacognitive efficiency in

empirical data can, at least in part, be accounted for by modeling metacognitive noise in a process

model.

As outlined above, the readout term δm and confidence slope 𝜑m can be interpreted as metacognitive

biases. To assess the validity of these parameters, I computed individual confidence biases by subtracting

a participant’s objective accuracy from the subjective predicted accuracy (based on confidence ratings).

Positive and negative values of this confidence bias are often regarded as evidence for over- and

underconfidence. As shown in Figures 7F and 7G, both parameters show the expected relationships:

higher individual confidence biases are associated with higher values of δm when controlling for 𝜑m

(rPartial = 0.75, p < 0.001), and with 𝜑m when controlling for δm (rPartial = 0.59, p = 0.006). This analysis

confirms that the metacognitive bias parameters of the model meaningfully relate to the over- and

underconfidence behavior in empirical data.

In a final step, I focus on the model fit of a single participant (Figure 8). The selected participant has a

relatively high degree of sensory noise (proportion correct = 0.74, σs = 1.04) compared to the group

mean (proportion correct ± SEM = 0.78 ± 0.01, σs ± SEM = 0.89 ± 0.04), reflected in a relatively flat

psychometric curve (Figure 8A). Due to a negative response bias (δs = −0.23) the psychometric curve is

shifted upwards. Like many participants in the dataset, the participant thus tends to disproportionally

choose clockwise/S+ over counterclockwise/S−.

Figures 8B and 8C visualize the results of the metacognitive level, which is again of the type noisy-report

+ truncated Gumbel. For this participant, the model fit indicates a negative readout term δm, thereby

introducing a threshold below which decision values y are not metacognitively accessible (indicated by a

flat region for the link function in Figure 8B). This negative readout term is compensated by a relatively

high confidence slope 𝜑m = 1.15, resulting in an average confidence of 0.488 that is close to the group

average (0.477 ± 0.038).

While below average in terms of type 1 performance, this participant excels in terms of metacognitive

performance. This is both indicated by a high Mratio of 1.23 (group mean ± SEM = 0.88 ± 0.05) and a low

metacognitive noise parameter σm of 0.06 (group mean ± SEM = 0.10 ± 0.02).

It is important to note that a low metacognitive noise parameter σm does not imply that the participants’

confidence ratings are expected to be within a narrow range for different stimulus intensities. This is

because the uncertainty of the sensory level translates to the metacognitive level: the width of decision

value distributions, as determined by sensory noise σs, also affects the expected width of downstream

confidence distributions. Indeed, the behavioral confidence distributions in Figure 8C are spread out
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across the entire confidence range for all difficulty levels. In Figure 8C this aspect is emphasized by not

only showing the confidence likelihood for the predicted mean ȳ of decision values, but also for sensory

decision values 0.5 standard deviations below and above ȳ.

Note that when considering decision values 0.5 standard deviations above ȳ, a sign flip occurs for the

two lower stimulus intensities of S− (indicated with likelihood distributions shaded in red). In these cases,

the participant would make an incorrect choice. The lowest stimulus intensity also shows the paradoxical

situation that confidence is predicted to be higher for incorrect choices at ȳ + 0.5SD than for correct

choices at ȳ. This is because the predicted confidence for correct choices in the most difficult S−

condition is so low, that relatively small noise fluctuations in decision value space can lead to incorrect

choices with higher confidence. In a similar vein, the two lower stimulus intensities of S− show a

well-known characteristic of statistical confidence: an increase of confidence for incorrect choices as

stimulus difficulty increases (Sanders et al., 2016).

To compare the empirical confidence distribution of this participant with the distribution predicted by

the model, the parameters in the generative model were set to their corresponding fitted values and

sampled confidence ratings. The density histograms obtained from this sampling procedure are shown in

Figure 8C (orange lines) and demonstrate a close fit with the participant’s confidence rating distributions.

This close correspondence is not limited to this particular participant. As shown in Supplementary

Figure S8, a generative model described by σm, δm and 𝜑m is able to approximate a wide range of

idiosyncratic empirical confidence distributions.
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Figure 8. Parameter estimation for a single participant (model: noisy-report + truncated Gumbel). (A) Choice

probability for S+ as a function of stimulus intensity. The negative sensory bias δs shifts the logistic function

upwards, thereby increasing the choice probability for S+. (B) Link function and confidence likelihood. The link

function is specified by the confidence slope 𝜑m and transforms absolute decision values y (which consider a

readout term δm) to confidence. The likelihood for confidence ratings is shown only for the mean ȳi of all possible

decision values (separately for the 2 stimulus categories x 3 stimulus intensities). Empirical confidence distributions

are indicated by their mean and standard deviation and are plotted at ȳi for convenience. (C) Confidence

distributions, likelihood and generative model. Empirical confidence ratings (histograms) and ratings (line plots)

obtained from the fitted generative model are anchored at the six levels of the stimulus variable x. To visualize the

effect of sensory uncertainty on the metacognitive level, likelihood distributions are plotted not only for the mean

ȳi of the decision value distribution, but also half a standard deviation below (dashed and lighter color) and above

(solid and lighter color) the mode. The width of likelihood distributions is controlled by the metacognitive noise

parameter σm. Distributions colored in red indicate that a sign flip of decision values has occurred, i.e. responses

based on these decision values would be incorrect.
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Discussion

The present work introduces and evaluates a process model of metacognition. The model connects key

concepts in metacognition research − metacognitive readout, metacognitive biases, metacognitive noise

− with the goal of providing an account of human metacognitive responses. The model can be directly

applied to confidence datasets of any perceptual or non-perceptual modality, with the prerequisite that

multiple difficulty levels are tested.

As any cognitive computational model, the model can serve several purposes such as inference about

model parameters, inference about latent variables and as a means to generate artificial data. In the

present work, I focused on parameter inference, in particular metacognitive parameters describing

metacognitive noise (σm) and metacognitive biases (δm, 𝜑m, λm). Indeed, I would argue that this use case

is one of the most pressing issues in metacognition research: characterizing the latent processes

underlying human confidence reports without the confound of type 1 behavior that hampers descriptive

approaches.

In the context of metacognitive biases, I have shown that the conventional method of simply comparing

objective and subjective performance (via confidence ratings) is flawed not only because it is biased

towards overconfidence, but also because it is strongly dependent on type 1 performance. Just as in the

case of metacognitive performance, unbiased inferences about metacognitive biases thus require a

process model approach.

Here, I introduced three metacognitive bias parameters which specify metacognitive biases at

readout (δm), at the transformation from metacognitive evidence to confidence (𝜑m) and at report (λm).

As shown through the simulation of calibration curves, all three parameters can yield under- or

overconfidence relative to a bias-free observer. The fact that the calibration curves and the relationships

between type 1 performance and confidence biases are quite distinct between the three proposed

metacognitive bias parameters may indicate that these are to some degree dissociable. Moreover, in an

empirical dataset the readout term δm and the confidence slope 𝜑m strongly correlated with a

conventional confidence bias measure, further validating these parameters.

The second kind of metacognitive parameter considered in this work is metacognitive noise (Mueller and

Weidemann, 2008; Jang et al., 2012; De Martino et al., 2013; van den Berg et al., 2017; Bang et al., 2019;

Shekhar and Rahnev, 2021). As with metacognitive biases, metacognitive noise may arise at different

stages of the processing hierarchy and in the present work I investigated two kinds: noise at readout and

report. Both parameters affect the precision of confidence ratings and as a result they showed an

expected negative relationship with regular measures of metacognitive ability (AUROC2, Mratio).

Importantly, I show that while even Mratio, a measure normalized for type 1 performance, was dependent

on type 1 performance for simulated data, recovered estimates of metacognitive noise were largely
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invariant to type 1 performance. Thus, just as in the case of metacognitive biases, the entanglement of

metacognitive and type 1 behavior can be unraveled by means of a process model approach.

While this summary so far emphasized the advantages of a process model approach to metacognition,

there are a number of remaining challenges. First, it is entirely possible that a comprehensive model of

metacognition is non-invertible from the point of confidence ratings. This challenge is exemplified by the

noisy-readout model, for which the inversion requires a strictly monotonically increasing link function.

The cure, in such a scenario, would be to obtain additional measures along the processing hierarchy. For

instance, reaction time could be considered an implicit proxy for confidence, which is affected by

readout noise but not by reporting noise. Practically, this amounts to inserting a separate level of implicit

metacognition between the sensory and the (explicit) metacognitive level. Implicit metacognitive noise

and bias parameters would be obtained by maximizing the likelihood of measured reaction times and

explicit metacognitive parameters by maximizing the likelihood of confidence ratings with respect to the

output of the implicit level.

Second, the effects of different sources of bias and noise along the processing hierarchy may be so

strongly correlated that their dissociation would require unreachable amounts of confidence data. This

dissociation, however, is essential for many research questions in metacognition − whether the goal is to

derive a fundamental model of human metacognition or whether one is interested in specific

abberrancies in mental illness. An example for the latter is the frequent observation of overconfidence in

schizophrenia which is thought to reflect a more general deficit in the ability to integrate disconfirmatory

evidence (Speechley, 2010; Zawadzki et al., 2012) and may underlie the maintenance of delusional

beliefs (Moritz and Woodward, 2006b). To investigate this specific hypothesis, it is central to dissociate

whether metacognitive biases mainly apply at the reporting stage − which may be a result of the disease

− or at an earlier metacognitive processing stage, which may be causally involved in the development of

the disease. This issue likewise could be addressed by measuring behavioral, physiological or

neurobiological processes that precede the report of confidence.

Third, the demonstration of an unbiased recovery of metacognitive noise and bias parameters in a

process model approach comes with a strong caveat, since the data is generated with the very same

model that is used for parameter recovery. Yet, all models are wrong, goes the saying, and this certainly

applies to current models of metacognition. The question is thus: given the unknown true model/s that

underlie/s empirical confidence ratings, to what degree can parameters obtained from an approximated

model be considered unbiased? The way forward here is to continuously improve computational models

of metacognition in terms of model evidence, thus increasing the chances that fitted parameters are

meaningful estimates of the true parameters.

With respect to previous modeling work, a recent paper by Shekhar and Rahnev (2021) deserves special

attention. Here too, the authors adopted a process model approach for metacognition with the specific

goal of deriving a measure of metacognitive ability, quite similar to the metacognitive noise parameter
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σm in this work. One key difference is that Shekar and Rahnev tailored their model to discrete confidence

scales, such that each possible confidence rating (for each choice option) is associated with a separately

fitted confidence criterion. This introduces maximal flexibility, as essentially arbitrary mappings from

internal evidence to confidence can be fitted. In addition, it requires minimal assumptions about the link

functions that underlies the computation of confidence, apart from an ordering constraint applied to the

criteria.

However, while this flexibility is a strength, it also comes at certain costs. One issue is the relatively large

number of parameters that have to be fitted. Shekar and Rahnev note that the MLE procedures for the

fitting of confidence criteria often got stuck in local minima. Rather than via MLE, confidence criteria

were thus fitted by matching the expected proportion of high confidence trials to the observed

proportion for each criterion. It is thus not guaranteed that the obtained confidence criterions indeed

maximize the likelihood under the data. Furthermore, to make a criterion-based model compatible with

data from a continuous confidence scale, confidence reports have to be discretized. Apart from the loss

of information associated with discretization, this introduces uncertainty as to how exactly the data

should be binned (e.g. equinumerous versus equidistant). Another aspect worth mentioning is that a

criterion-based approach effectively corresponds to a stepwise link function, which is not invertible.

Making inferences about readout noise thus poses a challenge to such criterion-based models.

In the present work, I assumed a mapping between internal evidence and confidence that can be

described by a parametric link function. This too comes with advantages and disadvantages. On the one

hand, a parametric link function naturally imposes strong constraints on the mapping between internal

evidence and confidence. In reality, this mapping might not conform to any simple function − and even if

it did, different observers might apply different functions. On the other hand, imposing a specific link

function can be seen as a form of regularization when statistical power is insufficient to constrain a large

number of individual criteria. Further, a parametric link does not need to worry about the discretization

of confidence ratings, while still being compatible with a priori discretized ratings. And finally, a

meaningful inference about metacognitive biases requires a parametric link function which computes

the subjective probability of being correct (as in Equation 5).

The disproportionate frequency of the most extreme ratings for continuous confidence scales − both in

the empirical dataset considered here (Shekhar and Rahnev, 2021), but also in many other datasets

(Rahnev et al., 2020) − may indicate that there are at least two criteria at play: a finite level of

metacognitive evidence below which the lowest confidence rating is given (minimum confidence

criterion) and a level of metacognitive evidence above which the highest confidence rating is given

(maximum confidence criterion). Yet, even without the postulation of explicit criteria, the present model

can account in two possible, non-mutually exclusive, ways for this observation. The first possibility is that

extremal ratings are a consequence of metacognitive noise, which pushes confidence ratings to the
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bounds. In particular, censored noise distributions can readily account for an accumulation of confidence

ratings at the bounds of the scale.

The second explanation is that the minimum and maximum confidence criteria implicitly arise as a

consequence of metacognitive biases (Result section 1.4). Indeed, the individual fits to the empirical

dataset (Supplementary Figure S8) showed that the model accounted well even for data of participants

with a strong preference for extremal confidence ratings, despite not considering explicit confidence

criteria. An exploratory analysis (not reported here) indicated that participants with such confidence

distributions are not well-explained by censored noise models, which may be a tentative argument for

the metacognitive bias explanation instead.

The process model approach deviates in an important way from standard analyses of confidence reports

based on the type 2 receiver operating curve. As type 2 ROC analyses are solely based on

stimulus-specific type 1 and type 2 responses, they do not consider one of the arguably most important

factors in this context: stimulus intensity. This implies that such measures cannot dissociate to what

degree variability in confidence ratings is based on stimulus variability or on internal noise. In contrast,

since a process model specifies the exact transformation from stimulus intensity to decision variable to

confidence, this source of variance is appropriately taken into account. The metacognitive noise

parameter σm introduced here is thus a measure of the unexpected variability of confidence ratings, after

accounting for the variability on the stimulus side.

Yet, the process model approach bears another important difference compared with type 2 ROC

analyses, in this case a limiting factor on the side of the process model. As the area under the type 2 ROC

quantifies to what degree confidence ratings discriminate between correct and incorrect responses, it is

important to recognize what valuable piece of information the correctness of a specific response is. Over

and above stimulus intensity, the correctness of a response will typically be influenced by negative

factors such as attentional lapses, finger errors, tiredness, and positive factors such as phases of

increased motivation or concentration. All of these factors not only influence type 1 performance, but

they also influence the type 2 response that one would expect from an ideal metacognitive observer.

Analyses of type 2 ROCs implicitly make use of this information insofar as they consider the correctness

of each individual response.

In contrast, this information is not available in a process model. The signal that enters the metacognitive

level of the process model is based on a prediction that is computed solely on the basis of experimental

factors such as stimulus difficulty, but not based on the correctness of specific choices. Note that this is

not a limitation specific to the present model; it is the nature of a process model that it makes

predictions based on inputs to the system and not based on (parts of) the system outputs it aims to

predict. Improving process models in this regard necessitates access to additional trial-by-trial data

based on objective measurements (e.g. eye-tracking data) or subjective reports if these are not used for

model fitting (e.g. reports of attentional lapses or finger errors).
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The ReMeta toolbox

The code underlying this work has been bundled in a user-friendly Python toolbox which is published

alongside this paper at github.com/m-guggenmos/remeta. While its core is identical to the framework

outlined here, it offers a variety of additional parameters and settings. In particular, it allows fitting

separate values for each parameter depending on the sign of the stimulus (for sensory parameters) or

the decision value (for metacognitive parameters). Moreover, it offers various choices for noise

distributions and link functions, including criterion-based link functions.

Conclusion

The model outlined in this paper casts confidence as a noisy and potentially biased transformation of

sensory decision values. The model parameters that shape this transformation provide a rich account of

human metacognitive inefficiencies and metacognitive biases. In particular, I hope that the underlying

framework will allow a systematic model comparison in future confidence datasets to elucidate sources

of metacognitive noise, to narrow down candidate noise distributions and to differentiate between

different kinds of metacognitive biases.
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