Reverse engineering of metacognition

Matthias Guggenmos

1 Health and Medical University, Institute for Mind, Brain and Behavior, Olympischer Weg 1, 14471 Potsdam, Germany

Corresponding author:
Matthias Guggenmos
Health and Medical University
Institute for Mind, Brain and Behavior
Address: Olympischer Weg 1, 14471 Potsdam, Germany
Phone: +49 331 745113000
E-Mail: mg.corresponding@gmail.com
Abstract

The human ability to introspect on thoughts, perceptions or actions − metacognitive ability − has become a focal topic of both cognitive basic and clinical research. At the same time it has become increasingly clear that currently available quantitative tools are limited in their ability to make unconfounded inferences about metacognition. As a step forward, the present work introduces a comprehensive modeling framework of metacognition that allows for inferences about metacognitive noise and metacognitive biases during the readout of decision values or at the confidence reporting stage. The model assumes that confidence results from a continuous but noisy and potentially biased transformation of decision values, described by a confidence link function. A canonical set of metacognitive noise distributions is introduced which differ, amongst others, in their predictions about metacognitive sign flips of decision values. Successful recovery of model parameters is demonstrated, and the model is validated on an empirical data set. In particular, it is shown that metacognitive noise and bias parameters correlate with conventional behavioral measures. Crucially, in contrast to these conventional measures, metacognitive noise parameters inferred from the model are shown to be independent of performance. This work is accompanied by a toolbox (ReMeta) that allows researchers to estimate key parameters of metacognition in confidence datasets.
Introduction

The human ability to judge the quality of one’s own choices, actions and percepts by means of confidence ratings has been subject to scientific inquiry since the dawn of empirical psychology (Pierce and Jastrow, 1885; Fullerton and Cattell, 1892), albeit it has long been limited to specific research niches. More recently, research on human confidence, and metacognition more generally, has accelerated and branched off to other domains such as mental illnesses (Rouault et al., 2018; Hoven et al., 2019; Moritz and Lysaker, 2019; Seow et al., 2021) and education (Fleur et al., 2021). Two main quantitative characteristics have emerged to describe subjective reports of confidence: metacognitive bias and metacognitive sensitivity.

Fullerton and Cattell (1892) already noted that “different individuals place very different meanings on the degree of confidence. Some observers are nearly always quite or fairly confident, while others are seldom confident.” (p. 126). Technically, metacognitive biases describe a general propensity of observers towards lower or higher confidence ratings, holding the accuracy of the primary actions – type 1 performance – constant. From a perspective of statistical confidence, i.e. assuming that observers use confidence ratings to report probability correct, an observer is often considered underconfident or overconfident if confidence ratings are systematically below or above the objective proportion of correct responses.

Metacognitive biases of this type have been quite extensively studied in the judgement and decision-making literature, in which they became known under the term calibration (Lichtenstein et al., 1977). A central finding is that humans have a tendency towards overestimating their probability of being correct (overconfidence bias), particularly in general knowledge questions (Lichtenstein et al., 1977, 1982; Harvey, 1997; but see Gigerenzer et al., 1991). More recently, overconfidence in decisions has been studied in psychiatric diseases, suggesting, for instance, underconfidence in individuals with depression (Fu et al., 2005, 2012; Fieker et al., 2016) and overconfidence in schizophrenic patients (Moritz and Woodward, 2006a; Köther et al., 2012; Moritz et al., 2014).

However, currently there is no established framework that allows for unbiased estimates of metacognitive biases. The validity of traditional calibration curve analyses, which is based on a comparison of the subjective and objective probability of being correct, has been debunked repeatedly (Soll, 1996; Merkle, 2009; Drugowitsch, 2016). In particular, the classic hard-easy (Lichtenstein and Fischhoff, 1977), according to which overconfidence is particularly pronounced for difficult tasks, can be explained as a mere statistical artefact of random errors. For this reason, and in view of the potential importance in patient populations, there is a pressing need for unbiased measures of metacognitive biases.

While the measurement of metacognitive biases has received surprisingly little attention in the recent decades, the intricacies of measuring metacognitive sensitivity have been the subject of critical discussion and have spurred a number of methodological developments (Nelson, 1984; Galvin et al., 2003; Maniscalco and Lau, 2012, 2014; Fleming and Lau, 2014). The issue is not the measurement of
sensitivity per se: defining metacognitive (or type 2) sensitivity as the ability to discriminate between one’s correct and incorrect responses, it is readily possible to compute this quantity using the logic of receiver operating curve analyses (type 2 ROC; Clarke et al., 1959; Pollack, 1959). The main issue is that metacognitive sensitivity, according to this definition, is strongly influenced by type 1 performance. The lower type 1 performance, the higher will be the number of guessing trials and thus the higher will also be the expected number of trials in which observers assign low confidence to accidental correct guesses. Expected metacognitive sensitivity thus strongly depends on type 1 performance. Indeed, the importance of such type 1 performance confounds has been demonstrated in a recent meta-analysis of metacognitive performance aberrancies in schizophrenia (Rouy et al., 2020). The authors found that a previously claimed metacognitive deficit in schizophrenia was present only in studies that did not control for type 1 performance.

A potential solution to the problem of type 1 performance confounds was proposed by Maniscalco and colleagues through a measure called meta-\(d'\) (Rounis et al., 2010; Maniscalco and Lau, 2012, 2014). Since meta-\(d'\) is expressed in units of \(d'\), it can be directly compared to and normalized by type 1 sensitivity, leading to a ratio measure termed \(M_{\text{ratio}}\) (\(M_{\text{ratio}} = \text{meta-}d'/d'\)).

Recently, however, these normalized measures have come under scrutiny. Bang et al. (2019) showed that the type 1 performance independence of \(M_{\text{ratio}}\) breaks down with the simple assumption of a source of metacognitive noise that is independent of sensory noise. Guggenmos (2021) confirmed this diagnosis in a systematic analysis of empirical (Confidence Database; Rahnev et al., 2020) and simulated data. The very same factor (metacognitive noise) that therefore plausibly introduces interindividual differences in metacognitive performance, might obviate a type-1-performance-independent measurement of metacognitive efficiency in this way. Apart from type 1 performance, a recent study has shown that in empirical data the overall level of confidence likewise affects \(M_{\text{ratio}}\) (Xue et al., 2021) – a confound that may be caused by different levels of metacognitive noise when overall confidence is low or high (Shekhar and Rahnev, 2021).

Here I argue that an unbiased estimation of latent metacognitive parameters requires a mechanistic forward model – a process model which specifies the transformation from stimulus input to the computations underlying confidence reports and which considers sources of metacognitive noise. In the current work, I introduce a model and a toolbox to realize a process model approach for typical confidence datasets. It allows researchers to make parametric inferences about metacognitive inefficiencies either during readout or during report, as well as about different types of metacognitive biases. The basic structure of the model is shown in Figure 1. It comprises two distinct levels for type 1 decision making (sensory level) and type 2 metacognitive judgments (metacognitive level).

A few key design choices deserve emphasis. First, the model assumes that confidence is a second-order process (Fleming and Daw, 2017) which assesses the evidence that guided type 1 behavior. In the proposed nomenclature of Maniscalco and Lau (2016) it corresponds to a hierarchical model and not to a single-channel model in that it considers additional sources of metacognitive noise.
consequence of the hierarchical structure is that it is essential to capture the processes underlying the decision values at the type 1 level as precisely as possible, since decision values are the input to metacognitive computations. In the present model, this includes an estimate of both a sensory bias and a sensory threshold, both of which will influence type 1 decision values.

Second, recent work has demonstrated that metacognitive judgements are not only influenced by sensory noise, but also by metacognitive noise (Bang et al., 2019; Shekhar and Rahnev, 2021). In the present model, I therefore consider sources of metacognitive noise either during the readout of type 1 decision values or during report.

Third, human confidence ratings are often subject to metacognitive biases which can lead to the diagnosis of underconfidence or overconfidence. As outlined above, there is currently no established methodology to measure under- and overconfidence, let alone measure different types of such biases. In the present model, I consider four parameters that can be interpreted as metacognitive biases either at the level of evidence or at the level of the confidence report. The interpretation of these parameters as metacognitive biases entails the assumption that observers aim at reporting probability correct with their confidence ratings (statistical confidence; Hangya et al., 2016). Although I discuss link functions that deviate from this assumption, in the model outlined here, the transformation of sensory evidence to confidence therefore follows the logic of statistical confidence.

I demonstrate the issues of conventional measures of metacognitive ability and metacognitive biases, in particular their dependency on type 1 performance, and show that the process model approach can lead to unbiased inferences. Finally, I validate the model on a recently published empirical dataset (Shekhar and Rahnev, 2021). I illustrate for this dataset how model parameters can describe different facets of metacognition and assess the relationship of these parameters to conventional measures of metacognitive ability and metacognitive bias.

This article is accompanied by a toolbox – the Reverse engineering of Metacognition (ReMeta) toolbox, which allows researchers to apply the model to standard psychophysical datasets and make inferences about the parameters of the model. It is available at github.com/m-guggenmos/remeta.
Figure 1. Computational model. Input to the model is the stimulus variable x, which codes the stimulus category (sign) and the intensity (absolute value). Type 1 decision-making is controlled by the sensory level. The processing of stimuli x at the sensory level is described by means of sensory noise (σ_s), bias (δ_s) and threshold (ϑ_s) parameters. The output of the sensory level is the decision value y, which determines type 1 decisions d and provides the input to the metacognitive level. At the metacognitive level it is assumed that the dominant source of metacognitive noise is either noise at the readout of decision values (noisy-readout model) or at the reporting stage (noisy-report model). In both cases, metacognitive judgements are based on the absolute decision value $|y|$ (referred to as sensory evidence), leading to an internal representation of metacognitive evidence z^*. While the "readout" of this decision value is considered precise for the noisy-report model ($z = z^*$), it is subject to metacognitive readout noise in the noisy-readout model ($z \sim f_m(z'; \sigma_m)$, where σ_m is a metacognitive noise parameter). A link function transforms metacognitive evidence to confidence c^*. In the case of a noisy-report model, the dominant metacognitive noise source is during the report of confidence, i.e. confidence reports c are noisy expressions of the internal confidence representation c^*. Metacognitive biases operate at the level of sensory evidence (multiplicative evidence bias φ_m, additive evidence bias δ_m) or at the level of the confidence link function (multiplicative confidence bias λ_m, additive confidence bias κ_m).
Results

Results are structured in three parts. The first part introduces the architecture and the computational model, from stimulus input to type 1 and type 2 responses. The second part provides the mathematical basis for model inversion and parameter fitting and systematically assess the success of parameter recovery as a function of sample size and varied ground truth parameter values. Finally, in the third part, the model is validated on an empirical dataset (Shekhar and Rahnev, 2021).

1 Computational model

1.1 Computing decision values

For the model outlined here, the task space is restricted to two stimulus categories referred to as S^- and S^+. Stimuli are described by the stimulus variable x, the sign of which codes the stimulus category and the absolute value $|x|$ codes the intensity of the stimulus. The sensory level computes decision values y^* from the stimulus input x as follows:

$$y^* = \begin{cases} x + \delta_s \frac{\delta_s}{\sigma_s} & \text{if } |x| > \phi_s \\ \frac{\delta_s}{\sigma_s} & \text{else} \end{cases} \quad (1)$$

The sensory bias parameter $\delta_s \in \mathbb{R}$ captures systematic preferences for one response category (Figures 2A) and corresponds to a horizontal shift of the resulting psychometric function. Positive (negative) values of δ_s lead to a propensity to choose stimulus category S^+ (S^-). In addition, the sensory threshold $\phi_s \in \mathbb{R}^+$ defines the minimal stimulus intensity, which is necessary to drive the system, i.e., above which the observer’s type 1 choices can be better than chance level (Figures 2B). Mathematically, this means that the decision values y^* are zero below ϕ_s, in the absence of bias and δ_s in the simultaneous presence of a bias (Figure 2C). Note that a sensory threshold parameter should only be considered if the stimulus material includes intensity levels in a range at which participants perform close to chance. Otherwise, the parameter cannot be estimated and should be omitted, i.e., Equation 1 reduces to $y^* = x + \delta_s$.

In the model described here I assume that decision values can be linearly constructed from the stimulus variable x. In practice, this may often be too strong of an assumption, and it may thus be necessary to allow for a nonlinear transformation of x (‘nonlinear transduction’, see e.g., Dosher and Lu, 1998). The toolbox therefore offers an additional nonlinear transformation parameter γ_s (see Figure 2—figure supplement 1 for an illustration).

The final decision value y is subject to sources of sensory noise σ_s, described by a logistic distribution $f_s(y)$:

$$y \sim f_s(y) = \frac{\exp \left(\frac{\pi(y - y^*)}{\sqrt{3}\sigma_s} \right)}{\sqrt{3}\sigma_s \left(1 + \exp \left(\frac{\pi(y - y^*)}{\sqrt{3}\sigma_s} \right) \right)^2} \quad (2)$$

Equation 2 is a reparameterization of a standard logistic distribution in terms of the standard deviation σ, using the fact that the variance of the logistic distribution is equal to $s^2\pi^2/3$ (where s is the
conventional scale parameter of the logistic distribution). Figure 2D shows psychometric functions with varying levels of sensory noise σ_s. The logistic distribution was chosen over the more conventional normal distribution due to its explicit analytic solution of the cumulative density – the logistic function. In practice, both distributions are highly similar, and which one is chosen is unlikely to matter.

Type 1 decisions d between the stimulus categories S^+ and S^- are based on the sign of y:

$$d = \begin{cases} S^+ & \text{if } y \geq 0 \\ S^- & \text{if } y < 0 \end{cases}$$

Figure 2. Psychometric functions for different settings of sensory model parameters. Top left legends indicate the values of varied parameters, bottom right legends settings of the respective other parameters. (A) The sensory bias parameter δ_s horizontally shifts the psychometric function, leading to a propensity to choose stimulus category S^- ($\delta_s < 0$) or stimulus category S^+ ($\delta_s > 0$). (B) Stimulus intensities below the threshold parameter θ_s lead to chance-level performance. (C) Example for simultaneous non-zero values of the bias and threshold parameter. (D) The sensory noise parameter σ_s changes the slope of the psychometric function.

1.2 From decision values to metacognitive evidence

The decision values computed at the sensory level constitute the input to the metacognitive level. I assume that metacognition leverages the same sensory information that also guides type 1 decisions (or a noisy version thereof). Specifically, metacognitive judgements are based on a readout of absolute decision values $|y|$, henceforth referred to as sensory evidence or just evidence. Respecting a multiplicative ($\phi_m \in \mathbb{R}^+$) and an additive ($\delta_m \in \mathbb{R}$) evidence bias, we obtain an estimate of sensory evidence at the metacognitive level (metacognitive evidence z^*):

$$z^* = \max(\phi_m|y| + \delta_m, 0)$$
The multiplicative evidence bias φ_m and the additive evidence bias δ_m are two different types of metacognitive biases at the readout stage, which are described in more detail in section 1.4. Note that the \max operation is necessary to enforce positive values of metacognitive evidence.

1.3 The link function: from metacognitive evidence to confidence

The transformation from metacognitive evidence to predicted confidence c^* is described by a link function. A suitable link function must be bounded, reflecting the fact that confidence ratings typically have lower and upper bounds, and increase monotonically. I assume that observers aim at reporting probability correct, leading to a logistic link function in the case of the logistic sensory noise distribution (Equation 2). Without loss of generality, I use the range $[0;1]$ for confidence ratings, such that a confidence of 0 indicates chance level probability (0.5) and a confidence of 1 the expectation of perfect type 1 performance. Note that I do not consider the possibility that type 1 errors can be reported at the time of the confidence report, i.e., confidence cannot be negative. With these constraints and using the simple mathematical relationship between the logistic function and the tangens hyperbolicus, one arrives at the following link function (see Appendix 1, Equation A1, for the derivation):

$$c^* = \tanh \left(\frac{\pi}{2\sqrt{3}\sigma_s} z \right)$$

(5)

Note that I use the variable z as opposed to z^*, to indicate that the metacognitive evidence that enters the link function may be a noisy version of z^* (see the description of the noisy-readout model below). Figure 3 shows examples of evidence-confidence relationships based on the link function in Equation 5 and in dependence of several model parameters. Many other link functions are conceivable, which do not assume that observers aim at expressing confidence as probability correct. In particular, such link functions may not involve an estimate of sensory noise σ_s. Figure 3—figure supplement 1 illustrates alternative link functions provided by the ReMeta toolbox.

I refer to c^* as the predicted confidence, which may be different from the ultimately reported confidence c. This distinction becomes important when metacognitive noise is considered at the level of the report (see Result section 1.7).
Figure 3. Effect of model parameters on the evidence-confidence relationship. All metacognitive bias parameters and noise parameters affect the relationship between the sensory evidence $|y|$ and confidence, assuming the link function provided in Equation 5. (A) Effect of metacognitive bias parameters on the evidence-confidence relationship. Metacognitive noise was set to zero for simplicity. (B) Effect of metacognitive noise σ_m and sensory noise σ_s on the evidence-confidence relationship. Metacognitive noise renders confidence ratings more indifferent with respect to the level of sensory evidence. Note that, due to the absence of an analytic expression, the illustration for the effect of metacognitive noise is based on a simulation. Increasing sensory noise affects the slope of the confidence-evidence relationship, reflecting changes to be expected from an ideal metacognitive observer.

1.4 Metacognitive biases

Metacognitive biases describe a systematic discrepancy between objective type 1 performance and subjective beliefs thereof (expressed via confidence ratings). Holding type 1 performance constant, overconfident observers systematically prefer higher confidence ratings, while underconfident observers systematically prefer lower confidence ratings. Importantly, metacognitive biases are orthogonal to the metacognitive sensitivity of an observer. For instance, an underconfident observer who consistently chooses the second-lowest confidence rating for correct choices could have high metacognitive sensitivity nevertheless, as long as they consistently choose the lowest rating for incorrect choices. In the present model I consider metacognitive biases either at the level of evidence or at the level of confidence (Figure 1).

Metacognitive evidence biases represent a biased representation of sensory evidence at the metacognitive level. These biases may be either due to a biased readout from sensory channels or due to biased (pre)processing of read-out decision values at the initial stages of the metacognitive level. In either case, evidence biases affect the metacognitive representation z of sensory evidence and may...
be multiplicative or additive in nature. The multiplicative evidence bias φ_m leads to a scaling of absolute sensory decision values, with $\varphi_m < 1$ and $\varphi_m > 1$ corresponding to under- and overconfident observers, respectively. The additive evidence bias δ_m represents an additive bias such that metacognitive evidence is systematically decreased (underconfidence) or increased (overconfidence) by a constant δ_m. Values $\delta_m < 0$ can be interpreted as a metacognitive threshold, such that the metacognitive level is only ‘aware’ of stimuli that yield sensory evidence above δ_m.

An alternative interpretation of metacognitive evidence biases at the readout stage is that they correspond to an under- or overestimation of one’s own sensory noise σ_s. Applying this view, a value of e.g. $\varphi_m > 1$ would suggest that the observer underestimated sensory noise σ_s and hence shows overconfidence, whereas a value of $\varphi_m > 1$ implies that the observer overestimated σ_s and thus is underconfident.

Equivalent parameters may be considered at the level of confidence representations, i.e., after the application of a confidence link function. In this way, the equation for the link function (Equation 5) is augmented by a multiplicative confidence bias λ_m and an additive confidence bias κ_m:

$$c^* = \lambda_m \tanh \left(\frac{\pi}{2\sqrt{3} \sigma_s} z \right) + \kappa_m$$

(6)

Analogous to the evidence biases, values of $\lambda_m < 1$ and $\kappa_m < 0$ reflect underconfidence, and values of $\lambda_m > 1$ and $\kappa_m > 0$ reflect overconfidence. The effects of all metacognitive evidence and confidence bias parameters are illustrated in Figure 3A.

To assess how evidence- and confidence-related metacognitive biases relate to conventional measures of under- and overconfidence, I computed calibration curves (Lichtenstein et al., 1977) for a range of values for each bias parameter (Figure 4, left panels). A first observation concerns the case in which no metacognitive biases are present (i.e., $\varphi_m/\lambda_m = 1$, $\delta_m/\kappa_m = 0$; black lines). One could assume that calibration curves for bias-free observers are identical to the diagonal, such that objective and subjective accuracy are identical. This is not the case – the calibration curve is tilted towards overconfidence. This may seem surprising but reflects exactly what is expected for a bias-free statistical confidence observer. This is best understood for the extreme case when the subjective probability correct is arbitrarily close to 1. Even for very high ratings of subjective probability there is – due to sensory noise – a certain finite probability that associated type 1 choices have been incorrect. Hence, objective type 1 performance is expected to be below the subjective probability in these cases. Importantly, relative to this bias-free observer all metacognitive bias parameters yield calibration curves that resemble under- and overconfidence given appropriate choices of the parameter values (underconfidence: redish lines; overconfidence: blueish lines).

As mentioned previously, metacognitive sensitivity (AUROC2, meta-d') is strongly dependent on type 1 performance. How do metacognitive biases perform in this regard, when measured in a model-free manner from choice and confidence reports? To find out, I simulated confidence biases for a
range of metacognitive bias parameter values and type-1-performance levels (by varying the sensory
noise parameter). Confidence biases were computed as the difference between subjective probability
correct (by linearly transforming confidence from rating space [0; 1] to probability space [0.5; 1]) and
objective probability correct. As shown in the middle panels of Figure 4, these results showcase the
limits of naively measuring confidence biases in this way. Again, the bias-free observer shows an
apparent overconfidence bias. In addition, this bias increases as type 1 performance decreases,
reminiscent of the classic hard-easy effect for confidence (Lichtenstein and Fischhoff, 1977; for related
analyses, see Soll, 1996; Merkle, 2009; Drugowitsch, 2016; Khalvati et al., 2021). At chance level
performance, the overconfidence bias is exactly 0.25.

The value of 0.25 can be understood in the context of the ‘0.75 signature’ (Hangya et al., 2016; Adler
and Ma, 2018a). When evidence discriminability is zero, an ideal Bayesian metacognitive observer will
show an average confidence of 0.75 and thus an apparent (over)confidence bias of 0.25. Intuitively
this can be understood from the fact that Bayesian confidence is defined as the area under a
probability density in favor of the chosen option. Even in the case of zero evidence discriminability,
this area will always be at least 0.5 – otherwise the other choice option would have been selected,
but often higher.

The overconfidence bias leads to another peculiar case, namely that the bias of truly underconfident
observers (i.e., \(\varphi_m < 1, \delta_m < 0, \lambda_m < 1, \) \(\text{or} \ \kappa_m < 0 \)) can show a sign flip from over- to underconfidence as
performance increases from chance level to perfect performance (dotted lines in the middle panels
of Figure 4). Overall, the simulation underscores that metacognitive biases are just as confounded by
type 1 behavior as metacognitive sensitivity.

Is it possible to recover unbiased estimates for the metacognitive bias parameters by inverting the
process model? To find out, I again simulated data for a range of type-1-performance levels and true
values of the bias parameters. In each case, I fitted the model to the data to obtain estimates of the
parameters. As shown in the right panels of Figure 4, parameter recovery was indeed unbiased across
the type 1 performance spectrum, with certain deviations only for extremely low or high type 1
performance levels. This demonstrates that, in principle, unbiased inferences about metacognitive
biases are possible in a process model approach, assuming that the fitted model is a sufficient
approximation of the empirical generative model.
Figure 4. Metacognitive biases. Generative performance and parameter recovery for the four possible metacognitive bias parameters in the model (φ_m, δ_m, λ_m, κ_m). Grey shades indicate areas of overconfidence according to the model. Grey stripes areas indicate additional areas that would be classified as overconfidence in conventional analyses of confidence data. Simulations are based on a noisy-report model with a truncated normal metacognitive noise distribution. Metacognitive noise was set close to zero for simplicity. (Left panels) Calibration curves. Calibration curves compute the proportion of correct responses (objective probability correct) for each interval of subjective confidence reports. For this analysis, confidence was transformed from rating space [0; 1] to probability space [0.5; 1] and divided in 100 intervals with bin size 0.01. Calibration curves above and below the diagonal indicate under- and overconfident observers, respectively. Average type 1 performance for this simulation was around 70%. (Middle panels) Confidence bias in dependence of type 1 performance. Different levels of type 1 performance were simulated by sweeping the sensory noise parameter between 0.01 and 50. Confidence bias was computed as the difference between subjective probability correct and objective proportion correct. (Right panels) Recovery of metacognitive bias parameters in dependence of performance. Shades indicate standard deviations. Finally, note that the parameter recovery shown in Figure 4 was performed with four separate models, each of which was specified with a single metacognitive bias parameter (i.e., φ_m, δ_m, λ_m, or κ_m). Parameter recovery can become unreliable when more than two of these bias parameters are specified in parallel (see section 2.3). In practice, the researcher thus must make an informed decision about which bias parameters to include in a specific model (in most scenarios one or two metacognitive bias parameters are a good choice). While the evidence-related bias parameters φ_m and δ_m have a more principled interpretation (e.g., as an under/overestimation of sensory noise), it is...
not unlikely that metacognitive biases also emerge at the level of the confidence report \((\lambda_m, \kappa_m)\). The first step thus must always be a process of model specification or a statistical comparison of candidate models to determine the final specification (see also section 3.1).

1.5 Confidence criteria

In the model outlined here, confidence results from a continuous transformation of metacognitive evidence, described by a parametric link function (Equation 5). The model thus has no confidence criteria. However, it would be readily possible to replace the tangens hyperbolicus with a stepwise link function where each step is described by the criterion placed along the z-axis and the respective confidence level (alternatively, one can assume equidistant confidence levels, thereby saving half of the parameters). Such a link function might be particularly relevant for discrete confidence rating scales where participants associate available confidence ratings with often idiosyncratic and not easily parameterizable levels of metacognitive evidence.

Yet, even for the parametric link function of a statistical confidence observer it is worth considering two special confidence criteria: a minimum confidence criterion, below which confidence is 0, and a maximum criterion, above which confidence is 1. Indeed, the over-proportional presence of the most extreme confidence ratings that is often observed in confidence datasets (cf. Confidence Database; Rahnev et al., 2020) may motivate such criteria.

My premise here is that these two specific criteria can be described as an implicit result of metacognitive biases. In general, when considering an ideal statistical confidence observer and assuming continuous confidence ratings, the presence of any criterion reflects suboptimal metacognitive behavior — including a minimum or maximum confidence criterion. According to Equation 5, an ideal observer’s confidence should never be exactly 1 (for finite sensory noise) and should only ever be 0 when metacognitive evidence is exactly zero, which makes a dedicated criterion for this case likewise superfluous.

Importantly, a minimum confidence criterion is implicit to the additive evidence bias \(\delta_m\). As explained above, a negative value of \(\delta_m\) effectively corresponds to a metacognitive threshold, such that metacognitive evidence \(z\) (and hence confidence) is zero for decision values smaller than \(\delta_m\). A maximum confidence criterion can be realized by the confidence bias parameters \(\lambda_m\) and \(\kappa_m\).

Specifically, assuming \(\lambda_m > 1\) or \(\kappa_m > 0\), the maximum criterion is the point along the metacognitive evidence axis at which a link function of the form \(\lambda_m \cdot \tanh(\ldots) + \kappa_m\) becomes exactly 1. In sum, both a minimum and a maximum confidence criterion can be implemented as a form of a metacognitive bias.

1.6 Metacognitive noise: noisy-readout models

A key aspect of the current model is that the transformation from sensory decision values to confidence reports is subject to sources of metacognitive noise. In this section, I first consider a model of type noisy-readout, according to which the metacognitive noise mainly applies to the metacognitive readout of absolute sensory decision values (i.e., \(z^*\)). The final metacognitive evidence \(z\) is thus a noisy
version of z^*. By contrast, sources of noise involved in the report of confidence are considered negligible and the predicted confidence estimate c^* resulting from the link function is equal to the reported confidence c.

Metacognitive noise is defined by a probability distribution and a metacognitive noise parameter σ_m. The appropriate noise distribution for such readout noise is an open empirical question. Here, I introduce a family of potential candidates. A key consideration for the choice of a noise distribution is the issue of sign flips. I distinguish two cases.

A first scenario is that the metacognitive level initially deals with signed decision values, such that metacognitive noise can cause sign flips of these decision values. For instance, while an observer may have issued a type 1 response for stimulus category S^+, readout noise could flip the sign of the decision value towards S^- at the metacognitive level. How would an observer indicate their confidence in such a case? Unless confidence rating scales include the possibility to indicate errors (which I do not consider here), the only sensible response would be to indicate a confidence of 0, since confidence ratings apply to the choice made and not to the choice one would have hypothetically made based on a subsequent metacognitive representation.

Enforcing a lower bound of 0 is a form of post-hoc censoring which leads to the concept of a censored (or rectified) distribution. If a distribution is (left-)censored at zero, all negative parts of the distribution are assigned to the probability mass of zero, resulting in a distribution with a discrete term (at $z = 0$) and a continuous term ($z > 0$) (Figure 5A). In case of a normal distribution, the probability of z being exactly zero is equal to the cumulative density of the normal distribution at zero. An alternative to the normal distribution is a double exponential distribution, which allows for tail asymmetry. In particular, I here consider the Gumbel distribution which has a pronounced right tail, a property that fits recent observations regarding the skewed nature of metacognitive noise (Shekhar and Rahnev, 2021; Xue et al., 2021). Mathematical definitions of all distributions are listed in Appendix 2—table 1.

The second scenario is that the nature of metacognitive readout noise itself makes sign flips impossible, sparing the necessity of censoring. This required noise distributions that are bounded at zero, either naturally or by means of truncation. I first consider truncated distributions, in particular the truncated normal and the truncated Gumbel distribution (Figure 5B). Truncating a distribution means to cut off the parts of the distribution outside the truncation points (here the range below zero) and to renormalize the remainder of the distribution to 1.

While truncated distributions behave well mathematically, compared to censored distributions it is much less clear how a natural process could lead to a truncated metacognitive noise distribution. Truncated distributions occur when values outside of the bounds are discarded, which clearly does not apply to confidence ratings. I thus consider truncated distributions as an auxiliary construct at this point that may nevertheless qualify as an approximation to an unknown natural process.
Finally, there are many candidates of probability distributions that are naturally bounded at zero, perhaps the most prominent one being the lognormal distribution. In addition, I consider the Gamma distribution (Figure 5C), which has a more pronounced lower tail and is also the connatural counterpart to the Beta distribution for noisy-report models (see next section).

![Figure 5](https://example.com/figure5.png)

Figure 5. Metacognitive noise. Considered noise distributions are either censored, truncated or naturally bounded. In case of censoring, protruding probability mass accumulates at the bounds (depicted as bars with a darker shade; the width of these bars was chosen such that the area corresponds to the probability mass). The parameter σ_m and the distributional mode was set to $\frac{1}{3}$ in all cases. (A - C) Noisy-readout models. Metacognitive noise is considered at the level of readout, affecting metacognitive evidence z. Only a lower bound at $z = 0$ applies. (D - F) Noisy-report models. Metacognitive noise is considered at the level of the confidence report, affecting internal confidence representations c. Confidence reports are bounded between 0 and 1.

1.7 Metacognitive noise: noisy-report models

In contrast to noisy-readout models, a noisy-report model assumes that the readout noise of decision values is negligible ($z = z^*$) and that the dominant source of metacognitive noise occurs at the reporting stage ($c \sim f_m(c)$). Reporting noise itself may comprise various different sources of noise, occurring e.g. during the mental translation to an experimental confidence scale or in the form of visuomotor noise (e.g. when using a mouse cursor to indicate a continuous confidence rating).

A hard constraint for reporting noise is the fact that confidence scales are typically bounded between a minimum and a maximum confidence rating (reflecting the bounds $[0; 1]$ for c in the present model). Reported confidence cannot be outside these bounds, regardless of the magnitude of reporting noise. As in the case of the noisy-readout model, one may consider either censored (Figure 5D), truncated (Figure 5E) or naturally bounded distributions (Beta distribution; Figure 5F) to accommodate this constraint.
1.8 Metacognitive noise as a measure of metacognitive ability

As outlined above, I assume that metacognitive noise can be described either as variability during readout or report. In both cases, metacognitive noise is governed by the parameter σ_m. Higher values of σ_m will lead to a flatter relationship between reported confidence and sensory evidence, i.e., confidence ratings become more indifferent with regard to different levels of evidence (Figure 3B).

The behavior of the metacognitive noise parameter is closely related to the concept of metacognitive efficiency (Fleming and Lau, 2014), a term coined for measures of metacognitive ability that aim at being invariant to type 1 performance (in particular, M_{ratio}). As outlined in the introduction, the type 1 performance independence of M_{ratio} has been contested to some degree, on the basis of empirical data and as well as in simulations that consider the presence of metacognitive noise (Bang et al., 2019; Guggenmos, 2021).

Here, I was interested in two main questions: can metacognitive noise σ_m be truthfully recovered regardless of type 1 performance? And further, to what degree are metacognitive noise σ_m and metacognitive efficiency correlated and thus potentially capture similar constructs?

To assess the type 1 performance dependency, I simulated data with varying levels of sensory noise σ_s and five different values of σ_m. In each case I computed M_{ratio} on the data and also fitted the model to recover the metacognitive noise parameter σ_m. As shown in the left panels of Figure 6A (noisy-report) and 6B (noisy-readout), M_{ratio} shows a nonlinear dependency with varying type 1 performance levels. While this simulation was based on multiple stimulus levels, a similar nonlinear dependency is also present for a scenario with constant stimuli (Figure 6—figure supplement 1).

By contrast, the parameter σ_m is recovered without bias across a broad range of type 1 performance levels and at different levels of generative metacognitive noise (Figure 6, middle panels). The exception is a regime with very high metacognitive noise and low sensory noise under the noisy-readout model, in which recovery becomes biased. A likely reason is related to the inversion of the link function, which is necessary for parameter inference in noisy-readout models (cf. section 2.2): since the link function is dependent on sensory noise σ_s, its inversion becomes increasingly imprecise as σ_s approaches very small (or very high) values. However, apart from these extremal cases under the noisy-readout model, σ_m is largely unbiased and is thus a promising candidate to measure metacognitive ability independent of type 1 performance. Figure 6—figure supplement 2 shows that this conclusion also holds for various settings of other model parameters.
Figure 6. Comparison of M_{ratio} and metacognitive noise σ_m. Different performance levels were induced by varying the sensory noise of the forward model. Five different levels of metacognitive noise were simulated for a truncated normal noise distribution, covering the range between low and high metacognitive noise. While M_{ratio} showed a nonlinear dependency with varying type 1 performance levels both for A) noisy-report models and B) noisy-readout models, the recovered metacognitive noise parameter σ_m was largely independent of type 1 performance. Shaded areas indicate standard deviations across 100 simulated subjects. Right panels: Relationship between metacognitive noise and M_{ratio}. Simulated data were generated with a range of varying metacognitive noise parameters σ_m and constant sensory noise ($\sigma_s = 0.5$; proportion correct responses: 0.82). Computed M_{ratio} values show a clear negative correspondence with σ_m, reflecting the fact that metacognitive performance decreases with higher metacognitive noise.

Despite the fact that M_{ratio} may not be entirely independent of type 1 performance, it is fairly likely that it will capture the metacognitive ability of observers to some degree. It is thus interesting to assess the relationship between the model-based measure of metacognitive noise (σ_m) and M_{ratio}. To this aim, I performed a second simulation which kept type 1 performance constant at around 82% correct by using a fixed sensory noise parameter ($\sigma_s = 0.5$) and only varied the true underlying parameter σ_m. In addition, M_{ratio} was computed for each simulated observer. As shown in the right panels of Figures 6A and 6B, there was indeed a strong negative correlation between σ_m and M_{ratio} both for the noisy-report ($r = -0.97$) and the noisy-readout model ($r = -0.91$). Of note, a very similar relationship is observed for the unnormalized measure meta-d' (noisy-report: $r = -0.97$; noisy-readout: $r = -0.91$). The negative sign of the correlation is expected since a higher degree of noise should lead to more imprecise confidence ratings and thus reduced metacognitive performance.
Model fitting

Model fitting proceeds in a two-stage process. First, parameters of the sensory level are fitted by maximizing the likelihood of the model with respect to the observed type 1 decisions. Second, using the decision values predicted by the sensory level, the parameters of the metacognitive level are fitted by maximizing the likelihood with respect to observed confidence reports. The two levels are thus fitted independently. The reason for the separation of both levels is that choice-based parameter fitting for psychometric curves at the type 1 / sensory level is much more established and robust compared to the metacognitive level for which there are more unknowns (e.g., the type of link function or metacognitive noise distribution). Hence, the current model deliberately precludes the possibility that the estimates of sensory parameters are influence by confidence ratings.

In the following, the capital letter D denotes observed type 1 decisions, and the capital letter C denotes observed confidence ratings. The set of parameters of the sensory level is denoted as \(\mathcal{P}_s = \{\sigma_s, \delta_s, \vartheta_s\} \) and the set of parameters of the metacognitive level as \(\mathcal{P}_m = \{\sigma_m, \delta_m, \varphi_m, \lambda_m, \kappa_m\} \).

2.1 Sensory level

At the sensory level, sensory noise is considered to follow a logistic distribution (Equation 2). The likelihood \(\mathcal{L} \) of a particular type 1 decision D for stimulus x has an analytic solution given by the logistic function:

\[
\mathcal{L}(D = S^+ | \mathcal{P}_s) = 1 - \mathcal{L}(D = S^- | \mathcal{P}_s) = \frac{1}{1 + \exp\left(-\frac{\pi}{\sqrt{3}\sigma_s} y^*(x; \vartheta_s; \delta_s)\right)}
\]

where \(y^*(x; \vartheta_s; \delta_s) \) is given by Equation 1. By maximizing the (cumulative) likelihood across trials, one obtains estimates for \(\vartheta_s, \delta_s \), and \(\sigma_s \).

2.2 Metacognitive level

Parameter inference at the metacognitive level requires the output of the sensory level (decision values y) and empirical confidence ratings C. In addition, if the goal is to compute confidence as probability correct (as assumed here), the estimate of sensory noise \(\sigma_s \) is required. By running the model in feed-forward mode and using the fitted sensory parameters, the likelihood of confidence ratings is evaluated either at the stage of readout (noisy-readout model) or report (noisy-report model).

Special consideration is necessary for the noisy-readout model in which the significant metacognitive noise source is assumed at the level of an unobserved variable — metacognitive evidence. For this reason, the model must be inverted from the point of the observed variable (here confidence ratings) into the space of the latent variable (metacognitive evidence). A consequence of this is that the link function that transforms metacognitive decision values to confidence ratings must be strictly
monotonically increasing in the noisy-readout scenario, as model inversion would otherwise be ambiguous.

Using the link function considered for this work, the tangens hyperbolicus (Equation 5), the inversion is as follows:

\[
Z = \frac{2\sqrt{3}\sigma_s}{\pi} \arctanh\left((C - \kappa_m)/\lambda_m\right)
\]

(8)

Importantly, the likelihood \(\mathcal{L}(C | \mathcal{P}_m) \) of observed confidence ratings \(C \) given parameters \(\mathcal{P}_m \) not only depends on the uncertainty of the model prediction for metacognitive decision values \(z^*(y) \), but also on the uncertainty around the decision values \(y \) themselves. Computing the likelihood \(\mathcal{L}(C | \mathcal{P}_m) \) thus requires an integration over the probability density \(f_s(y) \):

\[
\text{Noisy-readout: } \mathcal{L}(C|\mathcal{P}_m) = \int f_m(Z|z^*(y))f_s(y) \, dy
\]

(9)

The term \(z^*(y) \) is identical to Equation 4. In case of the noisy-report model, the likelihood can be directly computed with respect to the observed confidence reports \(C \), i.e., without inversion of the link function:

\[
\text{Noisy-report: } \mathcal{L}(C|\mathcal{P}_m) = \int f_m(C|c^*(y))f_s(y) \, dy
\]

(10)

The term \(c^*(y) \) corresponds to the link function in Equation 6.

2.3 Parameter recovery

To ensure that the model fitting procedure works as expected and that model parameters are distinguishable, I performed a parameter recovery analysis. To this end, I systematically varied each parameter of a model with metacognitive evidence biases and generated data (see below, for a model with confidence biases). Specifically, each of the six parameters \((\sigma_s, \vartheta_s, \delta_s, \sigma_m, \varphi_m, \delta_m) \) was varied in 500 equidistant steps between a sensible lower and upper bound. The model was then fit to each dataset.

To assess the relationship between fitted and generative parameters, I computed linear slopes between each generative parameter (as the independent variable) and each fitted parameter (as the dependent variable), resulting in a 6 x 6 slope matrix. Note that I computed (robust\(^1\)) linear slopes instead of correlation coefficients, as correlation coefficients are sample-size-dependent and approach 1 with increasing sample size even for tiny linear dependencies. Thus, as opposed to correlation coefficients, slopes quantify the strength of a relationship. Comparability between the slopes of different parameters is given because i) slopes are – like correlation coefficients – expected to be 1 if the fitted values precisely recover the true parameter values (i.e., the diagonal of the matrix) and ii) all parameters have a similar value range which makes a comparison of off-diagonal slopes likewise meaningful.

\(^1\) Robust slopes were computed using the Theil-Sen method, which is based on the median of the slopes of all lines through pairs of points (Sen, 1968; Theil, 1950).
To test whether parameter recovery was robust against different settings of the respective other parameters, I performed this analysis for a coarse parameter grid consisting of three different values for each of the six parameters except σ_m, for which five different values were considered. This resulted in $3^5 \cdot 5^1 = 1215$ slope matrices for the entire parameter grid.

Figure 7 shows the result of this analysis both for a noisy-report and a noisy-readout model, expanded along the sensory (σ_s) and metacognitive (σ_m) noise axis of the coarse parameter grid. Overall, generative and fitted parameters show excellent correspondence, i.e., nearly all slopes on the diagonal are close to 1.

Off-diagonal correlation coefficients indicate a potential trade-off between different parameters in the fitting procedure. Here, the only marked trade-off emerges between metacognitive noise σ_m and the metacognitive evidence biases (φ_m, δ_m) in the noisy-readout model, under conditions of low sensory noise. In this regime, the multiplicative evidence bias φ_m becomes increasingly underestimated and the additive evidence bias δ_m overestimated with increasing metacognitive noise.

Closer inspection shows that this dependency emerges only when metacognitive noise is high – up to $\sigma_m \approx 0.3$ no such dependency exists. It is thus a scenario in which there is little true variance in confidence ratings (due to low sensory noise many confidence ratings would be close to 1 in the absence of metacognitive noise), but a lot of measured variance due to high metacognitive noise. It is likely for this reason that parameter inference is problematic. Overall, except for this arguably rare scenario, all parameters of the model are highly identifiable and separable.

While this analysis was carried out for 10,000 trials per simulated subject to assess the theoretical linear dependency structure, a supplementary analysis with 500 trials showed still excellent agreement between generative and fitted parameters (Figure 7—figure supplement 1).

I repeated the same analysis for a model with metacognitive confidence biases. The result of this analysis shows that also the parameters of a model with metacognitive confidence biases can be accurately recovered (Figure 7—figure supplement 2). In addition, I assessed models that feature a mix of metacognitive evidence and confidence biases (Figure 7—figure supplement 3). The results of these analyses indicate that models with up to three bias parameters show generally good parameter recovery. An exception are models with both confidence bias parameters (λ_m, κ_m) which additionally consider one of the evidence parameters (φ_m or δ_m). For these models, considerable trade-offs between the bias parameters start to emerge. Finally, a model with all four considered metacognitive bias essentially fails to recover its bias parameters.
Figure 7. Parameter recovery (10,000 trials per observer). Linear dependency between generative parameters and fitted parameters for the six parameters of the noisy-report and noisy-readout model ($\sigma_m, \delta_n, \sigma_n, \delta_m, \varphi_m$).

Linear dependency between generative and fitted parameters was assessed by means of robust linear slopes. The ideal value for diagonal elements is 1, while off-diagonal elements should be as close to zero as possible. Multiple slope matrices were computed for each node of a coarse parameter grid (see text). The figure thus shows average slope matrices, expanded along the coarse parameter grid axes for sensory noise and metacognitive noise. Numeric values in cells represent averaged slopes across the coarse parameter grid.

While the previous analysis indicates overall excellent parameter recovery performance, there nevertheless could be certain biases in parameter recovery that escape a slope-based analysis. To test for such biases, in Figure 7—figure supplement 4 I assessed the precise values of recovered parameters across a range of generative parameter values. In all instances, the model precisely recovered the input parameter values, thereby showcasing the high acuity of parameter recovery. Finally, to more systematically assess the precision of parameter recovery in dependence of trial number, I set the value of each generative parameter to 0.2 (arbitrary value) and tested parameter recovery across a range of trial numbers between 500 and 10,000. The results in Figure 7—figure supplement 5 provide a reference about the expected precision of parameter estimates in dependence of trial number.

2.4 Model recovery

One strength of the present modeling framework is that it allows testing whether inefficiencies of metacognitive reports are better described by metacognitive noise at readout (noisy-readout model) or at report (noisy-report model). To validate this type of application, I performed an additional model
recovery analysis which tested whether data simulated by either model are also best fitted by the respective model. Figure 7—figure supplement 6 shows that the recovery probability was close to 1 in most cases, thus demonstrating excellent model identifiability. With fewer trials per observer, recovery probabilities decrease expectedly, but are still at a very good level. The only edge case with poorer recovery was a scenario with low metacognitive noise and high sensory noise. Model identification is particularly hard in this regime because low metacognitive noise reduces the relevance of the metacognitive noise source, while high sensory noise increases the general randomness of responses.

3 Application to empirical data

3.1 On using the model framework

It is important to note that the present work does not propose a single specific model of metacognition, but rather provides a flexible framework of possible models and a toolbox to engage in a metacognitive modeling project. Applying the framework to an empirical dataset thus requires a number of user decisions: which metacognitive noise type is likely more dominant? which metacognitive biases should be considered? which link function should be used? These decisions may be guided either by a priori hypotheses of the researcher or can be informed by running a set of candidate models through a statistical model comparison.

As an exemplary workflow, consider a researcher who is interested in quantifying overconfidence in a confidence dataset with a single parameter to perform a brain-behavior correlation analysis. The concept of under/overconfidence already entails the first modeling decision, as only a link function that quantifies probability correct (Equation 6) allows for a meaningful interpretation of metacognitive bias parameters. Moreover, the researcher must decide for a specific metacognitive bias parameter. The researcher may not be interested in biases at the level of the confidence report, but, due to a specific hypothesis, rather at metacognitive biases at the level of readout/evidence, thus leaving a decision between the multiplicative and the additive evidence bias parameter. Also, the researcher may have no idea whether the dominant source of metacognitive noise is at the level of the readout or report. To decide between these options, the researcher computes the evidence (e.g., AIC) for all four combinations and chooses the best-fitting model (ideally, this would be in a dataset independent from the main dataset).

3.2 Application to an example dataset (Shekhar and Rahnev, 2021)

To test the proposed model on real-world empirical data, I used a data set recently published by Shekhar and Rahnev (2021) which has a number of advantageous properties for a modeling approach. First, a high number of 2800 trials were measured for each of the 20 participants, enabling a precise estimate of computational parameters (cf. Figure 7—figure supplement 5). Second, the task design comprised multiple stimulus intensities, which is expected to improve the fit of a process model. And third, participants rated their confidence on a continuous scale. While the model works well with
discrete confidence ratings, only continuous confidence scales harness the full expressive power of the model. In each trial, participants indicated whether a Gabor patch imposed on a noisy background was tilted counterclockwise or clockwise from a vertical reference and simultaneously rated their confidence. The average performance was 77.7% correct responses.

Figure 8A visualizes the overall model fit at the sensory level. The posterior, defined as the probability of choosing S^+, closely matched the model fit. The average posterior probability showed a slight y-offset, reflecting a negative mean sensory bias towards $S^+ (\delta_s = -0.06 \pm 0.03)$ and serving as a validation that the model parameter sensibly captured the psychometric curve. Since no stimulus intensities near chance-level performance were presented to participants, a sensory threshold parameter was not fitted.

At the metacognitive level, I compared noisy-readout and noisy-report models in combination with the metacognitive noise distributions introduced in Result sections 1.6 and 1.7. For this analysis, I considered metacognitive evidence biases only (i.e., multiplicative evidence bias φ_m and additive evidence bias δ_m). The model evidence was computed based on the Akaike information criterion (AIC; Akaike, 1974). As shown in Figure 8B, with the exception of censored distributions, all models performed at a similar level. Seven of the 10 tested models were the winning model for at least one participant (Figure 8C).

Interestingly, there were quite clear patterns between the shapes of individual confidence distributions and the respective winning model (Figure 8—figure supplement 1). For instance, a single participant is best described by a noisy-report + Beta model, and indeed the confidence distribution of this participant is quite unique and plausibly could be generated by a Beta noise distribution (participant 7). Participants who were best fitted by noisy-readout models have quite specific confidence distributions with pronounced probability masses at the extremes and very thin coverage at intermediate confidence levels (participants 4-6, 8, 10, 13, 19) – except those, for which the lognormal readout noise distribution was optimal (participants 9 and 11). Finally, two participants were best fitted by a censored distribution (participants 14 and 16), contrary to the general tendency. These participants likewise had fairly idiosyncratic confidence distributions characterized by the combination of a probability mass centered at mid-level confidence ratings and a prominent probability mass at a confidence of 1. While a more detailed analysis of individual differences is beyond the scope of this paper, these examples may point to distinct phenotypes of metacognitive noise.
Figure 8. Model performance and relationship between model-based parameters and behavioral measures. (A) Posterior probability (choice probability for S^+) as a function of normalized signed stimulus intensity. Model-based predictions closely follow the empirical data. Means and standard errors (across subjects) were computed for the three difficulty levels of each stimulus category. The fit is based on a logistic function with a bias parameter. (B) Akaike information criterion (AIC) for different metacognitive noise distributions. Note that AIC values represent the model evidence of the metacognitive level (sensory levels are identical between models). Error bars indicate standard errors of the mean. (C) Breakdown of the best-fitting models for all participants. (D-G) Winning model (noisy report + truncated Gumbel). (D) Empirical confidence is well-fitted by model-based predictions of confidence. Model-based predictions are based on an average of 1000 runs of the generative model. Error bars represent SEM. (E) Relationship of empirical M ratio and model-based metacognitive noise σ_m. (F, G) Partial correlation of the empirical confidence bias and the model-based additive evidence bias δ_m. The multiplicative evidence bias was partialed out from the confidence bias. (G) Partial correlation of the empirical confidence bias and the model-based additive evidence bias δ_m. The multiplicative evidence bias was partialed out from the confidence bias.

In the next step, I inspected the winning metacognitive model (noisy report + truncated Gumbel) in more detail. While the selection of this specific model is arbitrary due to the similar performance of several other models, it serves the illustrative purpose and the differences between these models were overall negligible.

I first compared confidence ratings predicted by the model with empirical confidence ratings across the range of experimental stimulus intensities. As shown in Figure 8D, model-predicted confidence tracked behavioral confidence quite well (Figure 8D). This included a slight confidence bias towards S^+, which itself is likely a result of the general sensory bias towards S^+. I then compared the fitted parameter values of the model with conventional behavioral measures of metacognition. In Result section 1.8, a tight inverse relationship between metacognitive efficiency (M_{data}) and the metacognitive noise parameter σ_m was demonstrated for simulated data. As shown in Figure 8E, for the empirical data there was likewise a negative relationship, although weaker
Like many, the model fit indicates a negative sensitivity bias in the sensory level translates to the metacognitive level:

\[
\delta_m \frac{\text{error}}{\text{true}} = \frac{\text{error}}{\text{true}} - 1
\]

As outlined above, the multiplicative evidence bias \(\phi_m\) and the additive evidence bias \(\delta_m\) can be interpreted as metacognitive biases. To assess the validity of these parameters, I computed individual confidence biases by subtracting a participant’s objective accuracy from the subjective predicted accuracy (based on confidence ratings). Positive and negative values of this confidence bias are often regarded as evidence for over- and underconfidence. As shown in Figures 8F and 8G, both parameters show the expected relationships: higher individual confidence biases are associated with higher values of \(\delta_m\) when controlling for \(\phi_m\) (\(r_{\text{Partial}} = 0.78, p < 0.001\)), and with \(\phi_m\) when controlling for \(\delta_m\) (\(r_{\text{Partial}} = 0.64, p = 0.003\)). This analysis confirms that the metacognitive bias parameters of the model meaningfully relate to the over- and underconfidence behavior in empirical data.

In a final step, I focus on the model fit of a single participant (Figure 9). The selected participant has a relatively high degree of sensory noise (proportion correct = 0.74, \(\sigma_s = 1.04\)) compared to the group mean (proportion correct \(\pm\) SEM = 0.78 \(\pm\) 0.01, \(\sigma_s \pm\) SEM = 0.89 \(\pm\) 0.04), reflected in a relatively flat psychometric curve (Figure 9A). Due to a negative response bias (\(\delta_s = -0.23\)) the psychometric curve is shifted towards the left. Like many participants in the dataset, the participant thus tends to disproportionately choose clockwise/\(S^+\) over counterclockwise/\(S^-\).

Figures 9B and 9C visualize the results of the metacognitive level, which is again of the type noisy-report + truncated Gumbel. For this participant, the model fit indicates a negative additive evidence bias \(\delta_m\), thereby introducing a threshold below which stimuli are not metacognitively accessible (indicated by a flat region for the link function in Figure 9B). This negative additive evidence bias is compensated by a relatively high multiplicative evidence bias \(\phi_m = 1.15\), resulting in an average confidence of 0.488 that is close to the group average (0.477 \(\pm\) 0.038).

While below average in terms of type 1 performance, this participant excels in terms of metacognitive performance. This is both indicated by a high \(M_{\text{ratio}}\) of 1.23 (group mean \(\pm\) SEM = 0.88 \(\pm\) 0.05) and a low metacognitive noise parameter \(\sigma_m\) of 0.06 (group mean \(\pm\) SEM = 0.10 \(\pm\) 0.02).

It is important to note that a low metacognitive noise parameter \(\sigma_m\) does not imply that the participants’ confidence ratings are expected to be within a narrow range for each specific stimulus intensity. This is because the uncertainty of the sensory level translates to the metacognitive level: the width of decision value distributions, as determined by sensory noise \(\sigma_s\), also affects the expected width of downstream confidence distributions. Indeed, the behavioral confidence distributions in Figure 9C are spread out across the entire confidence range for all difficulty levels. In Figure 9C this aspect is emphasized by not only showing the confidence likelihood for the most likely decision value
of each stimulus level i, but also for sensory decision values 0.5 standard deviations below and above y^*_i.

Note that when considering decision values 0.5 standard deviations above y^*_i, a sign flip occurs for the two lower stimulus intensities of S^- (indicated with likelihood distributions shaded in red). In these cases, the participant would make an incorrect choice. Moreover, the two lower stimulus intensities of S^- show a well-known characteristic of statistical confidence: an increase of confidence for incorrect choices as stimulus difficulty increases (Sanders et al., 2016).

To compare the empirical confidence distribution of this participant with the distribution predicted by the model, the parameters in the generative model were set to their corresponding fitted values and sampled confidence ratings. The average predicted confidence ratings (Figure 9B, orange error bars) and the density histograms (Figure 9C, orange line plots) obtained from this sampling procedure demonstrate a close fit with the participant’s confidence rating distributions. This close correspondence is not limited to this particular participant. As shown in Figure 8—figure supplement 1, a generative model described by σ_m, δ_m and φ_m is able to approximate a wide range of idiosyncratic empirical confidence distributions.
Here, I introduced four metacognitive bias parameters loading either on metacognitive evidence or the confidence report. As shown through the simulation of calibration curves, all bias parameters can yield under- or overconfidence relative to a bias-free observer. The fact that the calibration curves and the relationships between type 1 performance and confidence biases are quite distinct between the proposed metacognitive bias parameters may indicate that these are to some degree dissociable. Moreover, in an empirical dataset the multiplicative evidence bias \(\varphi_m\) and the additive evidence bias...
δ_m strongly correlated with a conventional confidence bias measure, further validating these parameters.

The second kind of metacognitive parameter considered in this work is metacognitive noise (Mueller and Weidemann, 2008; Jang et al., 2012; De Martino et al., 2013; van den Berg et al., 2017; Bang et al., 2019; Shekhar and Rahnev, 2021). As with metacognitive biases, metacognitive noise may arise at different stages of the processing hierarchy and in the present work I investigated two kinds: noise at readout and report. Both parameters affect the precision of confidence ratings and as a result they showed an expected negative relationship with regular measures of metacognitive ability (meta-d', M_ratio). Importantly, I show that while even M_ratio, a measure normalized for type 1 performance, was dependent on type 1 performance for simulated data, recovered estimates of metacognitive noise were largely invariant to type 1 performance. Thus, just as in the case of metacognitive biases, the entanglement of metacognitive and type 1 behavior can be unraveled by means of a process model approach.

While this summary so far emphasized the advantages of a process model approach to metacognition, there are a number of remaining challenges. First, it is entirely possible that a comprehensive model of metacognition is non-invertible from the point of confidence ratings. This challenge is exemplified by the noisy-readout model, for which the inversion requires a strictly monotonically increasing link function. To achieve unbiased parameter inferences, one would need additional observed measures along the processing hierarchy. For instance, reaction time could be considered an implicit proxy for confidence, which is affected by readout noise but not by reporting noise. Conditional on finding an appropriate functional relationship to metacognitive evidence, reaction times could allow for an unbiased inference of metacognitive readout noise or metacognitive evidence bias parameters.

Second, the effects of different sources of bias and noise along the processing hierarchy may be so strongly correlated that their dissociation would require unreachable amounts of confidence data. This dissociation, however, is essential for many research questions in metacognition – whether the goal is to derive a fundamental model of human metacognition or whether one is interested in specific aberrancies in mental illness. An example for the latter is the frequent observation of overconfidence in schizophrenia which is thought to reflect a more general deficit in the ability to integrate disconfirmatory evidence (Speechley, 2010; Zawadzki et al., 2012) and may underlie the maintenance of delusional beliefs (Moritz and Woodward, 2006b). To investigate this specific hypothesis, it is central to dissociate whether metacognitive biases mainly apply at the reporting stage – which may be a result of the disease – or at an earlier metacognitive processing stage, which may be involved in the development of the disease. This issue likewise could be addressed by measuring behavioral, physiological or neurobiological processes that precede the report of confidence.

Third, the demonstration of an unbiased recovery of metacognitive noise and bias parameters in a process model approach comes with a strong caveat, since the data is generated with the very same model that is used for parameter recovery. Yet, all models are wrong, goes the saying, and this
certainly applies to current models of metacognition. The question is thus: given the unknown true
model that underlies empirical confidence ratings, to what degree can parameters obtained from an
approximated model be considered unbiased? The way forward here is to continuously improve
computational models of metacognition in terms of model evidence, thus increasing the chances that
fitted parameters are meaningful estimates of the true parameters.

With respect to previous modeling work, a recent paper by Shekhar and Rahnev (2021) deserves
special attention. Here too, the authors adopted a process model approach for metacognition with
the specific goal of deriving a measure of metacognitive ability, quite similar to the metacognitive
noise parameter σ_m in this work. One key difference is that Shekhar and Rahnev tailored their model
to discrete confidence scales, such that each possible confidence rating (for each choice option) is
associated with a separately fitted confidence criterion (as notable precursor of this idea is Adler and
Ma, 2018b). This introduces maximal flexibility, as essentially arbitrary mappings from internal
evidence to confidence can be fitted. In addition, it requires minimal assumptions about the link
functions that underlies the computation of confidence, apart from an ordering constraint applied to
the criteria.

However, while this flexibility is a strength, it also comes at certain costs. One issue is the relatively
large number of parameters that have to be fitted. Shekhar and Rahnev note that the MLE procedures
for the fitting of confidence criteria often got stuck in local minima. Rather than via MLE, confidence
criteria were thus fitted by matching the expected proportion of high confidence trials to the observed
proportion for each criterion. It is thus not guaranteed that the obtained confidence criterions indeed
maximize the likelihood under the data. Furthermore, to make a criterion-based model compatible
with data from a continuous confidence scale, confidence reports have to be discretized. Apart from
the loss of information associated with discretization, this introduces uncertainty as to how exactly
the data should be binned (e.g. equinumerous versus equidistant). Another aspect worth mentioning
is that a criterion-based approach effectively corresponds to a stepwise link function, which is not
invertible. Making inferences about readout noise thus poses a challenge to such criterion-based
models.

In the present work, I assumed a mapping between internal evidence and confidence that can be
described by a parametric link function. This too comes with advantages and disadvantages. On the
one hand, a parametric link function naturally imposes strong constraints on the mapping between
internal evidence and confidence. In reality, this mapping might not conform to any simple function
– and even if it did, different observers might apply different functions. On the other hand, imposing
a specific link function can be seen as a form of regularization when statistical power is insufficient to
constrain a large number of individual criteria. Further, a parametric link function does not need to
worry about the discretization of confidence ratings, while still being compatible with a priori
discretized ratings. And finally, a meaningful inference about metacognitive biases requires a
parametric link function which computes the subjective probability of being correct (as in Equation 5).
The disproportionate frequency of the most extreme ratings for continuous confidence scales — both in the empirical dataset considered here (Shekhar and Rahnev, 2021), but also in many other datasets (Rahnev et al., 2020) — may indicate that there are at least two criteria at play: a finite level of metacognitive evidence below which the lowest confidence rating is given (minimum confidence criterion) and a level of metacognitive evidence above which the highest confidence rating is given (maximum confidence criterion). Yet, even without the postulation of explicit criteria, the present model can account in two possible, non-mutually exclusive, ways for this observation. The first possibility is that extremal ratings are a consequence of metacognitive noise, which pushes confidence ratings to the bounds. In particular, censored noise distributions can readily account for an accumulation of confidence ratings at the bounds of the scale.

The second possibility is that the minimum and maximum confidence criteria implicitly arise as a consequence of metacognitive biases (cf. section 1.4). Indeed, the individual fits to the empirical dataset (Figure 8—figure supplement 1) showed that the model accounted well even for data of participants with a strong preference for extremal confidence ratings, despite not considering explicit confidence criteria. An exploratory analysis (not reported here) indicated that participants with such confidence distributions are not well-explained by censored noise models, which may be a tentative argument for the metacognitive bias explanation instead.

The process model approach deviates in an important way from standard analyses of confidence reports based on the type 2 receiver operating curve. As type 2 ROC analyses are solely based on stimulus-specific type 1 and type 2 responses, they do not consider one of the arguably most important factors in this context: stimulus intensity. This implies that such measures cannot dissociate to what degree variability in confidence ratings is based on stimulus variability or on internal noise. In contrast, since a process model specifies the exact transformation from stimulus intensity to decision variable to confidence, this source of variance is appropriately taken into account. The metacognitive noise parameter σ_m introduced here is thus a measure of the unexpected variability of confidence ratings, after accounting for the variability on the stimulus side. Note that such stimulus variability is typically present even in designs with intended constant stimulus difficulty, due to the involvement of randomness in the generation of unique trial-by-trial stimuli. In many cases, the effective stimulus difficulty (i.e., including this random component of stimulus variability) can likewise be quantified using appropriate feature-based energy detectors (see e.g., Guggenmos et al., 2016).

The process model approach bears another important difference compared with type 2 ROC analyses, in this case a limiting factor on the side of the process model. As the area under the type 2 ROC quantifies to what degree confidence ratings discriminate between correct and incorrect responses, it is important to recognize what valuable piece of information the correctness of a specific response is. Over and above stimulus intensity, the correctness of a response will typically be influenced by negative factors such as attentional lapses, finger errors, tiredness, and positive factors such as phases of increased motivation or concentration. All of these factors not only influence type 1 performance,
but they also influence the type 2 response that one would expect from an ideal metacognitive observer. Analyses of type 2 ROCs implicitly make use of this information insofar as they consider the correctness of each individual response.

In contrast, the information about the objective trial-by-trial accuracy is not available in a process model. The signal that enters the metacognitive level of the process model is based on observed variables (in particular, the sensory decision variable), but not based on the correctness of specific choices, which is unknown to the observer. Note that this is not a limitation specific to the present model, but the nature of process models in general. Improving process models in this regard necessitates access to additional trial-by-trial data based on objective measurements (e.g. eye-tracking data) or subjective reports if these are not used for model fitting (e.g. reports of attentional lapses or finger errors).

In sum, while a type 2 ROC analysis – as a descriptive approach – does not allow any conclusions about the causes of metacognitive inefficiency, it is able to capture a more thorough picture of metacognitive sensitivity: that is, it quantifies metacognitive awareness not only about one’s own sensory noise, but also about other potential sources of error (attentional lapses, finger errors, etc.). While it cannot distinguish between these sources, it captures them all. On the other hand, only a process model approach will allow to draw specific conclusions about mechanisms – and pin down sources – of metacognitive inefficiency, which arguably is of major importance in many applications.

Finally, how does the present model relate to the recent discussion between Bayesian and Non-Bayesian models of confidence (Aitchison et al., 2015; Sanders et al., 2016; Adler and Ma, 2018b)? A Bayesian observer of the (inner) world is one who maintains a posterior probability density over possible states of that world. In particular, computing confidence for such an observer corresponds to integrating the posterior over all possible states for which the type 1 choice would be correct. In this sense, the model proposed here with the link function provided in Equation 5 corresponds to a Bayesian observer, albeit one that can be susceptible to metacognitive biases and to additional sources of metacognitive noise. Thus, while the observer is Bayesian in nature, it may not be Bayes optimal. At the same time, the framework and the toolbox are flexible to allow for “non-Bayesian” link functions (Figure 3—figure supplement 1) that could represent certain idiosyncratic heuristics and shortcuts inherent to human confidence judgements. Of note, the model proposed here does not consider prior distributions over the stimulus categories (see e.g., Adler and Ma, 2018b). Instead, it is assumed that the observer considers both stimulus categories equally likely which is a reasonable assumption if stimulus categories are balanced.

Conclusion

The model outlined in this paper casts confidence as a noisy and potentially biased transformation of sensory decision values. The model parameters that shape this transformation provide a rich account of human metacognitive inefficiencies and metacognitive biases. In particular, I hope that the underlying framework will allow a systematic model comparison in future confidence datasets to
elucidate sources of metacognitive noise, to narrow down candidate noise distributions and to differentiate between different kinds of metacognitive biases. The accompanying toolbox ReMeta provides the functionality for such investigations.

Materials and Methods

The ReMeta toolbox

The code underlying this work has been bundled in a user-friendly Python toolbox (ReMeta) which is published alongside this paper at github.com/m-guggenmos/remeta. While its core is identical to the framework outlined here, it offers a variety of additional parameters and settings. In particular, it allows fitting separate values for each parameter depending on the sign of the stimulus (for sensory parameters) or the decision value (for metacognitive parameters). Moreover, it offers various choices for noise distributions and link functions, including criterion-based link functions.

The ReMeta toolbox has a simplified interface such that in the most basic case it requires only three data vectors as input: stimuli, choices and confidence. The output is a structure containing the fitted parameters, information about the goodness of fit (log-likelihood, AIC, BIC, correlation between empirical confidence ratings and ratings from a generative model) and optionally vectors of all latent variables (e.g. decision values, metacognitive evidence). The toolbox is highly configurable — in particular each parameter can be disabled, enabled or enabled in duplex mode (i.e. sign-dependent, see above).

Parameter fitting minimizes the negative log-likelihood of type 1 choices (sensory level) or type 2 confidence ratings (metacognitive level). For the sensory level, initial guesses for the fitting procedure were found to be of minor importance and are thus set to reasonable default values. Data are generally fitted with a gradient-based optimization method (Sequential Least Squares Programming; Kraft, 1988). However, if enabled, the sensory threshold parameter can introduce a discontinuity in the psychometric function, thereby violating the assumptions of gradient methods. In this case, an additional gradient-free method (Powell’s method; Powell, 1964) is fitted and the estimate with the lower negative log-likelihood is chosen. Both parameter fitting procedures respect lower and upper bounds for each parameter.

Since parameters of the metacognitive level were found to be more variable, subject-specific initial values for the fitting procedure are of greater importance. For this reason, an initial coarse grid-search with parameter-specific grid points is performed to determine suitable initial values, which are subsequently used for a gradient-based optimization routine (Sequential Least Squares Programming). Here too, lower and upper bounds are respected for each parameter.

The toolbox has optional settings to invoke an additional fine-grained grid-search and an explicit global optimization routine (Basin-hopping; Wales and Doye, 1997), both of which are computationally considerably more expensive. Exploratory tests showed that these methods were not necessary for
parameter estimation on either simulated or empirical data in this work; however, this may be different for other empirical datasets.

Acknowledgements
This research was funded by the German Research Foundation (grant GU 1845/1-1). I’m grateful to the lab of Elisa Filevich for helpful input and critical discussion. Computation has been performed on the HPC for Research cluster of the Berlin Institute of Health.

Competing interests
The author declares that no competing interests exist.

References
Galvin SJ, Podd JV, Draga V, Whitmore J (2003) Type 2 tasks in the theory of signal detectability:

Lichtenstein S, Fischhoff B (1977) Do those who know more also know more about how much they know? Organ Behav Hum Perform 20:159–183.

Appendix 1

Derivation of the link function when confidence is expressed as probability correct

When confidence is assumed to express probability correct – and in the absence of metacognitive noise / biases – the link function $c^*(y)$ is defined as the (rescaled) choice probability p for the chosen option (rescaled from 0.5 to 0.1 using the transformation $2(p - 0.5)$). Since the choice probability for the chosen option is symmetric in y, the link function can be simplified to just considering absolute decision values (i.e., $c^*(|y|)$). Using the expression for the choice probability in Equation 7, a logistic function, and the relationship $\text{logistic}(x) = 0.5 \left(\tanh \left(\frac{\pi}{2} \sqrt{\frac{3}{\sigma_s}} |y| \right) + 1 \right)$, one arrives at the following derivation of the link function:

$$c^*(|y|) = 2(p(\text{choice} = S^+; |y|) - 0.5) = 2 \left(\text{logistic} \left(\frac{\pi}{\sqrt{3\sigma_s}} |y| \right) - 0.5 \right) = 2 \left(0.5 \left(\tanh \left(\frac{\pi}{2\sqrt{3\sigma_s}} |y| \right) + 1 \right) - 0.5 \right) = \tanh \left(\frac{\pi}{2\sqrt{3\sigma_s}} |y| \right)$$

(A1)

The final form of the link function in Equation 5 is based on Equation A1, augmented with evidence-based metacognitive bias parameters ($|y| \rightarrow z^* := \max(\varphi_m |y| + \delta_m, 0)$) and accounting for metacognitive readout noise ($z^* \rightarrow z$).
Appendix 2

Appendix 2—table 1. Metacognitive noise distributions. All distributions are parameterized such that \(z^* \) is the mode and \(\sigma_m \) is the standard deviation of the distribution (the only exception is the Beta distribution, for which \(\sigma_m \) is a spread parameter that cannot be identified with a statistical quantity). For the Gumbel distribution the auxiliary parameter \(\eta_m \) was defined as \(\eta_m = \frac{n}{(\alpha_n \sqrt{6})} \), such that \(\sigma_m \) corresponds to the standard deviation of the distribution.

<table>
<thead>
<tr>
<th>Distributions</th>
<th>Noisy-readout</th>
<th>Noisy-report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Censored Normal</td>
<td>(f_m(z) = \begin{cases} \Phi \left(-\frac{z}{\sigma_m} \right) & \text{if } z = 0 \ \frac{1}{\sigma_m} \phi \left(-\frac{z - z^*}{\sigma_m} \right) & \text{if } z > 0 \end{cases})</td>
<td>(f_m(c) = \begin{cases} \Phi \left(-\frac{c^}{\sigma_m} \right) & \text{if } c = 0 \ \frac{1}{\sigma_m} \phi \left(-\frac{c - c^}{\sigma_m} \right) & \text{if } 0 < c < 1 \ \Phi \left(\frac{1 - c}{\sigma_m} \right) & \text{if } c = 1 \end{cases})</td>
</tr>
<tr>
<td>Censored Gumbel</td>
<td>(f_m(z) = \begin{cases} 1 - \exp \left(-e^{\eta_m z^} \right) & \text{if } z = 0 \ \eta_m \exp (\eta_m (z - z^) - e^{\eta_m (z - z^*)}) & \text{if } z > 0 \end{cases})</td>
<td>(f_m(c) = \begin{cases} 1 - \exp \left(-e^{\eta_m c^} \right) & \text{if } c = 0 \ \eta_m \exp (\eta_m (c - c^) - e^{\eta_m (c - c^)}) & \text{if } 0 < c < 1 \ \exp (-e^{\eta_m (c - c^)}) & \text{if } c = 1 \end{cases})</td>
</tr>
<tr>
<td>Truncated Normal</td>
<td>(f_m(z) = \frac{1}{\sigma_m} \phi \left(-\frac{z - z^*}{\sigma_m} \right) - \Phi \left(-\frac{z}{\sigma_m} \right))</td>
<td>(f_m(c) = \frac{\Phi \left(\frac{1 - c}{\sigma_m} \right) - \Phi \left(-\frac{c}{\sigma_m} \right)}{\Phi \left(\frac{1 - c}{\sigma_m} \right)})</td>
</tr>
<tr>
<td>Truncated Gumbel</td>
<td>(f_m(z) = \frac{\exp (\eta_m (z - z^) - e^{\eta_m (z - z^)})}{\exp (-e^{\eta_m z})})</td>
<td>(f_m(c) = \frac{\exp (\eta_m (c - c^) - e^{\eta_m (c - c^)})}{\exp (-e^{\eta_m c^*})})</td>
</tr>
<tr>
<td>Gamma/Beta</td>
<td>(f_m(z) = \frac{\beta^\alpha}{\Gamma(\alpha)} z^{\alpha-1} e^{-\beta z}) Parameterization: (\alpha = z + 2 \sigma_m + z^* \sqrt{z^* + 4 \sigma_m^2}) (\beta = \frac{1}{2 \sigma_m^2} (z^* + \sqrt{z^* + 4 \sigma_m^2}))</td>
<td>(f_m(c) = \frac{c^{\alpha-1}(1-c)^{\beta-1}}{B(\alpha, \beta)}) Parameterization: (\alpha = c^* \left(\frac{1}{\sigma_m} - 2 \right) + 1) (\beta = (1 - c^*) \left(\frac{1}{\sigma_m} - 2 \right) + 1)</td>
</tr>
<tr>
<td>Lognormal</td>
<td>(f_m(z) = \frac{1}{\sigma_m \sqrt{\pi}} \exp \left(-\frac{(\ln z - \hat{z}^)^2}{\sigma_m^2} \right)) Note: (\hat{z}^) and (\hat{\sigma}_m) represent an analytic parameterization such that the lognormal distribution has mode (z^*) and standard deviation (\sigma_m). See the published code for details.</td>
<td></td>
</tr>
</tbody>
</table>

Note: This version posted June 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
Supplementary Figure Legends

Figure 2—figure supplement 1. Nonlinear transformation of the stimulus variable. Early visual processing likely involves nonlinear transformations of stimulus signals, including processes such as contrast gain control nonlinearities or nonlinear transduction. In the toolbox, either a power transformation or an exponential transformation is considered. In both cases, the transformation includes a renormalization to 1, such that any difference in linear stimulus intensity scaling between participants is captured by the decision noise parameter σ_s. (A) Power transformation. (B) Exponential transformation.

Figure 3—figure supplement 1. Metacognitive link functions. Alternative choices for link functions provided by the ReMeta toolbox describing the relationship between metacognitive evidence and confidence. Note that these link functions do not compute the subjective probability of being correct.

Link functions: tanh (simple tangens hyperbolicus), linear (linear slope, no intercept), step function (criterion-based link function with three criteria placed at evidence levels 0.2, 0.4 and 0.7), piecewise (piecewise linear function with three criteria placed at evidence levels of 0.05, 0.2 and 0.5), piecewise invertible (piecewise linear function with two criteria placed at evidence levels of 0.1 and 0.3; to attain invertibility, the last piece is described by a tangens hyperbolicus with an additional parameter).

Figure 6—figure supplement 1. Comparison of M_{ratio} and metacognitive noise σ_m for constant stimuli. This simulation mirrors the simulations in Figure 6 but is based on only a single stimulus intensity level for both stimulus categories. While parameter recovery improves for the noisy-readout model under the extreme regime of low sensory and high metacognitive noise relative to a scenario with varying stimulus levels (Figure 6), parameter recovery becomes somewhat more unstable at low type 1 performance levels / high sensory noise.

Figure 6—figure supplement 2. Type 1 dependency of M_{ratio} and metacognitive noise σ_m for various settings of other parameters. This simulation mirrors the simulations in Figure 6, while varying settings for other parameters (as indicated in the title for each column). Changed parameters: sensory threshold ϑ_s, sensory bias δ_s, multiplicative evidence bias φ_m, additive evidence bias δ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m. Note that metacognitive confidence biases are incompatible with a noisy-readout model and hence this combination was omitted.

Figure 7—figure supplement 1. The figure mirrors the parameter recovery analysis in Figure 7 with 500 instead of 10,000 trials. Sensory parameters: sensory noise σ_s, sensory threshold ϑ_s, sensory bias δ_s. Metacognitive parameters: metacognitive noise σ_m, multiplicative evidence bias φ_m, additive evidence bias δ_m.

Figure 7—figure supplement 2. The figure mirrors the parameter recovery analysis in Figure 7 for a model with metacognitive confidence biases (φ_m, δ_m) instead of metacognitive evidence biases (λ_m, κ_m) and for either 500 or 10,000 trials. Note that metacognitive confidence biases are incompatible with a noisy-readout model and hence this combination was omitted. Sensory parameters: sensory
noise σ_s, sensory threshold θ_s, sensory bias δ_s. Metacognitive parameters: metacognitive noise σ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m.

Figure 7—figure supplement 3. Parameter recovery for a mix of evidence-related and confidence-related metacognitive bias parameters. For simplicity and clarity, this figure shows only slope matrices for intermediate levels of sensory ($\sigma_s = 0.7$) and metacognitive ($\sigma_m = 0.2$) noise, and for 10,000 trials. Sensory parameters: sensory noise σ_s, sensory threshold θ_s, sensory bias δ_s. Metacognitive parameters: metacognitive noise σ_m, multiplicative evidence bias φ_m, additive evidence bias δ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m. The title displayed over each slope matrix indicates the metacognitive bias parameters that were included in the model.

Figure 7—figure supplement 4. Parameter recovery across a range of values for each parameter. The sample size was fixed to 10,000 trials. Sensory parameters: sensory noise σ_s, sensory threshold θ_s, sensory bias δ_s. At the metacognitive level the model was specified either with evidence-related (middle row) or confidence-related (bottom row) metacognitive bias parameters. Metacognitive parameters: metacognitive noise σ_m, multiplicative evidence bias φ_m, additive evidence bias δ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m. Note that confidence-based metacognitive bias parameters are incompatible with a noisy-readout model and hence this combination was omitted. Error bars represent mean ± standard deviation. Dashed lines indicate the true values of the parameters. The error bars for the model with metacognitive evidence biases were displaced horizontally by −3% (noisy-report) and +3% (noisy-readout) of the full x-range to avoid mutual occlusion.

Figure 7—figure supplement 5. Parameter recovery across a range of trial numbers (500 to 10,000). Sensory parameters: sensory noise σ_s, sensory threshold θ_s, sensory bias δ_s. At the metacognitive level the model was specified either with evidence-related (middle row) or confidence-related (bottom row) metacognitive bias parameters. Metacognitive parameters: metacognitive noise σ_m, multiplicative evidence bias φ_m, additive evidence bias δ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m. Note that confidence-based metacognitive bias parameters are incompatible with a noisy-readout model and hence this combination was omitted. For simplicity, all parameters of the generative models were set to 0.2. Error bars represent mean ± standard deviation, dashed lines the true parameter value.

Figure 7—figure supplement 6. Model recovery. Data were generated for noisy-readout and noisy-report models with different settings for sensory noise (σ_s) and metacognitive noise (σ_m). Model recovery was quantified by the frequency/probability with which the data of a particular generative model were best fitted by the noisy-readout and the noisy-report model. Top panel: 10,000 trials per observer. Bottom panel: 500 trials per observer.

Figure 8—figure supplement 1. Empirical confidence distributions and generative models of all 20 subjects in Shekhar and Rahnev (2021). Empirical confidence distributions are depicted as grey
histograms. Distributions of generative models are depicted as orange line plots for the winning model at the group level (noisy-report + truncated Gumbel) and as green line plots for the winning model at the single-subject level.
Supplement to: Reverse engineering of metacognition

Matthias Guggenmos¹

¹ Health and Medical University, Institute for Mind, Brain and Behavior, Olympischer Weg 1, 14471 Potsdam, Germany

Corresponding author:
Matthias Guggenmos
Health and Medical University
Institute for Mind, Brain and Behavior
Address: Olympischer Weg 1, 14471 Potsdam, Germany
Phone: +49 331 745113000
E-Mail: mg.corresponding@gmail.com
Nonlinear stimulus transformation

Figure 2—figure supplement 1. Nonlinear transformation of the stimulus variable. Early visual processing likely involves nonlinear transformations of stimulus signals, including processes such as contrast gain control nonlinearities or nonlinear transduction. In the toolbox, either a power transformation or an exponential transformation is considered. In both cases, the transformation includes a renormalization to 1, such that any difference in linear stimulus intensity scaling between participants is captured by the decision noise parameter \(\sigma_s \).

(A) Power transformation. (B) Exponential transformation.

Additional Link Functions

Figure 3—figure supplement 1. Metacognitive link functions. Alternative choices for link functions provided by the ReMeta toolbox describing the relationship between metacognitive evidence and confidence. Note that these link functions do not compute the subjective probability of being correct. Link functions: \(\tanh \) (simple tangens hyperbolicus), \(\text{linear} \) (linear slope, no intercept), \(\text{step function} \) (criterion-based link function with three criteria placed at evidence levels 0.2, 0.4 and 0.7), \(\text{piecewise} \) (piecewise linear function with three criteria placed at evidence levels of 0.05, 0.2 and 0.5), \(\text{piecewise invertible} \) (piecewise linear function with two criteria placed at evidence levels of 0.1 and 0.3; to attain invertibility, the last piece is described by a tangens hyperbolicus with an additional parameter).
Comparison of M_{ratio} and metacognitive noise σ_m

Figure 6—figure supplement 1. Comparison of M_{ratio} and metacognitive noise σ_m for constant stimuli. This simulation mirrors the simulations in Figure 6 but is based on only a single stimulus intensity level for both stimulus categories. While parameter recovery improves for the noisy-readout model under the extreme regime of low sensory and high metacognitive noise relative to a scenario with varying stimulus levels (Figure 6), parameter recovery becomes somewhat more unstable at low type 1 performance levels / high sensory noise.
Figure 6—figure supplement 2. Type I dependency of M_{ratio} and metacognitive noise σ_{m} for various settings of other parameters. This simulation mirrors the simulations in Figure 6, while varying settings for other parameters (as indicated in the title for each column). Changed parameters: sensory threshold ϑ_{s}, sensory bias δ_{s}, multiplicative evidence bias φ_{m}, additive evidence bias δ_{m}, multiplicative confidence bias λ_{m}, additive confidence bias κ_{m}. Note that metacognitive confidence biases are incompatible with a noisy-readout model and hence this combination was omitted.
Parameter recovery

Figure 7—figure supplement 1. The figure mirrors the parameter recovery analysis in Figure 7 with 500 instead of 10,000 trials. Sensory parameters: sensory noise σ_s, sensory threshold ϑ_s, sensory bias δ_s. Metacognitive parameters: metacognitive noise σ_m, multiplicative evidence bias φ_m, additive evidence bias δ_m.

$\sigma_m = 0.05$ $\sigma_m = 0.1$ $\sigma_m = 0.2$ $\sigma_m = 0.4$ $\sigma_m = 0.8$

$\sigma_s = 0.05$ $\sigma_s = 0.1$ $\sigma_s = 0.1$ $\sigma_s = 0.1$ $\sigma_s = 0.1$

Noisy-report $\sigma_m = 0.2$ $\sigma_m = 0.2$ $\sigma_m = 0.4$ $\sigma_m = 0.4$ $\sigma_m = 0.8$

Noisy-readout $\sigma_m = 0.8$ $\sigma_m = 0.8$ $\sigma_m = 1.6$ $\sigma_m = 1.6$ $\sigma_m = 1.6$

Fitted parameters

Slope

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Figure 7—figure supplement 2. The figure mirrors the parameter recovery analysis in Figure 7 for a model with metacognitive confidence biases (ϕ_m, δ_m) instead of metacognitive evidence biases (λ_m, κ_m) and for either 500 or 10,000 trials. Note that metacognitive confidence biases are incompatible with a noisy-readout model and hence this combination was omitted. Sensory parameters: sensory noise σ_s, sensory threshold ϑ_s, sensory bias δ_s. Metacognitive parameters: metacognitive noise σ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$N=10000$</th>
<th>$N=500$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_m = 0.05$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_m = 0.1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_m = 0.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_m = 0.4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma_m = 0.8$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slope

Generative parameters

Noisy-report ($N=10000$)

- $\sigma_m = 0.05$
- $\sigma_m = 0.1$
- $\sigma_m = 0.2$
- $\sigma_m = 0.4$
- $\sigma_m = 0.8$

Noisy-report ($N=500$)

- $\sigma_m = 0.05$
- $\sigma_m = 0.1$
- $\sigma_m = 0.2$
- $\sigma_m = 0.4$
- $\sigma_m = 0.8$
Figure 7—figure supplement 3. Parameter recovery for a mix of evidence-related and confidence-related metacognitive bias parameters. For simplicity and clarity, this figure shows only slope matrices for intermediate levels of sensory ($\sigma_s = 0.7$) and metacognitive ($\sigma_m = 0.2$) noise, and for 10,000 trials. Sensory parameters: sensory noise σ_s, sensory threshold ϑ_s, sensory bias δ_s. Metacognitive parameters: metacognitive noise σ_m, multiplicative evidence bias φ_m, additive evidence bias δ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m. The title displayed over each slope matrix indicates the metacognitive bias parameters that were included in the model.
Figure 7—figure supplement 4. Parameter recovery across a range of values for each parameter. The sample size was fixed to 10,000 trials. Sensory parameters: sensory noise σ_s, sensory threshold ϑ_s, sensory bias δ_s. At the metacognitive level the model was specified either with evidence-related (middle row) or confidence-related (bottom row) metacognitive bias parameters. Metacognitive parameters: metacognitive noise σ_m, multiplicative evidence bias φ_m, additive evidence bias δ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m. Note that confidence-based metacognitive bias parameters are incompatible with a noisy-readout model and hence this combination was omitted. Error bars represent mean ± standard deviation. Dashed lines indicate the true values of the parameters. The error bars for the model with metacognitive evidence biases were displaced horizontally by -3% (noisy-report) and $+3\%$ (noisy-readout) of the full x-range to avoid mutual occlusion.
Figure 7—figure supplement 5. Parameter recovery across a range of trial numbers (500 to 10,000). Sensory parameters: sensory noise σ_s, sensory threshold ϑ_s, sensory bias δ_s. At the metacognitive level the model was specified either with evidence-related (middle row) or confidence-related (bottom row) metacognitive bias parameters. Metacognitive parameters: metacognitive noise σ_m, multiplicative evidence bias ψ_m, additive evidence bias δ_m, multiplicative confidence bias λ_m, additive confidence bias κ_m. Note that confidence-based metacognitive bias parameters are incompatible with a noisy-readout model and hence this combination was omitted. For simplicity, all parameters of the generative models were set to 0.2. Error bars represent mean ± standard deviation, dashed lines the true parameter value.
Figure 7—figure supplement 6. Model recovery. Data were generated for noisy-readout and noisy-report models with different settings for sensory noise (σ_s) and metacognitive noise (σ_m). Model recovery was quantified by the frequency/probability with which the data of a particular generative model were best fitted by the noisy-readout and the noisy-report model. Top panel: 10,000 trials per observer. Bottom panel: 500 trials per observer.
Figure 8—figure supplement 1. Empirical confidence distributions and generative models of all 20 subjects in Shekhar and Rahnev (2021). Empirical confidence distributions are depicted as grey histograms. Distributions of generative models are depicted as orange line plots for the winning model at the group level (noisy-report + truncated Gumbel) and as green line plots for the winning model at the single-subject level.