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ABSTRACT

Since the work of Von Bertalanffy (1957), several models have been pro-

posed that relate the ontogenetic scaling of energy assimilation and metabolism

to growth, which are able to describe ontogenetic growth trajectories for living

organisms and collapse them onto a single universal curve (West et al. 2001;

Barnavar et al. 2002). Nevertheless, all these ontogenetic growth models criti-

cally depend on fitting parameters and on the allometric scaling of the metabolic

rate. Using a new metabolic rate relation (Escala 2019) applied to a Bertalanffy-

type ontogenetic growth equation, we find that ontogenetic growth can also be

described by a universal growth curve for all studied species, but without the aid

of any fitting parameters (i.e., no fitting procedure is performed on individual

growth curves). We find that the inverse of the heart frequency fH, rescaled by

the ratio of the specific energies for biomass creation and metabolism, defines

the characteristic timescale for ontogenetic growth. Moreover, our model also

predicts a generation time and lifespan that explain the origin of several ‘Life

History Invariants’ (Charnov 1993) and predict that the Malthusian parameter

should be inversely proportional to both the generation time and lifespan, in

agreement with the data in the literature (Duncan et al. 1997; Dillingham et. al

2016; Hatton et al 2019). In our formalism, several critical timescales and rates

(lifespan, generation time and intrinsic population growth rate) are all propor-

tional to the heart frequency fH, and thus, their allometric scaling relations come

directly from the allometry of the heart frequency, which is typically fH ∝ M−0.25

under basal conditions.

1. Introduction

Metabolism and growth are two fundamental aspects of living organisms, and thus, it

is somewhat natural to try to understand the connections between these two processes. Von
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Bertalanffy (1957) studied ontogenetic growth curves in order to establish connections be-

tween metabolism and growth, showing that individual growth curves in living organisms

can be reproduced from models of metabolic energy allocation. Although several subsequent

growth models (Reiss 1989; West et al. 2001; Ricklefs 2003; Hou et al. 2008) differ signif-

icantly on the details of their derivations, they share the same mathematical form of Von

Bertalanffy (1957), which basically links patterns of assimilation and growth to the (allo-

metric) scaling of the metabolic rate. In particular, West et al. (2001) proposed a general

quantitative model based on the allocation of metabolic energy and showed that individual

growth curves can be collapsed onto a single universal curve that describes the growth in all

the studied species.

Nevertheless, Banavar et al (2002) later illustrated that the universal growth curve

arises from general considerations of energy conservation that are independent of the specific

allometric model used by West et al. (2001). In particular, Banavar et al (2002) showed

that the data do not distinguish between specific exponents in the scaling relationship be-

tween metabolic rate and mass, with exponents of 2/3 and 3/4 in the metabolic relation

fitting equally well. This scaling collapse onto a universal curve, which occurs when some

dimensionless quantities are properly defined, is also equivalent to asserting that a single

self-similar solution is able to successfully fit all the ontogenetic growth curves. Since the

universal curve arises from general considerations, it is desirable to find an independent test

of the assumptions behind the models that defines the key dimensionless quantities that can

discriminate between the different models for ontogenetic growth.

In general, all ontogenetic growth models critically depend on the metabolic rate, specif-

ically, on the allometric scaling, the exact slope of which is still matter of debate (White et al.

2007). Recently, the empirical metabolic rate relation was corrected in order to fulfill dimen-

sional homogeneity (Escala 2019), a minimal requirement for any meaningful law of nature

(Bridgman 1922), and a new metabolic rate (B) formula was proposed: B = ε(T) ηO2fH M,

where M is the body mass, fH is a (characteristic) heart frequency, ηO2 is a specific O2 absorp-

tion factor for different exercising conditions (basal, maximal, etc.) and ε(T) = ε0 e−Ea/kT is

a temperature correction inspired by the Arrhenius formula (Gillooly et al. 2001), in which

Ea is the activation energy and k is the Boltzmann constant. Compared to Kleiber’s original

formulation (Kleiber 1932), B = B0(M/M0)
0.75, and Rubner’s surface rule of proportionality

to 2/3, this new metabolic rate relation has the heart frequency fH as the controlling variable

(a marker of metabolic rate); its advantage is that it is a unique metabolic rate equation for

different classes of animals and different exercising conditions that is valid for both basal and

maximal metabolic rates, in agreement with empirical data in the literature (Escala 2019).

In addition, Escala (2022) showed that this new metabolic rate relation can be directly linked

to the total energy consumed in a lifespan, so it is able to explain the origin of variations in
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the ‘rate of living’ theory (Speakman 2005; Ramsey et al. 2000).

In this paper, we explore the implications of this new metabolic relation for ontogenetic

growth models, with a focus on independently testing key quantities in our formulation

to enable discrimination between previous models. The paper is organized as follows: We

start in §2 by applying the results of the new metabolic rate relation (Escala 2019) to an

ontogenetic growth equation that shares the same mathematical form as previous models,

showing that individual growth curves can also be collapsed onto a single universal curve,

but in this case without the aid of any fitting parameter. Section 3 continues by computing

the predicted generation time and explaining the origin of several ‘Life History Invariants’,

with satisfactory results. In §4, we study the predicted implications for population growth,

showing that they agree with the collected data. Finally, in §5, we discuss the results and

final implications of this work.

2. Ontogenetic Growth Model

Since different assumptions about energy allocation lead to the same general equation

(von Bertalanffy 1957; Reiss 1989; West et al. 2001; Ricklefs 2003; Hou et al. 2008), we will

follow the notation in the mass-energy conservation model described in Moses et al. (2008),

which revisited the ontogenetic growth model of West et al. (2001), because we will compare

our results to theirs, using their parameter estimations. The conservation of energy for the

allocation of metabolic energy during growth between the maintenance of existing tissue and

the production of new biomass can be expressed as Em
dm
dt

= B−Bm m (Moses et al. 2008),

where B is the metabolic rate (in J/s or W), Em (in J/g) is the energy required to create a

unit of biomass and Bm (in W/g) is the metabolic rate required to maintain an existing unit

of biomass.

For the corrected metabolic rate relation, we will restrict ourselves to basal (resting)

conditions and neglect temperature variations because ontogenetic growth happens over long

periods of time during which such variations might tend to cancel each other out (in wild con-

ditions). Under such conditions, we have the constant factor ε(T) ηO2 ≈ 10−4.313 mlO2g
−1 ≈

10−3 J/g ≡ E2019 (converting 1 ltr O2=20.1 kJ; Schmidt-Nielsen 1984), where E2019 is a con-

stant that comes from the best fitted value for the corrected metabolic relation (Eq. 8 of

Escala 2019). Therefore, the metabolic rate formula is simply given by B = E2019 fH m (Es-

cala 2019), and assuming that the heart frequency scales with body mass m as fH = f0m
−α,

(mass-)energy conservation can be expressed as
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dm

dt
= am1−α − bm , (1)

where a = E2019 f0/Em and b = Bm/Em. The general solution of Eq. 1 is a classical sigmoidal

curve, the general form of which was given by von Bertalanffy (1957; Eq. 6). Noting also

that for an initial (birth) mass m0 and final (asymptotic) mass M, the condition dm/dt = 0

(at m = M) in Eq. 1 is equivalent to a/b = Mα, the solution to Eq. 1 can be written as:(m

M

)α
= 1−

[
1−

(m0

M

)α]
× exp

(
− at

α−1Mα

)
. (2)

This solution is equivalent to the one found by Banavar et al. (2002), and for the special

case of α = 1/4, it has the solution given in West et al (2001) (their Eq. 5). The solution

given by Eq. 2 can be rewritten as r = 1 − e−τ , which is the same universal growth curve

found in West et al (2001) (and Banavar et al 2002), but in our case, it uses the following

variable change:

r ≡
(m

M

)α
; τ ≡ E2019

Em

fH t

α−1
− ln

[
1−

(m0

M

)α]
, (3)

where we also replace a = E2019 f0/Em in Eq. 2 (in the definition of τ), and thus, fH = f0M
−α is

(henceforth) the heart frequency when the animal reaches the final (asymptotic) mass M. For

the particular case of α = 1/3, r also corresponds to the fractional size (r = (m/M)1/3 = l/L),

leading to the classical Bertalanffy growth equation, l(τ) = L (1 − e−τ ), which has been

successfully applied in the fishery industry (Beverton & Holt, 1959; Charnov 2008). In

this case, we can explicitly express (in terms of physical quantities) the Bertalanffy growth

coefficient as K ≡ τ/t = E2019

Em

fH
α−1 (from Eq. 3 for m0 = 0).

The advantage of this formulation compared to previous ones is that now the dimen-

sionless time τ is expressed exclusively in terms of quantities that are well defined, with

either clear physical (specific energies E2019 and Em) or biological (heart frequency fH, body

mass M, etc.) meanings, and therefore, the dimensionless variables defined in Eq. 3 are now

written in a physically transparent form, without the aid of any fitting parameters. This

contrasts, for example, with the parameter a (present in Eqs. 1 & 2 but not in the universal

growth curve defined by Eq. 3) that is critical in the procedure of fitting the growth curves in

Bertalanffy (1957), West et al (2001), Banavar et al (2002), etc. and in the definition of their

dimensionless variables, which has an obscure meaning considering its fractal dimensionality

of [massα]/[time] and is thus not associable to any physical quantity. This fitting parameter a

is not present in the final growth curve solution found in our formulation, r = 1−e−τ , for the

variables defined in Eq. 3. It is notable that in this formulation for τ , the inverse of the heart

frequency f−1
H defines the characteristic timescale for ontogenetic growth, tgrowth ≡ f−1

H
Em

E2019
,

which is rescaled by the ratio of the specific energies of biomass creation (Em) and (basal)

metabolism (E2019).
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Banavar et al. (2002) showed that the ontogenetic growth curves do not distinguish

between exponents of 2/3 and 3/4 (= 1 − α) in the mass scaling of the metabolic rate

relation, as both are equally good fits to the current data and are consistent with a universal

curve r = 1 − e−τ for ontogenetic growth. Therefore, only for consistency, we will assume

α = 1/4, since we will compare our formulation against data using the fitting parameters

from West et al (2001), which assumes this α value.

The universal growth curve r = 1 − e−τ , for the τ defined in Eq. 3 (with α = 1/4), is

mathematically identical to the solution found in West et al (2001) (their Eq. 5) when

t−1
growth ≡

E2019

Em

fH =
a

M1/4
(4)

is fulfilled, and therefore, it should equally well fit the individual growth curves for the species

studied in West et al (2001) if their measured heart frequencies fH and estimated specific

energies (E2019, Em) fulfill the condition given by Eq. 4 for the parameter a and final mass

M found in the fitting procedure of the growth curves in West et al (2001). In order to test

whether the condition in Eq. 4 is fulfilled in nature, we collected estimations for the energy

required to create a unit of biomass Em (Moses et al. 2008, taking averages when multiple

estimations are available) and measurements of heart frequencies fH for the species studied in

West et al (2001) in order to supplement them with the fitting parameters a, birth mass m0

and final mass M that best fit the growth curves studied in West et al (2001). A summary

of all the quantities (with the individual references for fH) are listed in Table 1.

Table 1
Species a [g1/4/day] m0[kg] M [kg] Em[J/g] fH [#/min]

West et al 2001 Moses et al. 2008 (Reference)

Cow 0.28 33.3 442 6950 63 (Kovacs et al 2005)

Pig 0.31 0.90 320 6150 70 (Harris 2009)

Rabbit 0.36 0.12 1.35 6100 180 (Detweiler et al. 2004)

Guinea pig 0.21 0.005 0.840 4900 277 (Weibel et al. 2004)

Rat 0.23 0.008 0.280 4350 393 (Weibel et al. 2004)

Shrew 0.83 0.0003 0.0042 1800 835 (Jurgens et al. 1996)

Heron 1.56 0.003 2.7 1400 211 (Machida et al. 2001)

Robin 1.9 0.001 0.022 2000 570 (Welty et al. 1988)

Cod 0.017 0.0001 25 13000 32 (Wardle et al. 1973)

Salmon 0.026 0.00001 2.4 7300 30 (Clark et al. 2011)

Guppy 0.10 0.000008 0.00015 1900 120 (Unpublished data)
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Fig. 1.— The relation between the variables a, M, Em & fH, as a function of the final body

mass M, showing that it does not vary systematically with M, as predicted by Eq. 4. The

different species marked with black stars are scattered around the predicted value of E2019,

which is denoted by the red dashed line. The best-fitted slope is a
M1/4

Em

fH
∝ M−0.05, which

is consistent with a zero slope against body mass M. The parameters a and M, taken from

West et al (2001), are determined to best fit the individual growth curves of the different

species. In contrast, the parameters E2019, Em & fH that define tgrowth in our formulation are

determined independently (see the references in Table 1) from any procedure of fitting to

individual growth curves, such as the one in West et al (2001).

Figure 1 displays the relation given by Eq. 4 between the variables a, M, Em & fH as a

function of the final body mass M. In addition to the 7 orders of magnitude in body mass

M variations, the relation has a slope consistent with zero (∝ M−0.05, and there is only 0.22

dex in scatter, where 1 dex on a log scale refers to an order of magnitude, comparable to the

scatter in the metabolic rate relation found in Escala 2019), confirming that the condition

in Eq. 4 is fulfilled. This implies that for the specific dimensionless variables defined in Eq.

3, the universal curve (r = 1− e−τ ) will describe the (different) individual growth curves as

well as the models in West et al (2001) (and Banavar et al. 2002). This is found without

performing any fitting procedure on individual growth curves; instead, it is derived from

the mathematical equivalence between our universal growth curve (r = 1 − e−τ , for the τ
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defined in Eq. 3) and West et al (2001)’s solution when Eq. 4 is fulfilled. In other words,

for the same universal solution, our formalism replaces the fitting parameters in West et al

(2001), such as a, which involves obscure units [g1/4/day] and is thus not easily associable to

a known physical quantity, by well-defined energies (E2019 & Em) and frequency (fH), which

are also determined independently rather than by fitting animal growth curves (as in West

et al 2001, Banavar et al. 2002, etc.).

Moreover, the different species shown in Figure 1 are scattered around the predicted

value of E2019 (= 10−3 Jg−1; Escala 2019) denoted by the red dashed line, and therefore,

Fig 1 can be considered a third independent estimation of E2019 (in addition to those of

Escala 2019, 2022), supporting the predictability of the formalism presented and showing a

characteristic feature of the physical sciences: fewer (and more universal) constants that have

consistent measurements in multiple contexts. Finally, Figure 1 strongly supports the idea

that the inverse of the heart frequency f−1
H , rescaled by the ratio of the competing specific

energies (biomass creation Em versus metabolism E2019), defines the characteristic timescale

for ontogenetic growth tgrowth = f−1
H

Em

E2019
.

3. Generation Time and the Origin of Some Life History Invariants

The success of the formulation given by Eq. 3, supported by Fig 1, motivates us to study

its implications, and for that reason, it is interesting to look at the predicted generation time

tgen, which is the time period required for a young organism to grow to its final size and thus

mature to reproductive age. The generation time tgen can be straightforwardly determined

from the τ defined in Eq. 3, making it possible to arrive at the following relation:

tgen =
(
τ ∗ + ln

[
1−

(m0

M

)α]) Em

E2019

α−1

fH
∝ f−1

H , (5)

where τ ∗ is the approximate dimensionless time value for reaching adult mass (for all species)

in the universal growth curve. Eq. 5 gives a generation time that is explicitly dependent

on the heart frequency fH, where the allometric scaling of the heart frequency under basal

conditions (fH ∝ M−0.25; Brody 1945, Calder 1968) gives the well known mass scaling for

the generation time (tgen ∝ M0.25; Bonner 1965). Nevertheless, since most biological rates

and times scale as M−1/4 and M1/4 (Savage et al. 2004, Burger et al. 2021), an interesting

possible test is to study allometric variations of tgen in large outliers of 1/4 scaling such

as spiders (Anderson 1970, 1974) (White et al. 2007) to test whether they vary as fH, as

predicted by Eq. 5. Another interesting possibility is to directly test the predicted inverse

correlation between tgen and fH.

One of the advantages of having a generation time that is explicitly dependent on the
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heart frequency fHis that it can be directly linked (Escala 2019, 2022) to the total lifespan tlife
using the empirical relation of the total number of heartbeats (Nb) in a lifetime tlife = Nb/fH
found to be valid in mammals (Levine 1997; Cook et. al 2006). Escala (2022) generalized

this relation for all types of living organisms using the proportionality between heart and

respiration frequencies, fH = k fresp (Schmidt-Nielsen 1984); then, the empirical relation

with lifetime can be rewritten so that it is also valid for a total number Nr (= Nb/k) of

‘respiration cycles’: tlife = Nb/fH = Nb/kfresp = Nr/fresp. Escala (2022) also used this

relation to predict the total lifespan energy consumed in living organisms, with satisfactory

results if an approximately constant total number Nr ∼ 108 of respiration cycles per lifetime

is required in all living organisms, which further supports the generalization. Combining

this relation for a fixed number of respiration cycles per lifetime with Eq. 5, we obtain:

G ≡ tgen
tlife

=
(
τ ∗ + ln

[
1−

(m0

M

)α]) Emα
−1

E2019Nb

≈ Em

k

4 τ ∗

E2019Nr

, (6)

where we also approximate m0 << M (in agreement with the species listed in Table 1),

neglecting minor changes due to the weakly varying logarithm. Eq. 6 directly relates the

generation time and lifespan, two quantities that are known to correlate (de Magalhaes et

al 2007) with their respective energies (per unit mass) to create biomass (Em) and sustain

lifespan (NbE2019), by only assuming (mass-)energy conservation (Eq. 1) and the invariant

Nr (= 1.62 108 respiration cycles per lifetime; Escala 2022) as a critical link between the two

timescales.

Eq. 6 can be directly compared to the data compiled by Charnov & Berrigan (1990),

which summarized published data for the ratio tadult/tgen in different animal groups, where

tadult = tlife − tgen is the adult lifespan, noting that this definition is related to the G ratio

as tgen/tlife = (1 + tadult/tgen)−1. Additionally, we note that in Charnov & Berrigan (1990),

lifespans are estimated from the inverse of (instantaneous) mortality rates, being effectively

field lifespans and not maximum ones; thus, for comparison with Eq. 6, a correcting factor

of 2.5 must be included (McCoy & Gillooly 2008), namely, Gmin = tgen/t
max
life = (2.5(1 +

tadult/tgen))−1.

Table 2 summarizes the estimations of Gmin using the data compiled in Charnov &

Berrigan (1990) and compares them with the predicted values from Eq. 6, using estimates

of Em for taxonomic groups (average of juvenile estimates; Moses et al. 2008), k values

for such groups (Schmidt-Nielsen 1984; Escala 2022) and a dimensionless time τ ∗ ∼ 5, the

approximate value to reach adult mass in the universal growth curve (i.e., the flat part of

the curve in Fig 2 of West et al 2001). Overall, we find that the values predicted from Eq.

6 are consistent with the empirically determined ones, as can be seen in Table 2. This is

in addition to the consideration that each taxonomic group of birds, mammals and fishes
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includes species with up to an order of magnitude difference in Em values (i.e., cod vs guppy

fish in Table 1) and not necessarily the same species studied in Charnov & Berrigan (1990).

Therefore, it is even more relevant that the relative Gmin trends (between birds, mammals

and fish) observed in Charnov & Berrigan (1990) are successfully predicted by the ratio Em

k
.

Table 2
Animal Group Em [J/g] k Predicted from Eq. 6 Gmin = tgen

tmax
life

Birds 4050 9 0.06 0.11

Mammals 5800 4.5 0.16 0.17

Fish 7400 3 0.3 0.28

Eq. 6 shows that the invariant relation between lifespan and age at maturity that is

valid within taxonomic groups, as observed by Charnov & Berrigan (1990), might come

directly from the existence of another invariant: the approximately constant total number

Nr ∼ 108 of respiration cycles per lifetime. This ratio tadult/tgen is indeed one of the studied

dimensionless life-history invariants (Calder 1984; Charnov 1993), which has sometimes been

criticized as spurious by being a form of ‘regressing X on X’, where X is a random number

(Nee et al. 2005). In this work, the generation and lifespan timescales are quantities derived

independently, giving a quantitative prediction of an approximately invariant ratio within

taxonomic groups, including interspecific variations, that comes from the basic energetics of

respiration and the creation of new biomass and therefore has a clear physical interpretation

and is thus far from spurious.

Traditionally, this relation, expressed in terms of the adult lifespan and age at maturity

(which typically marks the end of an animal’s growth), as in Charnov & Berrigan (1990),

has been qualitatively explained in terms of life-history evolution theory. Many versions of

life-history theories predict that the age of maturity should be positively correlated with

the lifespan (Charnov 1993), as these patterns are a reflection of natural selection (Charnov

& Berrigan 1991). In this paper, after rewriting the properties of living organisms in a

physically transparent form, we predict the value of this life-history invariant in terms of the

relevant energetics (Em, E2019, k, etc.) and find that the constancy mainly comes from the

invariant number Nr ∼ 108 of respiration cycles per lifetime, a generalization of the well-

known relation of a constant number of heartbeats in a mammal’s lifetime (Levine 1997;

Cook et. al 2006). Nevertheless, we do not study the origin of how the key parameters (Em,

k, etc.)vary across species, animal groups and generations, which should be evolutionary in

origin and thus set by natural selection (Charnov 1993; Gardner et al 2005).

It can be straightforwardly obtained that some of the other life-history invariants (Charnov

1993) come directly from the invariant G = tadult/tgen and the universal ontogenetic growth
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curve. For example, the invariant ratio between the mortality rate (M) and the Bertalanffy

growth coefficient (K) (Beverton & Holt 1963, Cushing 1968, Pauly 1980) comes from its

relation with τ in our formulation, Kt = τ , which at the generation time corresponds to

Ktgen = τ ∗ ∼ 5 according to the universal growth curve (West et al. 2001; Barnavar et al.

2002). Noting also that the mortality rate M is approximately the inverse of the lifespan

1/tlife (in the next section, we will see a more rigorous definition for M), it is straightfor-

ward to obtain that M/K = tgen/(tlifeτ
∗) = G/5. Another invariant is the ratio between

the length at maturity l(tgen) and the maximum asymptotic length L (Charnov & Berrigan

1991), which also comes from Ktgen = τ ∗ ∼ 5 by simply recalling the Bertalanffy growth

equation (derived in §2): l(tgen)/L = 1−e−τ
∗
. Finally, the invariant fraction of body mass to

reproduction per unit time per life span (Charnov, Turner & Winemiller 2001) comes from

the definition of the dimensionless mass r (Eq. 3) and the invariant G (Eq. 6), which are

related as m(tgen)

M
tlife
tgen

= (1− e−τ
∗
)1/α G−1, noting again that τ ∗ ∼ 5.

4. Implications for Population Growth: The Malthusian Parameter and the

‘Equal Fitness Paradigm’

Malthus (1798) studied the simplest model of population growth, which can be derived

by assuming that all individuals are identical and reproduce continuously; therefore, the

number of individuals N will change with the birth rate B and death rate D as follows:

dN

dt
= B−D = (bN − dN)N = rmN , (7)

where bN and dN are the per capita birth and death rates, respectively, and rm is the Malthu-

sian parameter or intrinsic (maximum) population growth rate. The solution of Eq. 7

has an exponential form given by N(t) = N0 ermt, and therefore, the Malthusian parame-

ter rm = bN − dN has units of inverse time and can be rewritten in the following form:

rm = b̄/tadult − d̄/tlife. The constants (b̄, d̄) are now dimensionless since we have identified

tlife as the characteristic timescale for death rates and tadult = tlife− tgen as the characteristic

timescale for the birth rates. The reason for the latter is that tadult is the reproductive adult

lifespan, which is determined by subtracting from the lifespan the time period required to

(grow and) mature to reproductive age, tgen, which does not fulfill the key assumption in

Eq. 7 that the individuals are able to reproduce continuously.

Using Eq. 6, which relates tgen and tlife, the Malthusian parameter is given by:

rm =
( b̄

1−G
− d̄
)

t−1
life =

( b̄

1−G
− d̄
) fH

Nb

∝ fH , (8)
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which gives a Malthusian parameter rm that is again explicitly dependent on the heart

frequency fH. The allometric scaling of heart frequency under basal conditions (fH ∝ M−0.25,

Brody 1945, Calder 1968) gives the well-known Fenchel (1974) allometry, rm ∝ M−0.25, but

again, as most biological rates and times scale as M−1/4 and M1/4 (Savage et al. 2004, Burger

et al. 2021), a more interesting test will be to study allometric variations of rm in outliers

of ‘1/4 scaling’ in terms of the heart frequency fH to determine whether they vary as fH, as

predicted by Eq. 8.

Another prediction of Eq. 8 is an inverse correlation between rm and tlife, which was

recently tested by Hatton et al (2019). Fig 2 displays the data of Hatton et al (2019)

for all types of living organisms, ranging from protists to mammals and birds. Since the

present analysis is restricted to organisms with a heart, we denote with the dashed (blue)

line the mass scale of 10−3 grams, which corresponds to the scale associated with the smallest

organisms with hearts, such as fruit and fairy flies, and coincides in Fig 2 with a transition

to a decrease in the scatter (for larger masses); in addition, all individual animal groups

(colors in Fig 2) satisfy this relation for masses larger than 10−3 grams. The solid black line

corresponds to the best fit to the data, consistent with a clear inverse correlation between

rm and tlife, with no residual slope with body mass (rmtlife = 3.35 M0.01, scatter of 0.5 dex or

half an order of magnitude).

The relatively low variation (on average, one order of magnitude spread, since the scatter

is 0.5 dex) for a database that includes sources of scatter such as mixing lifespans in captivity

and in the wild (Hatton et al 2019; see de Magalhaes & Costa 2009 for more on this issue) and

in particular a negligible slope with body mass as shown in Fig 2 has been claimed (Hatton

et al 2019) to support the so-called ‘Equal Fitness Paradigm’ (Brown et al 2018; Burger

et al. 2020), which states that “most organisms are more or less equally fit, as evidenced

by the persistence of millions of plant, animal and microbe species of widely varying size,

form and function in the Earth’s diverse environments” (Brown et al 2018). In terms of

the proposed formalism, Eq. 8 and the low variation of G across animal groups (the factors

2-3 seen in Table 2), also implies a low variation for the parameters b̄ and d̄ across species.

These relatively constant values (implied by Fig 2) for the dimensionless parameters (b̄, d̄)

associated with the (net) per capita birth and death per characteristic time, in addition to

the spectacular diversity of life histories in terms of growth, reproduction and survivorship

over the life cycle, which implies very diverse life history strategies in the very large mass

range displayed in Fig 2, supports the idea that selection mechanisms should operate in

terms of equal fit according to Darwinian evolution.

In the fundamental theorem of natural selection, Fisher (1930) states that the rate of

increase in mean fitness (caused by natural selection; Price 1972) is equal to the genetic vari-
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Fig. 2.— Lifetime Growth: Intrinsic (maximum) population growth rates (rm) multiplied

by the corresponding lifespans (tlife) for all types of living organisms, ranging from protists

to mammals and birds, compiled by Hatton et al (2019). The solid black line corresponds

to the best fit to the data, with no residual slope with body mass, rmtlife = 3.35 M0.01, as

expected from Eq. 8, with a scatter of 0.5 dex. The dashed blue line denotes the mass scale

of 10−3 grams, which corresponds to the scale associated with the smallest organisms with

hearts, to which the present analysis is restricted.

ance of a species, conceptually linking natural selection with Mendelian genetics. Natural

selection can only increase fitness by reducing genetic variance (i.e., selecting away unde-

sirable alleles; Basener & Sanford 2018), and thus, without mutations and given enough

time, selection must reduce genetic variance all the way to zero and fitness must reach a

maximum, according to Fisher’s theorem and as confirmed through simulations (Basener

& Sanford 2018). The ‘Equal Fitness Paradigm’ seems to suggest that a maximum fitness

value has been reached by the coexisting species in the current conditions.

Additionally, Demetrius (1974, 1975) found a relation between ‘evolutionary’ entropy

(of a population) and reproductive potential with fitness (measured by the Malthusian pa-

rameter), in which Fisher’s theorem is also obtained as a corollary for a Hardy-Weinberg

equilibrium. In Demetrius’s formalism, the Malthusian parameter is analogous to the Gibbs

free energy (Demetrius 1997) and also, behave effectively like a thermodynamic potential:

being the maximum (potential) growth that can be performed by a given population, that

becomes null when such population reaches abundance equilibrium. In thermodynamic the-

ory, Gibbs free energy is minimized when entropy is maximized and according to the second
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law of thermodynamics, maximum entropy is found only in the state of thermodynamic equi-

librium, where (the theorem of) equipartition of energy holds. The ‘Energetic Equivalence

Rule’ (Damuth 1981), which was recently verified for ∼3000 species in Hatton et al. (2019),

seems to be a version of such an equipartition of energy in living matter and thus is also

consistent (under abundance equilibrium) with being in the state in which maximum entropy

is reached.

Another relation for rm that can be derived using the definition of G (Eq. 6) is the

relation that predicts an inverse correlation with the generation time tgen:

rm =
( Gb̄

1−G
−Gd̄

) 1

tgen
∝ t−1

gen , (9)

and this is also a relation that can be tested. For this purpose, we use the data in Duncan et

al. (1997), which compiles the ages at first reproduction (∼ tgen) and maximum population

growth rates for mammals. Fig 3 displays the data collected in Duncan et al. (1997), which

is in overall agreement with Eq. 9, with no relevant slope with body mass. The solid line

denotes the best fit to the data (rmtgen = 1.38 M−0.067), which has an average scatter of

0.2 dex. Dillingham et. al (2016) also found equivalent results on this expected inverse

relationship using a more sophisticated Bayesian analysis.

The normalizations from the best fit to the data in Figs 2 & 3 give estimations for

rmtlife ∼ 3.35 (Fig 2) and rmtgen ∼ 1.38 (Fig 3), which in principle can be combined with Eq.

8 & 9 to determine some of their constants. Unfortunately, it is not possible to determine

the constants (b̄, d̄) associated with the dimensionless birth and death rates since Eq. 8 &

9 are not (linearly) independent equations, but it is still possible to determine that rmtgen
rmtlife

=

G ∼ 0.41. This is for the average lifespan in the wild because in Hatton et al (2019),

lifespans were normalized to those values, and since maximum lifespans are about 2.5 times

the average lifespans in the wild (McCoy & Gillooly 2008), we determine from Figs 2 & 3

that tgen
tmax
life

= Gmin ∼ 0.16,which agrees with the value determined from the average of the

predicted G values in Table 2 (Gmin ∼ 0.17).

5. Summary

In this paper, we explored the implications of the new metabolic relation (Escala 2019)

for ontogenetic growth and found that it can be described by a universal ontogenetic growth

curve for all studied species without the aid of ad hoc fitting parameters. The same universal

growth curve in West et al (2001) and Banavar et al (2002) is found when certain dimen-

sionless quantities are properly defined, but in our case, the characteristic growth timescale
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Fig. 3.— Generation times (tgen) times the maximum population growth rates (rm) for

mammals, compiled by Duncan et al. (1997). The solid line denotes rmtgen = 1.38 M−0.067,

which is the best fit to the data and has an average scatter of 0.2 dex. The best-fitted

relation is in overall agreement with the predicted Eq. 9, with no relevant slope with body

mass.

(tgrowth) is set by the inverse of the heart frequency f−1
H , rescaled by the ratio between the

specific energies (per unit of mass) required for metabolism and the creation of new biomass;

these are all quantities with clear physical or biological meaning and not obscure fitting pa-

rameters. The results for universal growth have the same interpretations as before in terms

of conservation of energy, since they come from the same Bertalanffy-type equation, but in

our case, the results do not rely on a specific model. Instead, they illustrate the advantages

obtained when empirical data are properly described and quantified, reaching this simple

description without extra assumptions.

We also explored the implications of the discussed ontogenetic growth model for the

generation time, finding that the predicted tgen can explain the origin of several ‘Life History

Invariants’ when is it combined with the invariant number of respiration cycles per lifetime,

a relation that comes from the generalization of the well-known relation of the constant

number of heartbeats in a mammal’s lifetime (Levine 1997; Cook et al. 2006). In particular,

regarding the invariant ratio between the lifespan and age at maturity (G = tgen
tlife

), which

has been traditionally explained in terms of life-history evolution theory, in our formalism,

the value of this life-history invariant is predicted in terms of the relevant energetics and
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the invariant number of respiration cycles per lifetime. The predicted G and its variation

between taxonomic groups shows consistency with the empirically determined value (Table

2). We also showed that other life-history invariants (Charnov 1993) come directly from the

universal ontogenetic growth curve and the invariant G.

We finally studied predictions for population growth, finding that the invariant G implies

a Malthusian parameter rm, or intrinsic population growth rate, that is inversely proportional

to both tgen and tlife. We find that these inverse relations are indeed observed in nature, with

no relevant slope with body mass and relatively low scatter (0.5 dex for rmtlife in Fig 2 and

0.2 dex for rmtgen in Fig 3). The ratio Gmin = tgen
tmax
life

that can be estimated from the two best-

fitted relations ( rmtgen
rmtmax

life
= Gmin ∼ 0.16) is also consistent with our predicted Gmin (∼ 0.17;

Table 2). We find relatively constant values for the total births and deaths per capita per

characteristic time (b̄ and d̄ in Eq. 8), besides the diversity of life histories in living organisms

on Earth, which supports the so-called ‘Equal Fitness Paradigm’.

In our formalism, the allometric scaling relations for several critical timescales and

rates (tlife, tgen & rm) are all derived from their proportionality to fH; therefore, the mass

scaling fH ∝ M−1/4 directly explains other well-known allometries (lifespan, generation-time

and Fenchel allometries), naturally explaining why most biological times and rates scale as

M−1/4 and M1/4 (Savage et al. 2004, Burger et al. 2021). Additionally, the variations from

1/4 scaling should be explained in terms of the variation in the fH mass scaling, since such

quantities (tlife, tgen and rm) should have the same mass scaling as fH regardless of whether

they are 1/4, as was the case for the metabolic rate relation (Escala 2019).

Nevertheless, our formalism is empirically motivated and does not explain why fH should

scale as M−1/4 or with another exponent; thus, it is compatible with previous attempts that

explained the exponent for the allometric scaling of metabolism and related quantities (West

et al 1997, 1999; Banavar et al 1999, 2010; Darveau et al 2002) insofar as the mechanism

is based on the anatomy and physiology of the circulatory system. The difference between

these approaches is similar to the difference in physics between the (empirically-based and

axiomatic) laws of thermodynamics and the statistical mechanics that explain them; in this

case, the new metabolic rate and the invariant number of respiration cycles per lifetime

are analogous to the thermodynamic laws, and such a synthesis is also required for the

formulation of a general theory of biodiversity (Marquet 2017).

Finally, it is important to emphasize that our predictions were successfully tested with-

out the aid of any free (fitting) parameters. The fitting procedures are shown in Figs 1,

2 & 3 only for comparison with our predictions, not to determine any free parameters for

our formalism. Thus, our formalism fulfill the criteria suggested by Ginzburg & Jensen

(2004) for judging ecological theories, in terms of reducing to a minimum the number of
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parameters with no empirically determined range. Moreover, the constants that define the

critical relations for metabolism (E2019) and lifespan (Nr) are successfully tested further in

Fig 1 (E2019) and in terms of the G value determined in Figs 2 & 3 (E2019 and Nr; Eq. 6),

showing that the two simple relations for metabolism and lifespan used in this paper can

successfully explain a variety of complex phenomena. This resembles the reductionism seen

in the physical sciences, where simple laws account for multitudes of complex phenomena.
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