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Abstract: 26 

 27 

Aim: Climate shapes the composition and function of plant communities globally, but it remains 28 

unclear how this influence extends to floral traits. Flowering phenology, or the time period in 29 

which a species flowers, has well-studied relationships with climatic signals at the species level 30 

but has rarely been explored at a cross-community and continental scale. Here, we characterise 31 

the distribution of flowering periods (months of flowering) across continental plant communities 32 

encompassing six biomes, and determine the influence of climate on community flowering 33 

period lengths. 34 

Location: Australia 35 

Taxon: Flowering plants 36 

Methods: We combined plant composition and abundance data from 629 standardised floristic 37 

surveys (AusPlots) with data on flowering period from the AusTraits database and additional 38 

primary literature for 2,983 species. We assessed abundance-weighted community mean 39 

flowering periods across biomes and tested their relationship with climatic annual means and the 40 

predictability of climate conditions using regression models. 41 

Results: Combined, temperature and precipitation (annual mean and predictability) explain 29% 42 

of variation in continental community flowering period. Plant communities with higher mean 43 

temperatures and lower mean precipitation have longer mean flowering periods. Moreover, plant 44 

communities in climates with predictable temperatures and, to a lesser extent, predictable 45 

precipitation have shorter mean flowering periods. Flowering period varies by biome, being 46 

longest in deserts and shortest in alpine and montane communities. For instance, desert 47 

communities experience low and unpredictable precipitation and high, unpredictable 48 
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 3 

temperatures and have longer mean flowering periods, with desert species typically flowering at 49 

any time of year in response to rain.  50 

Main conclusions: Our findings demonstrate the role of current climate conditions in shaping 51 

flowering periods across biomes, with implications under climate change. Shifts in flowering 52 

periods across climatic gradients reflect changes in plant strategies, affecting patterns of plant 53 

growth and reproduction as well as the availability of floral resources across the landscape. 54 

 55 

Keywords: community assembly, climate, floral traits, flowering phenology, functional 56 

biogeography, macroecology, predictability 57 

  58 
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Main text: 59 

 60 

1 INTRODUCTION 61 

Climate shapes patterns of community assembly globally, driving the distribution of resources 62 

and the dynamics of interactions that in turn affect the co-occurrence of organisms (Kraft et al., 63 

2015; Ockendon et al., 2014). As community composition varies along environmental gradients, 64 

so do the functional traits of constituent species (Bruelheide et al., 2018; Cornwell & Ackerly, 65 

2009; Wieczynski et al., 2019). For example, plant communities are generally taller in the 66 

tropics, and in areas with higher precipitation (Moles et al., 2009), with leaves on average larger 67 

in environments which are warm and wet (Wright et al., 2017). Yet less is known about how the 68 

traits of flowers vary with climate across biomes, continents or globally. 69 

 70 

Previous studies of plant functional biogeography have primarily focussed on a few key traits 71 

thought to be central to plant strategies, particularly leaf size and specific leaf area, plant height 72 

and seed mass (Andrew et al., 2021; Lamanna et al., 2014; Swenson et al., 2012). While such 73 

studies have been extremely productive in describing plant ecological strategies across a wide 74 

range of environmental conditions, recent attention has been drawn to the overlooked role that 75 

flowers and floral traits play in modulating species interactions and shaping patterns of 76 

community assembly (E‐Vojtkó, de Bello, Durka, Kühn, & Götzenberger, 2020; Roddy et al., 77 

2020). Despite some evidence suggesting that floral traits may have weaker links to 78 

macroclimate and landscape patterns than vegetative traits in general (e.g. Kuppler et al., 2020), 79 

flowers and floral traits do respond to biotic and abiotic conditions and thus bear investigation as 80 

“response” traits (Caruso, Eisen, Martin, & Sletvold, 2019; E‐Vojtkó et al., 2020; S. Lavorel & 81 
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Garnier, 2002). At the same time floral traits play important roles in ecological communities, 82 

mediating sexual reproduction by cross-pollination in flowering plant species and the provision 83 

of food and shelter resources for fauna (Fornoff et al., 2017; Lázaro, Gómez‐Martínez, Alomar, 84 

González‐Estévez, & Traveset, 2020). Thus floral traits also bear investigation as “effect” traits 85 

for their influence on other trophic levels and ecosystem functions (E‐Vojtkó et al., 2020; Sandra 86 

Lavorel et al., 2013). 87 

 88 

Flower phenology has strong connections to climatic signals, at the individual, population, 89 

species and community level (Craine, Wolkovich, & Towne, 2012; Diez et al., 2012; Primack, 90 

1985), and is thus a prime candidate trait for studies of floral functional biogeography. Flowering 91 

phenology is a highly labile trait, with a large amount of intraspecific variation between 92 

populations experiencing different climatic and biotic conditions (Franks, Sim, & Weis, 2007; 93 

Yan, Wang, Chan, & Mitchell‐Olds, 2021). Indeed, flowering phenology shifts have been 94 

observed in numerous species worldwide in response to climate warming (e.g. CaraDonna et al., 95 

2014; Prevéy et al., 2019). Flowering phenology also shifts with community composition, and 96 

composition-derived variation in flowering time can explain a significant proportion of 97 

community flowering periods (though less than intraspecific variation; Park, 2014). 98 

 99 

Recent work suggests that interspecific variation in flowering phenology can be detected at a 100 

landscape scale. For example, flowering and fruiting periods of Chinese angiosperms with 101 

overlapping geographic ranges vary with latitude, elevation and several climatic variables (Du et 102 

al., 2020). However, assessments of variation at grid-cell rather than local patch scale can over-103 

estimate the influence of macro-environment on trait signals among co-existing species 104 
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(Bruelheide et al., 2018). Species with overlapping broad geographic ranges do not necessarily 105 

co-occur in communities at a scale where they are likely to interact, and patterns of trait variation 106 

may differ significantly when species abundances within ecosystems are taken into account 107 

(Wieczynski et al., 2019). It thus remains unclear whether relationships between community 108 

flowering phenology and climatic signals apply to community sorting at the local scale. 109 

 110 

Here, we characterise the continental distribution of flowering periods in plant communities, and 111 

determine the influence of climate on community flowering period lengths. We define flowering 112 

period length as the number of months in which each species has been recorded flowering, which 113 

is not necessarily equivalent to the flowering durations of populations or individuals. We 114 

combine fine-scale plant community richness and abundance data from a network of vegetation 115 

plots across Australia (TERN AusPlots (TERN, 2018)) with flowering period data from the 116 

AusTraits database (Falster et al., 2021), species descriptions and herbarium records. The 117 

Australian continent, though generally low in soil fertility, encompasses a wide array of climatic 118 

regimes from cool temperate to tropical. Vast low relief deserts of the arid interior juxtapose 119 

areas of higher elevation such as the Great Dividing Range of eastern Australia and higher 120 

rainfall habitats with more predictable climates along coastal fringes (Figure 1). Australia has a 121 

latitudinal range of >30˚accompanied by a strong gradient in mean annual temperatures. 122 

 123 

Climatic conditions may influence the length of community flowering periods in several ways. 124 

Higher mean annual temperatures allow pollinators to be active and plants to meet the 125 

physiological costs of producing flowers across a longer period of the year (Primack & Inouye, 126 

1993; Roddy, 2019; Roddy et al., 2020), thus lengthening flowering periods. Low mean annual 127 
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precipitation, on the other hand, reduces water availability and plant productivity which may 128 

select for ephemeral flowering strategies (Friedel, Nelson, Sparrow, Kinloch, & Maconochie, 129 

1993; Roddy, 2019), thus also lengthening potential flowering periods overall. 130 

 131 

In addition to average climate conditions, we hypothesise that the predictability of climatic 132 

phenomena has a strong influence on flowering phenology. We test this idea using the Colwell 133 

index of predictability (Colwell, 1974), which combines both the long-term reliability of 134 

seasonality, known as contingency, and the constancy of aseasonal periodic phenomena into a 135 

single measure of environmental predictability. Predictable environments offer reliable 136 

environmental information to organisms, allowing the timing of events such as flowering to 137 

depend on endogenous factors such as age or condition rather than responding directly to 138 

environmental cues (Wingfield, Hahn, & Doak, 1993). Predictability is therefore a more 139 

complete measure of environmental stochasticity than the more commonly used temperature or 140 

precipitation seasonality, especially in relatively aseasonal continents such as Australia (Jiang, 141 

Felzer, Nielsen, & Medlyn, 2017). Globally temperature predictability follows a latitudinal 142 

gradient, and is uniquely high in Australia, with greater predictability closer to the equator and 143 

coastal areas (Jiang et al., 2017). Precipitation predictability is more geographically variable, and 144 

in Australia is low overall but markedly lowest in the arid inland (Jiang et al., 2017). We expect 145 

that high climatic predictability offers reliable environmental cues and therefore selects for 146 

synchronous biotic responses, with more concentrated and thus shorter community flowering 147 

periods in areas of high predictability. Given that temporal information is preserved by both 148 

flowering periods and climatic predictability, we also anticipate that climatic predictability will 149 

have a stronger relationship with community flowering period lengths than climatic means. 150 
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 151 

In summary we predict: 152 

1. That community flowering periods will be longer with increasing mean annual temperature. 153 

2. That community flowering periods will be longer with decreasing mean annual precipitation. 154 

3. That community flowering periods will be shorter with increasing predictability of either 155 

temperature or precipitation. 156 

4. That community flowering period length will have a stronger relationship with the 157 

predictability of climatic variables than mean climatic measures. 158 
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 159 

Figure 1 The distribution of the 629 AusPlots used in the analysis, across: (a) biomes based on Dinerstein et al. 2017’s global 160 

terrestrial ecoregions, aligned to the Australian Interim Biogeographic Regionalisation for Australia (Australian Department of 161 

the Environment and Energy, 2016); (b) mean annual temperature (°C); (c) mean annual precipitation (mm); (d) temperature 162 

predictability; and (e) precipitation predictability. Climate data generated from Australian Water Availability Project (AWAP) 163 

data for 1930-2019. The white area in central Australia in represents a mask where AWAP data were excluded as meteorological 164 

stations are sparse in this area (King et al., 2014). 165 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.10.463841doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463841
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

2 METHODS 166 

 167 

2.1 Community floristic data 168 

 169 

We accessed data on floristic composition in 810 surveys of 100 m × 100 m vegetation plots 170 

from the Terrestrial Ecosystem Research Network (TERN) AusPlots network using the 171 

ausplotsR package (Guerin, Munroe, Saleeba, & Ire, 2020; Munroe et al., 2021; TERN, 2021). 172 

AusPlots are distributed across a representative range of Australian ecosystems and 173 

environments and were surveyed using precise and consistent methods for recording vegetation 174 

species and cover-abundance data between 2011-2020 (Guerin, Williams, Leitch, Lowe, & 175 

Sparrow, 2021; Guerin, Williams, Sparrow, & Lowe, 2020; Sparrow et al., 2020). Plots were 176 

included in analyses if they were located ≥ 500 metres from another plot and flowering period 177 

data was available for ≥ 80% of angiosperm species cover (Borgy et al., 2017; Figure S1). Where 178 

plots had repeat surveys available, the survey with the highest recorded species richness was 179 

retained to maximise representation of species occurring in the system. In total, 629 plots with 180 

2,983 species were retained for analysis (Figure 1). These plots cover a broad and representative 181 

range of Australia’s climatic variation (Figure 1) and occur across six globally recognised 182 

biomes (Dinerstein et al., 2017, Figure 1). The number of plots sampled in each biome strongly 183 

correlates with biome size in Australia (Figure S2, ordinary least squares linear regression p < 184 

0.001, R2 = 0.92). 185 

 186 
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All observations were aggregated to the species level, removing any subspecies or variants, after 187 

taxonomic alignment to the Australian Plant Census (Council of Heads of Australasian Herbaria, 188 

2021) following methods in (Falster et al., 2021)). 189 

 190 

2.2 Flowering period 191 

 192 

Data on flowering periods were accessed from the AusTraits database version 2.1.0 (Falster et 193 

al., 2021) drawn from diverse original sources. The data from AusTraits were supplemented for 194 

627 species from species descriptions in the Flora of Australia (Australian Biological Resources 195 

Study, Canberra, 2021), online state and regional floras (‘EUCLID’, 2020; Northern Territory 196 

Government, 2021; Royal Botanic Gardens and Domain Trust, Sydney, 2021; Royal Botanic 197 

Gardens Victoria, 2021; State Herbarium of South Australia, 2021; Western Australian 198 

Herbarium, 2021; Zich, Hyland, Whiffin, & Kerrigan, 2020), original species descriptions and, 199 

where flowering period was not available from any of the above sources, herbarium records. 200 

Most original sources define flowering periods using a range of months, e.g. “Jun-Oct”, “spring-201 

summer” or “all year round”. For analysis, each record was converted into binary vector of 202 

length 12, indicating whether flowering occurred in each month, e.g. “110000000011” for Nov-203 

Feb. 204 

 205 

Flowering period length was defined as the number of months (i.e. 1-12) in which the species has 206 

been recorded flowering. It therefore refers to the proportion of the year during which a species 207 

potentially flowers, rather than to the length of flowering events. We use the length of flowering 208 

periods as our response variable so as to include the numerous Australian arid-zone species 209 
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which flower sporadically in response to rain (Friedel et al., 1993; Friedel, Nelson, Sparrow, 210 

Kinloch, & Maconochie, 1994). Mean flowering month cannot be calculated for these species as 211 

midpoint circular means cannot sensibly be calculated for bimodal or equally spaced periods 212 

(Morellato, Alberti, & Hudson, 2010). Where multiple records of flowering period existed for a 213 

single species, data were pooled (e.g. a species reported as flowering in both March-April and 214 

April-May was scored as flowering March-May). This ensured we captured the full scope of 215 

months a species has been reported to flower across its Australian range. 216 

 217 

2.3 Climatic variables 218 

 219 

Climatic variables were calculated for plot locations using CSIRO Australian Water Availability 220 

Project (AWAP) data from 1930-2019 (Jones, Wang, & Fawcett, 2009; Raupach et al., 2009, 221 

2012). AWAP temperature and precipitation data use records from the Australian Bureau of 222 

Meteorology’s network of meteorological stations across Australia, and are modelled at a 223 

resolution of 0.05 degree (~5 km). AWAP data accuracy is reduced for assessments of temporal 224 

variability where the meteorological station network is sparse or has missing data, in years 225 

before 1930 and in areas in central western Australia and locations along the Australian coast 226 

(King et al., 2014). A mask was applied to exclude AWAP data from locations where the 227 

network is sparse (as per King et al., 2014; white areas in Figure 1). Fifty-two AusPlots occurred 228 

in masked areas and so were excluded from analyses with climatic variables. 229 

 230 

Mean annual temperature (˚C) (MAT), mean annual precipitation (mm) (MAP) and the Colwell 231 

index of predictability (Colwell, 1974) for temperature and precipitation were calculated from 232 
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AWAP data for each plot location. The Colwell index of predictability is a simple but elegant 233 

mathematical approach that condenses temporal patterns of variability into single scores that 234 

vary between 0 (completely unpredictable) to 1 (completely predictable). The index has been 235 

widely adopted to characterise climatic, hydrologic and other environmental cues in ecology 236 

(Firman, Rubenstein, Moran, Rowe, & Buzatto, 2020; Wingfield et al., 1993). We calculated 237 

predictability as per Jiang et al. (2017), creating frequency tables for temperature and 238 

precipitation events using monthly time steps and set bins for climatic variables. Decisions 239 

around the binning of continuous climatic variables are fundamental to this method of 240 

calculating predictability (Jiang et al., 2017). Given temperature predictability tends to vary 241 

fairly consistently along a latitudinal gradient globally (Jiang et al., 2017), we chose to bin 242 

temperature by fixed bins of 5˚C with two bins of 10˚C at each end of the scale to capture rare 243 

extreme values, resulting in a total of ten bins for temperature (i.e. breakpoints at -10, 0, 5, 10, 244 

15, 20, 25, 30, 35, 40, 50). We binned precipitation with a base 3 exponential binning scheme, 245 

considering the large range of precipitation data and creating seven bins in total (0, 3^1, 246 

3^2…3^7). 247 

 248 

2.4 Data analysis 249 

 250 

All analyses were performed in R version 4.0.4 (R Core Team, 2021). All data and analysis code 251 

are available at https://doi.org/10.5281/zenodo.5553530. 252 

 253 

Trait-environment relationships were analysed according to the Community Weighted Means 254 

(CWM) approach detailed by ter Braak et al. (2018). AusPlots species cover-abundance scores 255 
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were used to generate CWMs of flowering period lengths for each plot, which were then 256 

regressed using ordinary least squares (OLS) regression against temperature and precipitation 257 

means and predictability for those plots. MAP was log transformed (base 10) prior to analysis. 258 

To ensure that trait-environment relationships were robust, species cover-abundance scores were 259 

also used to calculate weighted Species Niche Centroids (SNC) for each species and each 260 

environmental variable, and these were regressed against species’ flowering period lengths. The 261 

highest p-value for each trait-environment relationship (CWM~enviro, SNC~trait) was retained 262 

(pmax) to screen for potential false positive relationships (ter Braak et al., 2018). To assess their 263 

combined predictive power we regressed significant climatic predictors against flowering period 264 

length CWMs using OLS multiple regression. 265 

 266 

To further explore flowering period patterns, we compared flowering period lengths among 267 

biomes. Given the unequal numbers of AusPlots in different biomes, differences in CWM 268 

flowering period lengths between biomes were assessed using a Welch’s ANOVA for unequal 269 

variances with Games-Howell posthoc tests. We also compared the difference in flowering 270 

period lengths between woody and herbaceous species using Welch’s T-tests, with one t-test for 271 

all species pooled (n = 2790) and multiple t-tests with Bonferroni correction (alpha = 0.05/6 = 272 

0.008) for species by biome (n = 87-1160). Data on woodiness were sourced from AusTraits 273 

(Falster et al., 2021). We also confirmed that species range size was positively correlated with 274 

flowering period length using OLS regressions for all available species (n = 2819) as an 275 

indication of the potential intraspecific variation in flowering phenology captured by species-276 

level data. Range size data (as extent of occurrence, or EOO) was sourced from Gallagher et al. 277 

(2021). 278 
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 279 

3 RESULTS 280 

 281 

3.1 Trait-environment relationships 282 

 283 

Community weighted mean ( hereafter ‘community’) flowering period lengths increased with 284 

MAT and decreased with MAP, precipitation predictability and temperature predictability, 285 

though no single relationship explained greater than 20% of community variation (Table 1, 286 

Figure 2). The relationship between community flowering period length and environmental 287 

variables was strongest for temperature predictability (R2 = 0.17, pmax < 0.001). MAT and MAP 288 

both explained just over 10% of variation in community flowering period lengths (R2 = 0.11, 289 

pmax < 0.001). The relationship between precipitation predictability and community flowering 290 

period lengths was weaker (R2 = 0.09 pmax < 0.001). All climatic predictors combined explained 291 

29% of variation in community flowering period length (multiple linear regression F4,572 = 59.53, 292 

p < 0.001, R2 = 0.29). All climatic predictors contributed significantly to the multiple regression 293 

(p < 0.04 in each case), with no multicollinearity among predictors (VIF < 2.2 in each case, 294 

correlations -0.11 – 0.71; Figure S3). 295 

 296 

Table 1 Results from ordinary least squares regressions of community weighted mean flowering period length versus climatic 297 

variables. Pmax reports the highest p-value from CWM and SNC regressions for the same climate variable. 298 

Climate variable Slope R2 F 

statistic 

Pmax Number 

of plots 

Mean Annual Temperature 0.15 0.11 68.92 <0.001 577 
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Log10 Mean Annual 

Precipitation 

-2.41 0.11 68.99 <0.001 577 

Temperature predictability -25.42 0.17 119.54 <0.001 577 

Precipitation predictability -7.89 0.09 58.42 <0.001 577 

 299 

 300 
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 301 

Figure 2 Relationships between mean annual temperature (°C) (a) mean annual precipitation (mm) (b), temperature 302 

predictability (c), precipitation predictability (d), and community weighted means (CWM) of the length of flowering periods 303 

(months). Pmax values report the highest P value for both SNC and CWM regressions. 304 

 305 

3.2 Flowering periods by biome 306 
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Community flowering period lengths differed significantly by biome (Welch’s ANOVA for 307 

unequal variances F5,64.82 = 63.25, P < 0.001; Figure 3). Community flowering periods were 308 

longest on average in Deserts and Xeric Shrublands, closely followed by Temperate Grasslands, 309 

Savannas and Shrublands and Tropical and Subtropical Grasslands, Savannas and Shrublands 310 

(Figure 3; Table S2). Community flowering periods were shortest in Montane Grasslands and 311 

Shrublands (Figure 3; Table S2). 312 

 313 

 314 

Figure 3 Flowering periods by biome: a) community weighted mean flowering period lengths. Letters indicate significantly 315 

different groups according to Games-Howell posthoc tests; b) monthly pattern of flowering as mean proportion of species cover 316 

flowering per site per month. 317 
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Montane Grassland and Shrubland sites show a strongly seasonal pattern of flowering, followed 318 

by Temperate Broadleaf and Mixed Forest (Figure 3). In contrast, Tropical and Subtropical 319 

Grasslands, Savannas and Shrublands; Temperate Grasslands, Savannas and Shrublands; and 320 

Desert and Xeric Shrubland biomes all show aseasonal patterns of flowering (Figure 3). When 321 

considering the geographic distribution of community flowering period lengths, central and 322 

northern Australia show generally longer community flowering periods, with shorter community 323 

flowering periods in southwest Western Australia and south-eastern Australia (Figure S5). 324 

 325 

Flowering period lengths across all species and among biomes are shown in Figure 4. The plant 326 

families contributing most species, occurrences and proportionate cover in study plots were 327 

Fabaceae (414 species, 1626 occurrences, 88 cumulative proportional cover), Poaceae (374 328 

species, 2743 occurrences, 196 cover) and Myrtaceae (287 species, 1033 occurrences, 125 cover; 329 

Table S1, Figure 4). Some families had relatively low species richness but high cover, including 330 

Casuarinaceae (13 species with 15 cover) and Scrophulariaceae (54 species with 11 cover). The 331 

distribution of flowering period lengths has peaks at three months, six months and twelve 332 

months, with most values falling between three and six months (Figure 4). Flowering periods of 333 

twelve months were particularly common for Poaceae and Chenopodiaceae species, whilst 334 

flowering periods of three to six months were more common for species in the Fabaceae and 335 

Myrtaceae (Figure 4). Different species flowering period lengths among AusPlots biomes 336 

therefore reflect the uneven distribution of plant families among biomes (Figure 4). 337 

 338 
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 339 
Figure 4 The distribution of species flowering period lengths, coloured by family: a) total and b) separated by biome. Note in (b) 340 

the different scales between the larger (top row) and smaller (bottom row) biomes. 341 

 342 

Flowering periods were longer in species with larger extents of occurrence (R2 = 0.2, p < 0.001; 343 

Figure 5). Mean flowering periods were longer for herbaceous species (mean = 6.8) than woody 344 

species (mean = 6.5; t2786 = -2.73, p = 0.01; Figure S4). Mean flowering periods did not differ 345 
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significantly between woody and herbaceous species within different biomes (alpha with 346 

Bonferroni correction = 0.008, p = 0.03-0.49). 347 

 348 

 349 
Figure 5 Species length of flowering period (months) against species extent of occurrence (million km2). 350 

 351 

4 DISCUSSION 352 

 353 

We show that climate plays a significant role in determining flowering period of plant 354 

communities, not just their constituent species, across six biomes, 23°C of MAT and 1,800 mm 355 

of MAP variation. Biome level differences in community flowering periods are driven in part by 356 

temperature and precipitation, both means and predictability. Four climate variables explained 357 

29% of variation in community flowering period lengths (i.e. MAT, MAP, and the predictability 358 

of temperature and precipitation). As hypothesised, plant communities with higher MAT and 359 

lower MAP typically exhibit longer mean flowering periods, whereas plant communities with 360 

predictable temperatures and precipitation exhibit shorter mean flowering periods. While the 361 
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relationship with temperature predictability was the strongest observed, the relationship with 362 

precipitation predictability was weaker than those with climatic means, perhaps due to the 363 

extreme variability and low predictability observed in precipitation across the Australian 364 

continent (Table 1). Our results show that shifts in flowering period with climate previously 365 

documented at the species level also operate in plant communities with implications for 366 

community assembly processes under both current and future climates. 367 

 368 

Community flowering responses to climate are a product of the flowering phenologies of 369 

constituent species, which in turn depend on the flowering phenologies of constituent 370 

populations and individuals (Craine et al., 2012; Primack, 1985). Localised climatic conditions 371 

directly shape the flowering periods of the plant populations in an area, contributing to 372 

intraspecific variation, which then affects the flowering period recorded at the species level 373 

(Craine et al., 2012; Park, 2014). Though we could not test it directly, the effect of intraspecific 374 

variation on flowering period length is suggested in our results, as species with larger ranges 375 

have longer flowering periods (Figure 5). This illustrates how the use of species-level flowering 376 

periods as opposed to site-specific data may shape our results: as species range size increases, the 377 

specificity of flowering time observations decreases. Larger species’ ranges encompass a broader 378 

array of climatic conditions, which should lead to longer periods of time in which different 379 

populations may experience suitable conditions for flowering. Thus, intraspecific responses to 380 

climate likely affect our results indirectly, shaping the species flowering periods that in turn 381 

contribute to community level flowering periods. 382 

 383 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.10.463841doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.463841
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

At the community scale, climate conditions can influence the co-occurrence of species with 384 

particular flowering periods via environmental filtering (Du et al., 2020; Park, 2014). Though the 385 

influence of climate is typically weaker when examining interspecific relative to intraspecific 386 

flowering times, composition-derived shifts in flowering time can explain up to 49.3% of 387 

community phenological variation (Park, 2014). Phenology can be a major determinant of 388 

species distributions, setting geographic limits on the environmental conditions a species requires 389 

to complete its life cycle (Chuine, 2010). In our study different plant families predominate in 390 

different biomes, and these compositional shifts correspond with shifts in flowering periods 391 

among biomes (Figure 3, Figure 4). In addition, community mean flowering periods vary with 392 

climate, suggesting that flowering phenology may be one of several traits determining species 393 

co-occurrence in plant communities, along with more commonly investigated traits such as plant 394 

height and specific leaf area (Guerin et al., In review). This is supported by Du et al. (2020)’s 395 

finding that flowering and fruiting phenology varies with environment across China, and shows 396 

that climate-community phenology relationships can be detected even in local, co-occurring 397 

plant communities, despite the influence of stochastic events on local community assembly 398 

(Bruelheide et al., 2018). As such, our results clearly demonstrate the signal of environmental 399 

filtering in community flowering phenology, as different flowering strategies predominate across 400 

the breadth of plant communities and biomes explored. 401 

 402 

4.2 Flowering period as a “response” trait 403 

 404 

Flowering periods are longest in Desert and Xeric Shrubland communities, and in communities 405 

with low and unpredictable MAP. This reflects longstanding observations about the flowering 406 
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phenology of desert communities, which is typically opportunistic in response to sporadic 407 

rainfall (Noy-Meir, 1973). The long flowering periods of desert biomes do not imply long 408 

flowering durations. Instead, longer flowering periods reflect the fact that desert species flower 409 

at any time of year in response to rainfall, which shows high inter-annual variability across 410 

Australia’s arid regions (Friedel et al., 1993; King et al., 2014). For plants to be able to meet the 411 

physiological costs of flower production and maintenance (both water and carbon, see Roddy et 412 

al. (2020)), and resulting seed production, they must respond to water when it is available. Plants 413 

respond to this unpredictable rainfall differently: desert annuals and herbaceous perennials often 414 

germinate, flower and fruit following rainfall, with annuals completing their full life cycle while 415 

soil moisture is available (Nano & Pavey, 2013; Noy-Meir, 1973). Woody species typically have 416 

deeper root systems with access to more stable soil moisture, and can thus access resources to 417 

flower in more predictable windows, but still respond to stochastic rainfall events for flowering 418 

and reproduction (Friedel et al., 1993, 1994; Nano & Pavey, 2013; Noy-Meir, 1973). These 419 

differences in woody and herbaceous species’ flowering may explain the slightly longer 420 

flowering periods found for herbaceous species, which showed a larger proportion of species 421 

with 12 month flowering periods than woody species (Figure S4), though this relationship did 422 

not hold within Deserts and Xeric Shrublands or any other biome. 423 

 424 

In contrast to desert communities, mean flowering periods are shorter in Montane Grasslands and 425 

Shrublands, and in communities with low MAT, high MAP and predictable temperature and 426 

precipitation. Alpine plant communities experience strong climatic boundaries, with low 427 

temperatures and snow cover in the winter months preventing plant growth or reproduction. 428 

These strong climatic boundaries limit the window for flowering, pollination and seed 429 
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production in alpine plant communities, which must be completed before autumn snowfall 430 

(Inouye & Pyke, 1988). Reflecting this, alpine plant communities experience the most seasonal 431 

flowering of any Australian biome, with peak flowering in December-January and no flowering 432 

in June, the month of the Southern Hemisphere’s winter solstice (Figure 3). The strength and 433 

specificity of this flowering pattern also reflects the smaller ranges of Australian alpine species 434 

(R. V. Gallagher, 2016). Australia’s montane biome covers a small proportion of the country’s 435 

terrestrial surface area (~0.16%, Figure 1) and is a centre of floral endemism in Australia (Crisp, 436 

Laffan, Linder, & Monro, 2001). Our findings confirm the combination of highly seasonal 437 

flowering, tight climate relationships and high rates of endemism which have made montane 438 

biomes the subject of intense research into the impacts of climate change on flowering 439 

phenology in recent decades (CaraDonna et al., 2014; R. Gallagher, Hughes, & Leishman, 2009). 440 

Some impacts of climate change on flowering phenology in Australian montane habitats have 441 

been detected, and these may lengthen community flowering periods in this biome in the future 442 

(R. Gallagher et al., 2009; Green, 2010). 443 

 444 

Community mean flowering periods decreased with increasing predictability of both temperature 445 

and precipitation, as hypothesised. Precipitation predictability had less explanatory power than 446 

climatic means, while temperature predictability explained the most variance in community 447 

flowering periods (Table 1). Flowering is highly responsive to temperature cues, with flowering 448 

in many species initiated by increases in ambient temperatures (Capovilla, Schmid, & Posé, 449 

2015). It is thus unsurprising that more predictable temperature cues equal more regular, and thus 450 

shorter, community flowering periods, although Australian temperatures are highly predictable 451 

compared to other regions of the world (Jiang et al., 2017). In contrast, precipitation in Australia 452 
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is highly variable both geographically and year-to-year, driven by climatic modes such as the El 453 

Niño-Southern Oscillation, and this contributes to low levels of precipitation predictability (King 454 

et al., 2014). Temperate Broadleaf and Mixed Forest biomes in Australia, for example, are 455 

globally unique for their low precipitation predictability, and in particular their low precipitation 456 

contingency (Jiang et al., 2017). Australian vegetation is correspondingly opportunistic, with 457 

growth and flowering events often closely tracking water availability (Duursma et al., 2016; 458 

Nano & Pavey, 2013). Though community flowering periods decrease with precipitation 459 

predictability as predicted, this relationship was weaker than that with other climatic predictors, 460 

perhaps due to the extreme heterogeneity of precipitation across the Australian continent. Overall 461 

the relationship between climatic predictability and community plant phenology across Australia  462 

suggests climatic factors shaping plant community assembly beyond the climatic means typically 463 

considered. 464 

 465 

4.3 Flowering period as an “effect” trait 466 

 467 

What do our results about flowering period imply for pollinators and pollination? Pollination is 468 

spatially heterogeneous: for example, wind pollination is thought to be more common in areas 469 

with lower MAT and MAP (Rech et al., 2016). For animal-pollinated species, different pollinator 470 

assemblages are active in different areas and different climatic conditions (Ollerton, 2017). Areas 471 

with higher MAT likely have more months of the year in which pollinator species are active 472 

(Primack & Inouye, 1993), and thus increased flowering periods in these communities is likely 473 

matched by increased windows of pollinator activity. 474 

 475 
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Relationships between pollinator activity and precipitation are more complicated. Though areas 476 

with higher precipitation have increased water availability which can increase floral traits 477 

associated with pollinator attraction and reward, rainfall itself typically impedes pollinator 478 

activity, diluting flower nectar, degrading pollen and preventing insect pollinators from flying 479 

(Lawson & Rands, 2019). Pollinator activity likely varies with climatic predictability much as 480 

flowering periods do, though pollinator phenology is less frequently or consistently studied 481 

(Neave, Brown, Batley, Rao, & Cunningham, 2020). In desert biomes, for example, bird 482 

abundance and species richness tracks unpredictable rainfall (Jordan, James, Moore, & Franklin, 483 

2017), and pollinators in cold or montane environments experience similar periods of reduced 484 

activity, either migrating away or else overwintering as larvae during the cold months (Inouye & 485 

Pyke, 1988; Stemkovski et al., 2020). Thus, climate shapes community flowering periods but 486 

also the activity of pollinators that visit flowers, not to mention the activity of the many 487 

florivorous animals that do not effect pollination (e.g. see McCall & Irwin, 2006). 488 

 489 

4.4 Implications and future directions 490 

 491 

Community flowering strategies may shift with climate change, either as species adapt to new 492 

conditions or as community composition changes via localised extinctions and range shifts. In 493 

Australia climate change is causing higher temperatures overall, with an increase in heavy 494 

precipitation in northern Australia and an increase in drought in southern Australia (IPCC, 2021). 495 

Communities with shorter flowering periods will be more susceptible to the impacts of current 496 

and future climate change, as mismatches in the timing of flowering, pollinator emergence and 497 

climatic conditions over time may select for communities with longer, more responsive 498 
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flowering periods (e.g. Stemkovski et al., 2020). Indeed, there are already reports that lower and 499 

less predictable rainfall is affecting plant community composition through dieback in southwest 500 

Australia (Hoffmann et al., 2019), and that higher temperatures are shifting flowering dates in 501 

alpine southeast Australia (R. Gallagher et al., 2009; Hoffmann et al., 2019). 502 

 503 

Flowering is just one part of a plant’s reproductive phenology, and flowering phenology is just 504 

one aspect of a plant’s floral strategy. Seed size may influence the timing of fruiting and 505 

flowering, as flowers must be pollinated in time to allow suitable conditions for fruit 506 

development, which takes longer in larger-seeded species, and seed dispersal (Chuine, 2010; Du 507 

et al., 2020). Evidence for this hypothesis is equivocal, however, and recent field investigations 508 

in montane habitats found no association between phenological events and seed size, though they 509 

did find a strong association with plant height (Liu et al., 2021). A landscape scale comparison 510 

between plant traits, fruiting time and flowering period would require either more specific 511 

measures of population flowering duration, or else measurement only in strongly seasonal 512 

environments where flowering periods experience definite constraints. A more fruitful approach 513 

in aseasonal landscapes might be to investigate community-level variation in other floral traits, in 514 

particular traits related to trade-off spectra such as floral longevity, floral mass or floral mass per 515 

area (Roddy et al., 2020). 516 

 517 

5 Conclusion 518 

 519 

Climate has long been known to affect plant strategies across biomes. Here we have shown that 520 

climate similarly contributes to strategies around the timing of plant flowering. Plant 521 
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communities in climatically predictable areas, with higher mean precipitation and lower mean 522 

temperatures, favour shorter, more concentrated flowering periods. Species in these communities 523 

likely time their flowering to match pollinator activity and optimal conditions for pollination and 524 

seed development. In contrast, plant communities in areas with unpredictable climates, with 525 

lower mean precipitation and higher mean temperatures, have longer, more dispersed flowering 526 

periods, as species in these harsher conditions must respond whenever water is available to 527 

enable flowering. Filtering for these divergent flowering strategies may limit which species can 528 

co-exist in communities, resulting in signals of flowering in the processes of community 529 

assembly. Future studies may further reveal how different flowering strategies affect pollination, 530 

plant reproduction and community turnover, as well as the availability of floral resources across 531 

the landscape. 532 

 533 

Data availability statement: 534 

All data used in this study and primary analysis R code are available via an archived GitHub 535 

repository at https://doi.org/10.5281/zenodo.5553530.  536 
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