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Abstract 

The Japanese wolf (Canis lupus hodophilax Temminck, 1839) was a subspecies of the gray wolf  

that inhabited the Japanese Archipelago and became extinct 100-120 years ago. In this study, we 

determined the whole genomes of nine Japanese wolves from the 19th- early 20th centuries and 11 

Japanese dogs and analyzed them along with both modern and ancient wolves and dogs. Genomic 

analyses indicate that the Japanese wolf was a unique subspecies of the gray wolf that was 

genetically distinct from both modern and ancient gray wolves, lacking gene flow with other gray 

wolves. A Phylogenetic tree that minimizes the effects of introgression shows that Japanese 

wolves are closest to the dog monophyletic group among the gray wolves. Moreover, Japanese 

wolves show significant genetic affinities with East Eurasian dogs. We estimated the level of 

introgression from the ancestor of the Japanese wolves to the ancestor of East Eurasian dogs that 

had occurred in the transitional period from the Pleistocene to the Holocene, at an early stage after  

divergence from West Eurasian dog lineages. Because of this introgression, Japanese wolf 

ancestry has been inherited by many dogs through admixture between East Eurasian dog lineages. 

As a result of this heredity, up to 5.5% of modern dog genomes throughout East Eurasia are 

derived from Japanese wolf ancestry. 
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Introduction 

The phylogeny of gray wolves (Canis lupus) attracts wide attention from researchers and the 

public because wolves are the closest relatives to one of the most familiar animal species to 

humans, i.e., dogs. The extant gray wolves (Canis lupus) are divided into three lineages: the North 

American, Eurasian, and domestic dog lineages, including several now-extinct lineages that  

inhabited Eurasia during the Pleistocene (Ramos-Madrigal, et al. 2021). Recent phylogenomic 

analyses of gray wolves have shown that the North American gray wolf diverged at the basal 

ancestral position, followed by the Eurasian lineage (Fan, et al. 2016; Leathlobhair, et al. 2018).  

Dogs form a monophyletic clade which is the sister group to the Eurasian lineage of the gray wolf 

(Freedman, et al. 2014; Fan, et al. 2016; Leathlobhair, et al. 2018). Therefore, the hypothesis that 

the dog lineages have originated in Eurasia has been widely accepted. But there is still much 

debate concerning when, where, how many times, and from which population, the ancestor of 

dogs was domesticated (Leonard, et al. 2002; Savolainen, et al. 2002; Germonpré, et al. 2009; 

Pang, et al. 2009; Vonholdt, et al. 2010; Larson, et al. 2012; Axelsson, et al. 2013; Thalmann, et 

al. 2013; Freedman, et al. 2014; Perri 2016; Janssens, et al. 2018; Leathlobhair, et al. 2018; Perri,  

et al. 2021). Because no extant population of gray wolves has been reported to be more closely 

related to dogs than the other wolf populations, it is believed that the dog lineage has been 

domesticated from an extinct population of gray wolves (Larson, et al. 2012; Thalmann, et al. 

2013; Freedman, et al. 2014; Skoglund, et al. 2015; Fan, et al. 2016; Frantz, et al. 2016). However, 

no information is available about this extinct population. 

Many regions in Eurasia, including southern East Asia (Savolainen, et al. 2002; Pang, et al. 

2009; Wang, et al. 2013; Wang, et al. 2016), Middle East (Vonholdt, et al. 2010), Central Asia 
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(Shannon, et al. 2015), Europe (Thalmann, et al. 2013), and both West and East Eurasia (dual 

origin) (Frantz, et al. 2016), have been proposed as candidates for the origin of dogs, but the 

debate on the origin (single, or dual) as well as the timing of domestication still continues.  

Divergence between the Eurasian gray wolf and dog lineages has been estimated to be 20,000-

40,000 years ago (Skoglund, et al. 2015; Botigué, et al. 2017). Based on phylogenomic analyses, 

dogs were initially reported to be genetically divided into two distinct lineages, i.e., the West and 

East Eurasian lineages (Freedman, et al. 2014; Shannon, et al. 2015; Frantz, et al. 2016; Botigué, 

et al. 2017; Leathlobhair, et al. 2018). Subsequent reports suggested an ancient divergence of the 

Arctic sled dog lineage (Sinding, et al. 2020), which is closely related to the pre-contact American 

dogs (Leathlobhair, et al. 2018). The phylogenetic relationship between the Arctic sled dog 

lineage and the West and East Eurasian lineages is conflicting (Larson, et al. 2012; Frantz, et al. 

2016; Wang, et al. 2016), and these inconsistent topologies can be explained by either a high 

degree of admixture after the divergence of the three lineages, or by nearly simultaneous  

divergence (Frantz, et al. 2016; Zhang, et al. 2020). The West Eurasian and East Eurasian lineages 

diverged 17,000-24,000 years ago (Botigué, et al. 2017), and the Arctic sled dog lineage is 

estimated to have existed at least 9500 years ago (Sinding, et al. 2020). 

Studies have suggested that wolf populations in Europe (Thalmann, et al. 2013), the Middle East 

(Vonholdt, et al. 2010), Central Asia (Shannon, et al. 2015), Siberia (Sinding, et al. 2020; Ramos-

Madrigal, et al. 2021), and East Asia (Savolainen, et al. 2002; Wang, et al. 2016) have undergone 

introgression or bidirectional gene flow (Freedman, et al. 2014) with dogs. However, genomic 

introgression from gray wolves to dogs has been considered to be limited due to the presence of 

Eurasian wolves that do not show genetic affinity to any dog breed (Bergström, et al. 2020). 
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The Japanese wolf (Canis lupus hodophilax Temminck, 1839) was a subspecies of the gray wolf  

that inhabited Honshu, Shikoku, and Kyushu Islands in the Japanese Archipelago and became 

extinct 100-120 years ago (Ishiguro, et al. 2009). Molecular phylogenetic analysis of the 

mitochondrial genome suggests that the Japanese wolf diverged at the basal position of the extant 

gray wolf clade (Matsumura, et al. 2014; Matsumura, et al. 2020). Recent genome analysis of a 

"Honshu wolf" (one of the common names for the Japanese wolf) from the collection of the 

British Museum suggests that this individual is closely related to a lineage of Siberian wolves that 

existed in the Late Pleistocene and shows significant gene flow with Japanese dogs (Niemann, et 

al. 2021). 

In this study, the genomes of nine Japanese wolves, including the type specimens, and 11 

Japanese dogs were newly determined and analyzed. The analyses showed that 1) the Japanese  

wolf was a unique subspecies of the gray wolf that is genetically distinct from both extant and 

ancient gray wolves known to date, 2) the Japanese wolf is most closely related to a monophyletic 

group of dogs, and 3) Japanese wolf ancestry has introgressed into the ancestor of East Eurasian 

dogs at an early stage of their history after diverging from the West Eurasian lineages, and the 

genome derived from Japanese wolf ancestry has been inherited by many modern dogs, even in 

the West Eurasian lineages, through their historical admixture with East Eurasian lineages. 

 

Results 

Relationships between Japanese wolves and other dogs and gray wolves  

In this study, original genomic DNA sequences of nine Japanese wolves (22-282 Gb) and 12   

Japanese dogs (70-127 Gb) were determined (Table S1, Fig. S1). For the present study, we treated  
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nine individuals with Japanese wolf type mitochondrial DNA haplotypes (Matsumura, et al. 2020)  

as the Japanese wolf. In addition, we used sequencing data of modern gray wolves with depth of  

coverage >20x in the database, ancient canids with relatively high coverage, and outgroup species  

from the database (Table S2). All sequence data were mapped to the reference genome sequence  

(CanFam3.1). After haplotype calling and gvcf file merging, single nucleotide polymorphisms  

(SNPs) were genotyped. To examine the genetic relationship among the individuals used in this  

study, a principal component analysis (PCA) was performed using individuals with high coverage  

(Fig. 1A). In the PCA, Japanese wolves formed a distinct cluster, suggesting that Japanese wolves   

were genetically separated from dogs, gray wolves, and any of the outgroup species. The gray    

wolves were clustered into two groups, i.e., a North American/Arctic group and a Eurasian group   

along the PC1 axis. Dogs show an East-West cline along the PC2 axis. Dingoes and New Guinea   

singing dogs (NGSD) were the closest to Japanese wolves among dogs along the PC2 axis,   

followed by a cluster of Japanese dogs (Fig. 1A). Using the same data set we also generated an   

ADMIXTURE result with the lowest CV error at K=4 (Fig. 1B). In this analysis, Japanese wolves   

also formed clusters with higher K such as K=5 or K=6, indicating that their genetic composition   

was unique compared with that of the other dogs and gray wolves (Fig. 1B and S2).   

Next, we added the three Japanese wolf individuals with low coverage [Leiden b and c, (Jentink   

1887), and a “Honshu wolf” (Niemann, et al. 2021), see Table S2] into the analysis. PCA showed  

that Leiden b and Honshu wolf were very close to the Japanese wolf cluster, while Leiden c was   

placed at an intermediate position between dogs and Japanese wolves (Fig. S3). ADMIXTURE  

analysis showed that Leiden b and Honshu wolf exhibit the same ancestry pattern as the other  

Japanese wolf individuals, while Leiden c seemed to be admixed with other dogs (Fig. S4). We  
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used Patterson's f4 statistic (Patterson, et al. 2012) to identify dog individuals with high genetic  

affinity to Leiden c to see which dog population was the source of the introgression. The dog that  

showed the highest affinity to Leiden c was the Japanese dog Shiba (Fig. S5A), and Leiden c  

contained 39% of the Shiba's genome (Fig. S5B). In contrast, Leiden b showed no affinity with  

dogs (Fig. S5C). These results indicate that Leiden b and Honshu wolf are included in the group  

of Japanese wolves with a unique genetic composition, while Leiden c is a hybrid individual  

between Japanese wolves and dogs. Subsequently, we removed Leiden b, c and Honshu wolf   

individuals from further analyses due to their low coverage.  

A previous study (Niemann, et al. 2021) suggested that Honshu wolf has a close relationship  

with a lineage of Siberian wolves that existed in the Late Pleistocene and was likely to be admixed  

with dogs. Therefore, we added the Pleistocene wolves to our dataset which are comprised of the  

modern gray wolves and dogs and performed PCA (Fig. S6). Pleistocene wolves were placed  

closely related to Eurasian wolves, while Japanese wolves formed a distinct cluster. Our  

ADMIXTURE analysis (Fig. S4) suggests that Honshu wolf does not contain more DNA  

components of dogs than the other Japanese wolf individuals. The differences between the results  

of Niemann et al. 2020 and this study could be caused by differences in the number of Japanese  

wolves used in the analyses and/or in the coverage of DNA sequencing.   

  

Phylogenetic position of the Japanese wolves  

To determine the phylogenetic position of the Japanese wolves, a phylogenetic tree was  

constructed using the maximum likelihood (ML) method (Fig, 2A). Among gray wolves, North  

American/Arctic individuals branched off first at the basal position of the tree, followed by  
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European/Middle Eastern and East Asian gray wolves (also see Fig. S7). Dogs formed a  

monophyletic clade including East Eurasian, West Eurasian, and sled dog lineages (Fig. 2A, S7),  

as shown in previous studies (Freedman, et al. 2014; Shannon, et al. 2015; Frantz, et al. 2016;  

Botigué, et al. 2017; Leathlobhair, et al. 2018; Sinding, et al. 2020). Japanese wolves formed a  

monophyletic clade that was a sister group to the monophyletic clade of dogs (Fig. 2A, S7). The   

sister group relationship between Japanese wolves and dogs was also supported by a tree inferred  

by SVDQuartets and a Neighbor-Joining tree based on identity-by-state (IBS) distance (Figs. S8,  

S9). Analysis using outgroup-f3 statistics (Patterson, et al. 2012) also showed that the Japanese  

wolf was the most closely related to dogs among wolves (Fig. 2B). When we further divide the  

dogs into subpopulations, outgroup-f3 statistics showed different results between dingo/NGSD  

and African dogs; dingo/NGSD was related most closely to Japanese wolf while African dog is  

related most closely to the Middle Eastern gray wolves (Fig. S10A and S10B). The different  

genetic affinities of dog populations to the Japanese wolf may have resulted from introgression  

between African dogs and Middle Eastern gray wolves (Vonholdt, et al. 2010; Bergström, et al.  

2020).   

 Since the tree topology in phylogenetic analyses could be affected by introgression between taxa,  

a phylogenetic tree using taxa showing minimal introgression effects is expected to be the most  

accurate representation of population branching. Therefore, in order to obtain such a tree, we  

examined introgression between Japanese wolves and other dogs and wolves. We compared the  

genetic affinity of each dog with the Japanese wolves using f3 and f4 statistics, and found that  

dogs of the East Eurasian lineage (Fig. S7), in particular, dingoes, NGSDs, and Japanese dogs,  

showed significant affinity with the Japanese wolves (Z score > 3) (Fig. 2C, S11). In contrast,  
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dogs of the west Eurasian lineage, in particular dogs from Africa, showed low affinity to Japanese  

wolves (Fig. 2C, S11). f4 statistics showed no affinity between any of the gray wolf populations  

and Japanese wolves (Fig. 2D). Possibilities of gene flow between gray wolves except for the   

Japanese wolf and dogs were also examined using f4 statistics. Gray wolves in the Middle East  

showed strong affinity with dogs (Fig. S12), consistent with previous reports (Vonholdt, et al.  

2010; Bergström, et al. 2020). Based on these results, we reperformed phylogenetic analysis to  

confirm the relationship between Japanese wolves and dogs. To minimize the effect of  

introgression between wolves and dogs, we included African dogs as the sole representatives of  

dogs, and excluded gray wolves from the Middle East. Even in the phylogenetic tree obtained  

from this analysis, the Japanese wolf still formed a sister clade with African dogs (Fig. S13). Thus,  

we concluded that the most closely related wolves to the dog lineage are the Japanese wolves.  

  

The genome of the Japanese wolf ancestor in the dog genome   

Japanese wolves showed strong affinity with many East Eurasian dogs (f3, f4 statistics) (Figs. 2C,  

S11), which may be caused by the introgression of dog genomes into Japanese wolves (Japanese  

wolf or its ancestors, hereafter simply referred to as the "the Japanese wolf genome") or vice versa.  

A recent report suggested widespread gene flow from dogs to gray wolves, but little gene flow  

from gray wolves to dogs, based on the existence of gray wolves that have no affinity with dogs  

(Bergström, et al. 2020). We investigated the direction of gene flow between Japanese wolves and  

East Eurasian dogs using the f4-ratio (Patterson, et al. 2012). We found that the degree of genome  

introgression from he Japanese wolf lineage to dogs was the highest in dingoes and NGSDs  

(5.5%) followed by Japanese dogs (3-4%), as well as in dogs of other East Eurasian lineages (Fig.  
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3A). In contrast, genomic introgression from dogs to the Japanese wolf genome was not supported   

(Fig. S14). We further analyzed the possibility of a small proportion of genomic introgression  

from dogs to the Japanese wolf genome by the f4 statistics. If the dog genome is introgressed into  

the Japanese wolf genome, the genetic affinities between the Japanese wolf and dogs would be  

different between individuals. Indeed, the degree of affinity of Japanese wolves with  

dongo/NGSD varied among individuals (Fig. S15) and Jw258, Jw269, and Jw271 showed  

significant affinity to Japanese dogs (Fig. S16). This difference in affinity suggests that the  

Japanese wolf genome contains a small proportion of the dog genome that is undetectable by f4- 

ratio.  

 The degree of genomic introgression from Japanese wolves to dogs was higher in East Eurasian 

than in West Eurasian dogs. It also varied among the dogs of East Eurasia. This variation may  

have been caused by multiple introgression events between the ancestors of Japanese wolves and 

dogs in different regions, or by a single introgression followed by diffusion of the Japanese wolf 

genome into various dog populations. To determine which hypothesis is more likely, we first 

examined the degree of gene flow among dogs in different regions. African dogs and dingo/NGSD 

represent opposite edges of the dog cluster in the PCA (Fig. 1A), and show the lowest and highest 

affinities with Japanese wolves, respectively (Fig. 2C). Among dogs, African dogs show the 

lowest affinity with dingo/NGSD, while dingo/NGSDs show the lowest affinity with African dogs 

(Fig. S17, S18). Dingoes are estimated to have been introduced to Australia between 4600 and 

18300 years ago based on their mitochondrial DNA (Oskarsson, et al. 2012), with archaeological  

evidence supporting the arrival of at least 3500 years ago (Milham and Thompson 1976). It is   

considered that the dingoes have been isolated in Australia since then (Larson, et al. 2012; Fan,  
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et al. 2016). African dogs are estimated to have migrated to Africa 14,000 years ago (Liu, et al.  

2018) and have been isolated since then (Larson, et al. 2012; Fan, et al. 2016). The African Dog  

and Dingo/NGSD are included in the West Eurasian and East Eurasian lineages, respectively (Fig.  

S7). Therefore, they are likely to be the oldest dogs of their respective lineages. The f4 statistics  

biplot showed that dogs showing higher affinity with dingo/NGSD show lower affinity with  

African dogs while dogs showing higher affinity with African dogs show lower affinity with  

Dingo/NGSD (Fig. S19). This negative correlation suggests most of dog populations were formed  

through extensive past mixing between East and West Eurasian lineages represented by 

dingo/NGSD and African dogs, respectively. Indeed, several dogs in South and East Asia are  

genomically characterized as dingo/NGSD admixed with African dogs by negative values of f3 

statistics (Patterson, et al. 2012) (Fig. S20). 

Next, we examined the degree of introgression between dogs from different regions and 

Japanese wolves. TreeMix analysis indicates an introgression from the ancestor of Japanese 

wolves into the common ancestor of dingo/NGSD and Japanese dogs (Fig. 3B). The f3 biplot of 

affinities with dingo/NGSD and with Japanese wolves shows a positive correlation among dogs, 

indicating that the Japanese wolf genome has become widespread through the admixture between 

West and East Eurasian dog lineages and persists in the modern genomes of the East Eurasian 

lineage (Fig. 3C). Therefore, it is likely that the genome of the Japanese wolf ancestor was 

introgressed into an ancestral lineage of the East Eurasian lineage after the split of West and East  

Eurasian lineages. Subsequently, the East Eurasian lineage containing the Japanese wolf ancestry 

admixed with the West Eurasian lineage, resulting in differences in affinities with the Japanese 

wolves. The Southeast Asian dogs (Fig. 3C green) have a relatively higher affinity with 
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Dingo/NGSD compared to their affinity with Japanese wolves, suggesting gene flow between the 

Southeast Asian dogs and dogs that carried no Japanese wolf genome after the first admixture 

event. Similarly, Japanese dogs (Fig. 3C blue) have a relatively higher affinity with Japanese 

wolves compared to their affinity with Dingo/NGSD, suggesting subsequent gene flow between 

Japanese dogs and Japanese wolves. Hence, it is likely that the difference in the degree of genomic 

introgression from Japanese wolves to dogs was caused by a single introgression followed by 

diffusion of the Japanese wolf genome into various dog populations.  

 

Genomic regions derived from Japanese wolf that contribute to the traits of Japanese dogs 

The results of f4-ratio analysis showed that Akita, Shiba, and Kishu dogs contain 36-45% West 

Eurasian dog genomes (Table S3). It is expected that the genomic regions containing genes 

responsible for traits of the Japanese dogs are highly differentiated from those of West Eurasian 

dogs. If such regions overlap with the Japanese wolf-derived genomic regions (3-4%) in the 

modern Japanese dog genome, it could be that Japanese wolf-derived genes are responsible for 

the characteristic traits of the Japanese dog. To investigate such regions, we examined genomic 

regions derived from Japanese wolves using a fdM sliding window and regions differentiated 

between Japanese dogs and West Eurasian dogs using an FST sliding window, and extracted  

overlapping regions. Six regions were found, which included four genes and the upstream or 

downstream regions of four genes (Fig. 3D, Fig. S21, Table S5). These regions may be candidates 

of genomic regions derived from Japanese wolf that contribute to the traits of Japanese dogs. 

 

Discussion 
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The Japanese wolves are likely to have been isolated in the Japanese archipelago until their 

extinction only 100 years ago. This study reveals that they form a monophyletic group with no 

evidence for gene flow with other Eurasian gray wolves. 

One notable aspect of Japanese wolves is their phylogenetic position. In Eurasia, our 

phylogenetic analysis showed that the European lineage of the gray wolves diverged at the basal  

position, followed by the Middle East and East Asian lineages. In the East Asian lineage, the 

monophyletic group of Japanese wolves and the dog lineage form a sister-group relationship. The 

order in which Eurasian wolf lineages diverged is from west to east in geographical order on the 

Eurasian continent. Considering these phylogenetic and geographic relationships, it is most likely 

that it was in East Asia that the divergence between the Japanese wolf and the dog lineages has 

occurred. In other words, the extinct population of the gray wolf from which dogs are suspected 

to have been domesticated (Larson, et al. 2012; Thalmann, et al. 2013; Freedman, et al. 2014; 

Skoglund, et al. 2015; Fan, et al. 2016; Frantz, et al. 2016) is closely related to the ancestor of the 

Japanese wolf and is likely to inhabit East Asia. This hypothesis does not directly imply that the 

origin of dog domestication was in East Asia, nor does it directly imply that the earliest dogs  

descended from the ancestor of Japanese wolves. Although the domestication process would have 

been initiated with the animals’ association with humans (Larson, et al. 2012; Perri 2016; Janssens, 

et al. 2018), our phylogenetic analyses provide no evidence for when dog lineages began to 

associate with humans. Further archaeological evidence in the studies of ancient "proto-dog" 

populations are required to clarify the beginnings of the dog-human relationship. 

 This study suggests ancient genomic introgression from the Japanese wolf to dogs, most likely 

to the ancestor of the East Eurasian lineage. The divergence between the dog lineage and the 
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Eurasian gray wolves has been estimated to be 20,000-40,000 years ago (Skoglund, et al. 2015; 

Botigué, et al. 2017). Dogs have been reported to have split into West Eurasian, East Eurasian, 

and sled dog lineages in their early divergence (Freedman, et al. 2014; Shannon, et al. 2015;  

Frantz, et al. 2016; Botigué, et al. 2017; Leathlobhair, et al. 2018). Because a 9500-year-old sled 

dog (Sinding, et al. 2020) already contained the same proportion of the Japanese wolf genome as 

the modern sled dog (2%: Table S4), the genomic introgression of the ancestor of the Japanese 

wolf to the East Eurasian lineage of dogs must have occurred before the establishment of the sled 

dog lineage at least 9500 years ago during the transitional period from the Pleistocene to the 

Holocene and shortly after the divergence of the East and West Eurasian dog lineages. The 

genome of NGSD was estimated to contain the Japanese wolf genome (5.5%). It is estimated that 

the NGSD lineage already existed by 10,900 years ago (Bergström, et al. 2020), which also 

supports the hypothesis that the introgression from the ancestor of Japanese wolves into dogs had 

occurred in the Pleistocene. The ancient dog genome data from two European individuals (4,800  

and 7,000 years ago) already contained about 1.6% of the Japanese wolf genome (Table S4). Since 

the gene flow from the Southeast Asian dog ancestry to the ancestor of these two ancient European 

dogs has been reported (Botigué, et al. 2017), the genome of the Japanese wolf may have been 

transmitted to European dogs via the Southeast Asian dog ancestry more than 7,000 years ago.  

Although the Japanese wolf has only ever been found living in the Japanese archipelago, it is 

unlikely that the introgression between the ancestor of the Japanese wolf and dogs of the East 

Eurasian lineage occurred in the Japanese archipelago. An ancient sled dog (Sinding, et al. 2020) 

excavated at the same time as the excavation of the oldest dog in Japan (9600 years ago) 

(Shigehara and Hongo 2000) already possessed the Japanese wolf genome, suggesting that 
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introgression between the ancestor of Japanese wolves and dogs of the East Eurasian lineage had  

occurred before dogs were brought to the Japanese archipelago. Therefore, the introgression 

between the ancestral Japanese wolf and the East Eurasian lineage of dogs is most likely to have 

occurred somewhere in East Asia.  

The dogs with a high proportion of the Japanese wolf genome are the dingo/NGSD (5.5%) and 

the Japanese dogs (3-4%). The high proportion of the dingo/NGSD is inferred to be due to their 

isolation in the islands of Southeast Asia and Australia, where they have escaped admixture with 

the West Eurasian dog lineage. NGSD is estimated to be an admixture of two lineages (Bergström, 

et al. 2020), and thus one of the admixed lineages may have possessed a higher proportion (~10%) 

of the Japanese wolf genome than NGSD. In contrast, Japanese dogs contain about 36-45% of the  

West Eurasian genome (Table S3), even though a high proportion of the Japanese wolf genome   

persists in their genomes. After the first introgression with the East Eurasian dog ancestry, the  

Japanese wolf genome may have introgressed into the Japanese dog genomes in the Japanese  

archipelago. This hypothesis is supported by the ratio of affinity with Japanese wolves and with  

dingoes/NGSDs, which tends to be higher in Japanese dogs (Fig. 3C). In addition, the Japanese  

dogs have the highest affinity to the Japanese wolf among all dogs (Fig. S16), suggesting that the  

Japanese wolf genome was recently introgressed into the Japanese dog genome.  

Although only a small proportion of the Japanese wolf genome persists in modern dog genomes,  

the Japanese wolf genome might have an effect on dog characteristic traits. We searched for  

genomic regions in Japanese dogs that derived from the Japanese wolf, and that were highly 

differentiated between Japanese dogs and West Eurasian dogs. Six regions were found with these  

criteria (Fig. 3D, Fig. S21, Table S5). Despite the gene flow from Eurasian dogs, these regions 
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were differentiated between the genomes of Japanese and West Eurasian dogs. Therefore, these 

regions are expected to have been selected in the Japanese dogs and are the candidates of genomic 

regions potentially responsible for phenotypic characteristics of Japanese dogs. Further analysis 

of the regions selected in East Eurasian dogs and a genome-wide association study for East 

Eurasian dog traits should reveal the effects of the Japanese wolf genome on dog traits. 

 In this study, we demonstrated that the Japanese wolf is a sister group with the monophyletic 

clade of dogs. Our original results support the hypothesis that the modern dog lineage was 

domesticated from an extinct population of gray wolves (Larson, et al. 2012; Thalmann, et al. 

2013; Freedman, et al. 2014; Skoglund, et al. 2015; Fan, et al. 2016; Frantz, et al. 2016), and the  

Japanese wolf is the closest to this now-extinct gray wolf population. In addition, we estimated 

the levels of introgression from the ancestor of Japanese wolves to the ancestor of East Eurasian 

dogs. Accordingly, the Japanese wolf genome is expected to be involved in the early stages of 

dog domestication. Further analysis of the genome of the Japanese wolf and ancient dog genomes, 

in particular from East Eurasia, will continue to shed light on the origins of dog domestication. 

 

 

Materials and methods 

Samples, DNA extraction, and sequencing 

Japanese Wolf and Japanese dog DNAs were extracted and used in our previous studies  

(Matsumura, et al. 2014; Matsumura, et al. 2020). The sample locations are listed in Table S1. 

DNAs of two individuals of Shiba (Shiba_shiro and Shiba_kuro) were extracted from blood 

samples using a DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s instructions. 
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The NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Bio Labs, Ipswich, MA, 

USA) was used to construct libraries from genomic DNA following the manufacturer’s 

instructions. Paired-end (2 × 150 bp) sequencing was performed on the Illumina HiSeq X or 

NovaSeq 6000 platforms. 

For Leiden b and Leiden c, the genome capture was performed using the SeqCap EZ 

Hybridization and Wash Kit (Roche, Basel, Switzerland), SeqCap EZ Accessory Kit v2 (Roche), 

SeqCap HE-Oligo Kit (Roche), and SeqCap EZ Pure Capture Bead Kit (Roche) following the  

manufacturer’s instructions for SeqCap EZ Library SR (Roche), with minor modifications. 

Briefly, Biotin-labeled genomic DNA fragments from Shiba were used as hybridization probes, 

instead of the SeqCap EZ library (Roche). Leiden b and Leiden c libraries were mixed with 135 

ng of Biotin-labeled genomic DNA fragments and were hybridized at 47°C for 72 h. Other 

procedures were performed in accordance with the manufacturer’s instructions. Total mapped 

reads are listed in Table S1. 

 

Extraction of SNPs and vcf file preparation 

Sequence reads from the genomic DNA libraries of nine Japanese wolves, eleven Japanese dogs 

(Table S1) as well as 88 wolves/dogs and six outgroup species from the database (Table S2) were  

trimmed to remove adaptor sequences and mapped to the dog reference genome (CanFam3.1) 

using CLC Genomics Workbench (https://www.qiagenbioinformatics.com/). Reads showing high 

similarity (> 90% in > 90% of read length) were mapped to the reference genome sequences and 

reads mapped to more than one position were removed (“ignore” option for reads mapped to 

multiple positions). The mapping data was exported in bam file format and sorted and indexed 
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using samtools (Li, et al. 2009). The duplicated reads in bam files were marked by the 

MarkDuplicates algorithm implemented in GATK v4.2 (https://gatk.broadinstitute.org/hc/en-us). 

We performed genotype calling on all individuals analyzed in this study using the 

HaplotypeCaller algorithm in GATK v4.2. Genotypes of all individuals were output as gvcf 

format (-ERC GVCF option) and filtered by the VariantFiltration algorithm in GATK v4.2 with  

default parameters. All gvcf files were combined into a single gvcf format file by the 

CombineGVCFs algorithm in GATK v4.2. The combined file was genotyped by the 

GenotypeGVCFs algorithm and filtered by Filtervcf in GATK v4.2 with parameters; --filter-

expression "QD < 2.0" --filter-name "QD2" --filter-expression "QUAL < 30.0" --filter-name 

"QUAL30" --filter-expression "FS > 200.0" --filter-name "FS200" --filter-expression "SOR > 

10.0" -filter-name "SOR10" --filter-expression "ReadPosRankSum < -20.0" --filter-name 

"ReadPosRankSum-20". 

 To maximize the number of SNPs for analyses without missingness, we prepared vcf files for 

each analysis using vcftools (Danecek, et al. 2011). When including all individuals except for 

ancient samples and Leiden b, Leiden c, and Honshu wolf (see the sample combination in Table  

S2), we removed all indels, singleton, and doubleton sites to eliminate PCR and sequencing errors 

that may have occurred in one individual, and extracted bi-allelic sites with coverage equal to or 

more than three in all individuals and with GQ values equal to or more than eight in all individuals. 

Mutations due to DNA damage at both ends of fragments were less than 1% in Japanese wolves 

(Fig. S1), therefore we can infer that mutations by DNA damage in the sequences of Japanese 

wolves were removed by this filtration. For analyses with ancient samples, sites were filtered 

using the same conditions as with modern samples. In addition, we used only transversion sites 
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for the analyses of ancient samples. For the PCA and ADMIXTURE analyses with Liden b and 

Liden c, sites with missingness greater than 3% and minor allele frequency (MAF) < 0.04 were 

excluded. Sites were filtered using the same conditions as with modern samples, and only  

transversion sites were used. 

 

Phylogenetic analysis 

The SNPs in a vcf file including dogs, wolves and Japanese wolves (see Table S2) were converted 

to PHYLIP format. 10 kb sequences from the 5’ end of the PHYLIP format file were extracted 

and a model for Maximum Likelihood method was selected using MEGA ver. X (Kumar, et al. 

2018). A phylogenetic tree was constructed using the Maximum Likelihood (ML) method using 

PhyML ver. 3.2 (Guindon, et al. 2010) with a model selection option “-m GTR” and with 100 

bootstrap replications. ML trees were constructed using all individuals (Fig. S7: 489,524 SNPs), 

selected individuals (Fig. 2A: 1,971,890 SNPs), and outgroup species (Table S2), wolves,  

Japanese wolves, and African dogs (Fig. S13: 2,065,200 SNPs). 

The same vcf file used in the ML method (Fig. S7: 489,524 SNPs) was converted to NEXUS 

format. A phylogenetic tree was constructed by the svdq algorithm (Chifman and Kubatko 2014) 

in PAUP* ver. 4a (Wilgenbusch and Swofford 2003) with 100 bootstrap replications (Fig. S8). 

We used PLINK ver. 1.9 (Purcell, et al. 2007) with an option “—distance 1-ibs” to calculate an 

Identity By State (IBS) distance matrix using 1,992,260 SNPs. A neighbour joining tree was 

constructed from the IBS distance matrix using MEGA ver. X (Kumar, et al. 2018)(Fig. S9). 

 

Principal component analysis and ADMIXTURE  
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We performed a principal component analysis (PCA) using PLINK ver. 1.9 (Purcell, et al. 2007)   

with an option “--indep-pairwise 50 10 0.1” to explore the affinity among gray wolves, Japanese  

wolves, and dogs (Figure 1A). We also performed PCA with type specimens of Japanese wolf  

(Fig. S3), and with ancient canids (Fig. S6).  

ADMIXTURE ver. 1.3 (Alexander and Lange 2011) was run on the dataset of modern samples  

(Fig. 1B and Fig. S2) and modern specimens with type specimens of Japanese wolf (Fig. S4)  

assuming 2 to 8 clusters (K=2-8).  

  

f3, f4 statistics, and f4-ratio  

f3, f4 statistics, and f4-ratio implemented in ADMIXTOOLS ver. 7.0.1 (Patterson, et al. 2012) 

were used to evaluate the shared genetic drift among gray wolves, Japanese wolves, and dogs.  

We used the same SNPs data set used for the phylogenetic analysis for all modern samples 

(489,524 SNPs). For Liden b and Leiden c analyses, vcf files were prepared to maximize the 

number of SNPs (Table S2). 

Outgroup f3 statistics were calculated to explore shared genetic drift between all dogs and each 

of the wolves (Fig. 2B), African dogs and each of the wolves (Fig. S10A), dingo/NGSD dogs and 

each of the wolves (Fig. S10B), Japanese wolf and each of the dogs (Fig. 2C), African dogs and 

each of the other dogs (Fig. S17A), and dingo/NGSD dogs and each of the other dogs (Fig. S17B). 

f3 statistics were calculated to test the genomic mixture of African and dingo/NGSD dogs in all 

dogs (Fig. S20). 

f4 statistics were calculated to explore shared genetic drift between each of the dogs and Leiden  

c (Fig. S5A: 38,254 SNPs), each of the dogs and Leiden b (Fig. S5C: 83,259 SNPs), each of the 
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wolves and Japanese wolves (Fig. 2D), each of the dogs and Japanese wolves (Fig. S11), each of 

the dogs and each of the wolves (Fig. S12), dingo/NGSD and Japanese wolves (Fig. S15), each 

of the dogs and Japanese wolves (Fig. S16), NGSD1 or Basenji and each of the dogs (Fig. S18), 

and dingoes and each of the other dogs, and African dogs and each of the other dogs (Fig. S19) 

 

TreeMix 

To examine the admixture events, we used TreeMix (Pickrell and Pritchard 2012) to build a tree 

with admixture edges. We used major groups of gray wolves and dogs as follows; Gray Wolves 

(North America: n = 2), Gray Wolves (Canada/Arctic: n = 8), Gray Wolves (East Asia: n =5),  

Gray Wolves (West Eurasia: n = 7), Japanese Wolves (Japan: n = 7), Dogs (Central Asian: n = 4), 

Dogs (Europe: n = 11), Dogs (Africa: n = 10), Dogs (sled dogs: n = 4), Dogs (Vietnamese 

Indigenous: n = 5), Ding/NGSD (Oceania: n = 7 ), Japanese Dogs (Japan: n = 11 ), and Dogs 

(Korea: n = 6). The SNPs were pruned based on linkage disequilibrium (LD-pruning) by using 

plink with an option “--indep-pairwise 50 10 0.12. As a result of LD-pruning, 150,502 SNPs were 

used for TreeMix. 

 

Assessing DNA damage patterns 

We used mapDamage ver. 2.2.0 (Ginolhac, et al. 2011) to assess DNA damage patterns in the 

Japanese wolf samples sequenced in this study. Mapped reads from the Japanese wolf samples  

showed slightly increased proportion (equal to or less than 1%) of C to T and G to A substitutions 

at the 5’ and 3’ read ends, respectively (Fig. S1). 
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Calculation of maximum contamination rate 

We used substitutions in mitochondria DNA specific to Japanese wolf to assess the contamination 

rate of the other animal DNA in Japanese wolf DNA. Fifteen fixed substitutions unique to 

Japanese wolf were selected using an alignment of mitochondria DNA sequences including gray 

wolves, Japanese wolves, and dogs used in previous studies (Matsumura, et al. 2014; Matsumura, 

et al. 2020). The lowest coverage at fifteen sites was 48 (highest was 28,324) in the mapping 

result to the mitochondria genome in CanFam3.1. We calculated the average mapping ratio in  

fifteen sites. The ratio of the reads mapped to the fifteen sites without substitutions specific to 

Japanese wolf were assumed as the maximum contamination rate (Table S6), because the 

mitochondria DNA like sequences are found in the nuclear genome. 

 

Detection of genomic regions that are derived from Japanese wolf and may have contributed 

to Japanese dog characteristics 

The genomic regions containing genes that form the characteristics of the Japanese dog are 

expected to be largely differentiated between the Japanese dog and the West Eurasian dog. To 

detect such regions, we examined sequences differentiated between Japanese dogs and West 

Eurasian dogs by using FST sliding window analysis. Using SNPs of Japanese dogs and African  

dogs (Table S2) in a vcf file, FST values for all sites were computed by vcftools v0.1.16 (Danecek, 

et al. 2011). The average FST values in windows of 50 SNPs with a 25 SNPs slide across 

chromosomes were calculated by RStudio version (1.4.1106) (RStudio Team 2020. RStudio: 

Integrated Development for R. RStudio, PBC, Boston, MA). The Japanese wolf-derived genomic 

regions were calculated by fdM values in windows of 50 SNPs with a 25 SNPs slide across 
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chromosomes using Dsuite (Malinsky, et al. 2021). Then, we extracted regions of overlap between 

high FST regions (top 1%) and the Japanese wolf-derived genomic regions (top 1% of fdM values). 

 

 

Availability of data  

The nucleotide sequences were deposited in the DDBJ Sequenced Read Archive. 
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Figure legends 

Figure 1 Relationships between Japanese wolves and other canids 

(A) Principal Components Analysis (PC1 versus PC2) of 100 samples based on 2,065,200 SNPs 

(see Table S2 for sample information). Colored circle, square, and triangle correspond to the 
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names of dogs or wolves in the panel. (B) ADMIXTURE results based on SNP data for K = 4 

(see Table S2 for sample information). 

 

Figure 2 Phylogenetic relationships and genetic affinity between Japanese wolves and other 

canids. (A) Maximum likelihood tree based on 1,971,890 SNPs. Node labels shown in blue 

squares indicate bootstrap values out of 100. (B) Shared genetic drift between dogs and gray  

wolves measured by outgroup f3 statistics. Each of all dogs and Japanese wolves were used as 

populations. Each f3 statistical value is plotted in order of highest to lowest value from the top, 

and the names of the wolves are shown on the right side of the panel. Error bars represent standard 

errors. (C) Shared genetic drift between Japanese wolf and all dogs measured by outgroup f3 

statistics. Each of the African dogs and Dingo/NGSD individuals were used as populations. Each 

f3 statistical value is plotted in order of highest to lowest value from the top, and the names of the 

dogs are shown on the left side of the panel. Error bars represent standard errors. (D) f4 statistics 

testing the relationships between the Japanese wolf and all other wolves compared with NGSD1 

(left panel) and Basenji (right panel). Each Z score is plotted in order of highest to lowest value 

from the top, and the names of wolves are shown on the left and right sides of the left and right  

panels, respectively. Gray lines show the Z score -3 and 3. 

 

Figure 3 Admixture between Japanese wolves and the other canids. 

(A) f4-ratio test to estimate proportion of genome introgression from the Japanese wolf to 

dogs. Each f4-ratio α value is plotted in order of highest to lowest value from the top, and the 

names of the dogs are shown on the right side of the panel. Error bars represent standard errors. 
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Z score above 3 is colored in blue. (B) TreeMix admixture graph built using LD-pruned data 

(150,502 sites) on a dataset consisting of 88 dogs/wolves merged into 13 groups according to their 

phylogenetic relationships. (C) f3 statistics testing whether dogs share more alleles with 

dingo/NGSD (x-axis) or Japanese wolf (y-axis). Dots show the f3 statistics, and horizontal and  

vertical error bars represent standard errors for tests with the African dogs (x-axis) and 

dingo/NGSD (y-axis), respectively. Each of the Japanese wolves and dingo/NGSD individuals 

were used as populations. (D) Sliding window analyses of the FST values (y-axis: upper panel) 

and fdM (y-axis: lower panel) in windows of 50 SNPs using a 25 SNPs slide across chromosome 

(x-axis). Dashed lines show the 99th percentiles. Blue arrow indicates overlapping regions above 

99th percentiles between upper and lower panels. The gene name above the arrow is the gene in 

the overlapped region. 
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Figure 1A 
Principal Components Analysis (PC1 versus PC2) of 100 samples based on 
2,065,200 SNPs (see Table S2 for sample information). Colored circle, square, and 
triangle correspond to the names of dog or wolf in the panel. 
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Figure 1B 
ADMIXTURE results based on SNP array data for K = 4 (see Table S2 for sample information)
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Figure 1 Relationships between Japanese wolves 

and other canids

(A) Principal Components Analysis (PC1 versus 
PC2) of  100 samples  based on 2,065,200 SNPs 
(see  Table  S2  for  sample  information).  Colored 
circle,  square,  and  triangle  correspond  to  the 
names  of  dogs  or  wolves  in  the  panel.  (B) 
ADMIXTURE results based on SNP data for K = 
4 (see Table S2 for sample information).
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Shared genetic drift between dogs 
and gray wolves measured by 
outgroup f3 test. Each of all dogs 
and Japanese wolves were used 
as populations. Each f3 value is 
plotted in order of highest to 
lowest value from the top, and the 
names of the wolves are shown at 
right side of the panel. Error bars 
represent standard errors. 
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Figure 2C 
Shared genetic drift between Japanese wolf and all dogs measured by outgroup f3 test. Each of the African 
dogs and Dingo/NGSD individuals were used as populations. Each f3 value is plotted in order of highest to 
lowest value from the top, and the names of the dogs are shown at left side of the panel. Error bars represent 
standard errors. 
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Figure 2 Phylogenetic relationships and 
genetic affinity between Japanese wolves 
and other canids. 
(A) Maximum likelihood tree based on 
1,971,890 SNPs.  Node labels  shown in 
blue  squares  indicate  bootstrap  values 
out  of  100.  (B)  Shared  genetic  drift 
between dogs and gray wolves measured 
by outgroup f3 statistics. Each of all dogs 
and  Japanese  wolves  were  used  as 
populations.  Each f3  statistical  value  is 
plotted  in  order  of  highest  to  lowest 
value from the top, and the names of the 
wolves are shown on the right side of the 
panel.  Error  bars  represent  standard 
errors. (C) Shared genetic drift between 
Japanese wolf and all dogs measured by 
outgroup  f3  statistics.  Each  of  the 
African  dogs  and  Dingo/NGSD 
individuals  were  used  as  populations. 
Each  f3  statistical  value  is  plotted  in 
order of highest to lowest value from the 
top, and the names of the dogs are shown 
on the left side of the panel. Error bars 
represent standard errors. (D) f4 statistics 
testing  the  relationships  between  the 
Japanese  wolf  and  all  other  wolves 
compared with NGSD1 (left panel) and 
Basenji  (right  panel).  Each  Z  score  is 
plotted  in  order  of  highest  to  lowest 
value  from  the  top,  and  the  names  of 
wolves are shown on the left  and right 
sides  of  the  left  and  right  panels, 
respectively. Gray lines show the Z score 
-3 and 3.
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Figure 3B 
TreeMix admixture graph built using LD-pruned data (150,502 sites) on a dataset consisting of 88 dogs/wolves merged 
into 13 groups according to the phylogenetic relationship.
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Figure 3C 
f3 statistic testing whether dogs share more alleles with dingo/NGSD (x-axis) or 
Japanese wolf (y-axis). Dots show the f3 statistic, and horizontal and vertical 
error bars represent standard errors for the test with the African dogs (x-axis) 
and dingo/NGSD (y-axis), respectively. Each of the Japanese wolves and dingo/
NGSD individuals were used as populations.
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Figure 3A 
f4-ratio test to estimate proportion of genome introgression from Japanese wolf to dogs. Each f4-ratio α value is plotted in 
order of highest to lowest value from the top, and the names of the dogs are shown at right side of the panel. Error bars 
represent standard errors. Z score above 3 is colored in blue.

Z score > 3

X OCA B

0.0

0.4

0.8

0 22500000 45000000 67500000 90000000

-0.8

-0.4

0.0

0.4

0.8

0 22500000 45000000 67500000 90000000

Chromosome 2

Nucleotide position (bp)

f dM
F S

T

Figure 3D 
Sliding window analyses of the Fst values (y-axis: upper panel) and fdM (y-axis: lower panel) in windows of 50 SNPs using a 25 
SNPs slide across chromosome (x-axis). Dashed lines show the 99th percentiles. Blue arrow indicate overlap region between 
upper and lower panels. The gene name above the arrow is the gene in the overlapped region.
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Figure 3 Admixture between Japanese wolves and the 

other canids.

f4-ratio  test  to  estimate  proportion  of  genome 
introgression from the Japanese wolf to dogs. Each 
f4-ratio  α  value  is  plotted  in  order  of  highest  to 
lowest value from the top, and the names of the dogs 
are shown on the right side of the panel. Error bars 
represent standard errors. Z score above 3 is colored 
in blue. (B) TreeMix admixture graph built using LD-
pruned data (150,502 sites) on a dataset consisting of 
88 dogs/wolves merged into 13 groups according to 
their  phylogenetic  relationships.  (C)  f3  statistics 
testing whether dogs share more alleles with dingo/
NGSD (x-axis) or Japanese wolf (y-axis). Dots show 
the f3 statistics, and horizontal and vertical error bars 
represent  standard  errors  for  tests  with  the  African 
dogs (x-axis) and dingo/NGSD (y-axis), respectively. 
Each  of  the  Japanese  wolves  and  dingo/NGSD 
individuals  were  used  as  populations.  (D)  Sliding 
window  analyses  of  the  FST  values  (y-axis:  upper 
panel) and fdM (y-axis: lower panel) in windows of 50 
SNPs using a 25 SNPs slide across chromosome (x-
axis).  Dashed lines show the 99th percentiles.  Blue 
arrow  indicates  overlapping  regions  above  99th 
percentiles  between  upper  and  lower  panels.  The 
gene  name  above  the  arrow  is  the  gene  in  the 
overlapped region.
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Figure S2 
(A) Cross validation (CV) values for ADMIXTURE analysis of SNP data. 
(B) ADMIXTURE results based on SNP data for K = 2-6 (see Table S2 for 
sample information). 
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Figure S2, continued
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Figure S3 
Principal Components Analysis (PC1 versus PC2) of 103 samples based on 103,432 
SNPs (see Table S2 for sample information). Colored circle, square, and triangle 
correspond to the names of dogs or wolves in the panel. 
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Figure S4 
An ADMIXTURE result based on SNP data for K = 4 (see Table S2 
for sample information). Cross validation (CV) values for 
ADMIXTURE analysis of SNP data is shown in the panel. 
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Figure S5 
(A) f4-statistics testing the relationships 
between the Japanese wolf (Jw284), 
Leiden c, and all other dogs. Each Z 
score is plotted in order of highest to 
lowest value from the top, and the 
names of dogs are shown on the left 
side of each panel. Gray lines show the 
Z score -3 and 3. Leiden c shows 
genetic affinity with all other dogs (Z 
score > 3). (B) f4-ratio test to estimate 
proportion of genome introgression 
from a Japanese dog (Shiba 17) to 
Leiden C. (C) f4-statistics testing the 
relationships between the Japanese 
wolf (Jw284), Leiden b, and all other 
dogs.  The genetic affinities of Leiden b 
with all other dogs are rejected (-3 < Z 
score < 3). 
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Figure S6 
Principal Components Analysis (PC1 versus PC2) of 109 samples based on 100,588 SNPs (transversion 
sites, see Table S2 for sample information). Colored circle, square, and triangle correspond to the names 
of dogs or wolves in the panel. 
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Figure S7 
Maximum likelihood tree 
based on 489,524 SNPs. 
Node labels indicate 
bootstrap replicates. 
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Figure S8 
Phylogenetic tree constructed 
by SVDquartets based on 
489,524 SNPs. Node labels 
indicate bootstrap replicates. 
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Figure S11 
f4 statistics testing the 
genetic affinity of the 
Japanese wolf with all 
other dogs. All Japanese 
wolves were used as a 
population. Z scores for 
each combination are 
plotted. We computed f4 
statistics where W in the 
schematic representation 
is shown and  fixed in 
each panel and X 
represented any possible 
other dogs. Each Z score 
is listed in order of 
highest to lowest value 
from the top. Dotted line 
shows the Z score 3. 
Large size graphs of 
highest (NGS_dog1) and 
lowest (Nigerian Dog2) 
affinity to the Japanese 
wolf are show in the first 
two panels. The names of 
the dogs are shown on 
the left or right sides of 
the panels. Small size 
panels of these two are 
surrounded by gray 
squares.
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Figure S11 continued
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Figure S11 continued
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Figure S12 
f4 statistics testing the genetic affinity of gray wolves shown in each panels with all dogs. Z scores for each combination are plotted 
in order of highest to lowest value from the top. We computed f4 statistics where Y in the schematic representation is shown and  
fixed in each panel and W represented any possible other dogs. Dotted line shows the Z score 3. 
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Figure S13 
Maximum likelihood tree 
based on 2,065,200 SNPs. 
Node labels indicate 
bootstrap replicates. 
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Figure S14 
f4-ratio test to estimate proportion of genome introgression from dogs to the Japanese wolf. Each f4-ratio α 
value is plotted in order of lowest to highest value from the top, and the names of the dogs are shown on the 
right side of the panel. Error bars represent standard errors. 
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Figure S15 
(A) f4 statistics testing the difference of the affinity to dingo/NGSD between the Japanese wolf individuals. f4 statistics (upper panels) and Z score (lower 
panels) value is plotted in order of highest to lowest value from the top. Z score above 3 is colored in blue. When the Japanese wolf individual showing a 
significant affinity to dingo/NGSD, the names of the Japanese wolf individual at the position X in the schematic representation are shown on the left side 
of Z score panel.
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Figure S16 
(A) f4 statistics testing the relationships between (A) Jw258, (B) Jw269, and (C) Jw271 and all dog individuals. Each Z score is plotted in order of highest 
to lowest value from the top, and the names of dogs are shown on theft or  right sides of each panel (see table S2). Z score above 3 is colored in blue.
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Figure S17 
Shared genetic drift between (A) dingo/NGSD and (B) African dogs and all dogs measured by outgroup f3 statistics. Each of the 
African dogs and dingo/NGSD individuals were used as populations. Each f3 value is plotted in order of highest to lowest value from 
the top, and the names of the dogs are shown on the left side of the panel. Error bars represent standard errors. 
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Figure S18 
f4 statistics testing the affinity of NGSD1 with African dogs (upper panels) and that of Basenji with dingo/NGSD dogs (lower panels). All Z scores 
were under 3.
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Figure S19 
f4 statistics testing whether dogs share 
more alleles with African dogs (x-axis) or 
dingo/NGSD (y-axis) compared with 
dingo/NGSD and African dogs, 
respectively. Dots show  
the f4 statistics, and horizontal and 
vertical error bars represent standard 
errors for the test with the African dogs (x-
axis) and dingo/NGSD (y-axis), 
respectively. Each of the African dogs and 
dingo/NGSD individuals were used as 
populations.
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Figure S20 
f3 statistics testing the genomic mixture of 
African and Dingo/NGSD dogs in all dogs. 
Z score under -3 is colored in blue. Each 
of the African dogs and Dingo/NGSD 
individuals were used as populations. 
Each f3 value is plotted in order of highest 
to lowest value from the top, and the 
names of the dogs are shown on the left 
side of the panel. Error bars represent 
standard errors. 
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Figure S21 
Sliding window analyses of the FST values (y-axis: upper panel) and fdM (y-axis: lower panel) in windows of 50 SNPs using a 25 SNPs slide 
across scaffolds (x-axis). Dashed lines show the 99th percentiles. Blue arrow indicate overlapping regions above 99th percentiles between 
upper and lower panels.
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Figure S21 continued
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Wolf/Dog ID Period Isolation site  (Prefecture) Mapped reads count Total mapped reads

Japanese Wolves Leiden_b (Jentink 1887 b 
RMNH.MAM.39183)

Edo Leiden 149 M 22.35 Gb

Japanese Wolves Leiden_c (Jentink 1887 c 
RMNH.MAM.39181)

Edo Leiden 188 M 28.2 Gb

Japanese Wolves Jw255 Edo-Meiji Yamanashi Pref. 1881 M 282.2 Gb

Japanese Wolves Jw271 Edo-Meiji Iwate Pref. 820 M 123 Gb

Japanese Wolves Jw284 (ZMB_Mam_048817) Meiji Berlin 1237 M 185.6 Gb

Japanese Wolves Jw275 Edo-Meiji Shimane Pref. 134 M 46.5 Gb

Japanese Wolves Jw229 Edo Kochi Pref. 661 M 99.2 Gb

Japanese Wolves Jw258 Edo-Meiji Nagano Pref. 262 M 110 Gb

Japanese Wolves Jw269 Edo-Meiji Nagano Pref. 193 M 61.8 Gb

Dog (Akita) Akita26 Modern ー 847 M 127.1 Gb

Dog (Akita) Akita27 Modern ー 808 M 121.2 Gb

Dog (Akita) Akita3 Modern ー 772 M 115.8 Gb

Dog (Kishu) Kishu23 Modern ー 832 M 124.8 Gb

Dog (Kishu) Kishu24 Modern ー 634 M 95.1 Gb

Dog (Shiba) Shiba17 Modern ー 632 M 94.8 Gb

Dog (Shiba) Shiba21 Modern ー 517 M 77.6 Gb

Dog (Shiba) Shiba60 Modern ー 668 M 100.2 Gb

Dog (Shiba) ShibaKuro Modern ー 472 M 70.8 Gb

Dog (Shiba) ShibaShiro Modern ー 697 M 104.6 Gb

Dog (Shiba) Jm Modern ー 391 M 58 Gb

Table S1 Determined sequences in this study
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Accession# Sub-species Common name IDs in analyses PCA & 
ADMIXTURE 

(modern)

PCA with 
Pleistocene 

canid

PCA & 
ADMIXTURE 
with Leiden b, 
c and Honshu 
Wolf

Phylogenetic 
analysis

f4 and f4-
ratio with 
Leiden c

f4 with 
Leiden b

f3, f4, and f4-
ratio

Fst sliding 
window

fdM sliding 
window

TreeMix

Without 
missing data

Without 
missing data

With missing 
data

Without 
missing data

Without 
missing data

Without 
missing data

Without 
missing data

Without 
missing data

Without 
missing data

Without 
missing data

Depositing Japanese Wolf Japanese Wolf Jw255 O O O O O O O

Depositing Japanese Wolf Japanese Wolf Jw271 O O O O O O O

Depositing Japanese Wolf Japanese Wolf Jw284 O O O O O O O O O

Depositing Japanese Wolf Japanese Wolf Jw275 O O O O O O O

Depositing Japanese Wolf Japanese Wolf Jw229 O O O O O O O

Depositing Japanese Wolf Japanese Wolf Jw258 O O O O O O O

Depositing Japanese Wolf Japanese Wolf Jw269 O O O O O O O

Depositing Japanese Wolf Japanese Wolf Leiden_b O O

Depositing - Jama-inu Leiden_c O O

ERS5374233 Japanese Wolf Honshu Wolf  O

Depositing Dog Kishu Ks23 O O O O O O O O O O

Depositing Dog Kishu Ks24 O O O O O O O O O O

Depositing Dog Akita Ak26 O O O O O O O O O O

Depositing Dog Akita Ak27 O O O O O O O O O O

Depositing Dog Akita Ak3 O O O O O O O O O O

Depositing Dog Shiba Sb17 O O O O O O O O O O

Depositing Dog Shiba Sb21 O O O O O O O O O O

Depositing Dog Shiba Sb60 O O O O O O O O O O

Depositing Dog Shiba SbK O O O O O O O O O O

Depositing Dog Shiba Sbs O O O O O O O O O O

Depositing Dog Shiba Jm O O O O O O O

SRR10596312 Dog Dingo dingo1 O O O O O O O O

SRR10596315 Dog Dingo dingo2 O O O O O O O O

SRR10596318 Dog Dingo dingo3 O O O O O O O O

SRR10596321_1 Dog Dingo dingo4 O O O O O O O O

SRR10597858 Dog New Guinea Singing Dog NGS_dog1 O O O O O O O O

SRR10597859 Dog New Guinea Singing Dog NGS_dog2 O O O O O O O O

SRR2827578_1 Dog Chinese Indigenous Dog C_I_Dog1 O O O O O O O

SRR2827583_1 Dog Chinese Indigenous Dog C_I_Dog2 O O O O O O O

SRR2827587_1 Dog Chinese Indigenous Dog C_I_Dog3 O O O O O O O

SRR2827588_1 Dog Chinese Indigenous Dog C_I_Dog4 O O O O O O O

SRR2827589_1 Dog Chinese Indigenous Dog C_I_Dog5 O O O O O O O

SRR2827595_1 Dog Vietnamese Indigenous Dog V_I_Dog1 O O O O O O O O

SRR2827596_1 Dog Vietnamese Indigenous Dog V_I_Dog2 O O O O O O O O

SRR2827597_1 Dog Vietnamese Indigenous Dog V_I_Dog3 O O O O O O O O

SRR2827598_1 Dog Vietnamese Indigenous Dog V_I_Dog4 O O O O O O O O

SRR2827599_1 Dog Vietnamese Indigenous Dog V_I_Dog5 O O O O O O O O

SRR5177184_1 Dog DongGyeongi K_Dog1 O O O O O O O O

SRR5177186_1 Dog DongGyeongi K_Dog2 O O O O O O O O

SRR5177187_1 Dog DongGyeongi K_Dog3 O O O O O O O O

SRR5177188_1 Dog DongGyeongi K_Dog4 O O O O O O O O

SRR5177189_1 Dog DongGyeongi K_Dog5 O O O O O O O O

SRR5177190_1 Dog DongGyeongi K_Dog6 O O O O O O O O

SRR11193488_1 Dog Greenland sled dog G_sled_dog1 O O O O O O O O

SRR11193493_1 Dog Greenland sled dog G_sled_dog2 O O O O O O O O

SRR11193499_1 Dog Greenland sled dog G_sled_dog3 O O O O O O O O

SRR2827574_1 Dog Siberian huskey Siberian_huskey O O O O O O O O

SRR2827565_1 Dog East siberian laika E_s_laika O O O O O O O O

SRR2827573_1 Dog Samoyed Samoyed O O O O O O O O

SRR5381785_1 Dog Central Asian Shepherd CA_Shepherd O O O O O O O O

SRR1594157_1 Dog Chinese Crested dog C_Crested_dog O O O O O O O

SRR2827564_1 Dog Chihuahua Chihuahua O O O O O O O

SRR2827572_1 Dog Peruvian naked dog P_naked_dog O O O O O O O

SRR3384031_1 Dog Portugal Village Dog P_V_Dog O O O O O O O O

SRR3466766_1 Dog BorderCollie BorderCollie O O O O O O O

SRR6297982_1 Dog Doberman Pinscher Doberman Pinscher O O O O O O O O

SRR6376929_1 Dog American Staffordshire Terriers AS_Terriers O O O O O O O O

SRR7107687 Dog Borneo Village Dog Borneo2 O O O O O O O O

SRR10208218_1 Dog Boston Terrier Boston Terrier O O O O O O O O

SRR10250959_1 Dog Scottish Deerhounds Scottish Deerhounds O O O O O O O O

SRR9117685_1 Dog German shepherd German shepherd O O O O O O O O

SRR11787131_1 Dog Labrador retriever Labrador retriever O O O O O O O O

SRR9962250_1 Dog Labrador Retriever Labrador_Retrievers2 O O O O O O O O

SRR7107697 Dog Newginia Village Dog Newginia_V O O O O O O O O

SRR7764562_1 Dog Yorkshire Terrier Yorkshire Terrier O O O O O O O O

SRR8163589_1 Dog Standard Poodle Standard_Poodles1 O O O O O O O O

SRR8163591_1 Dog Standard Poodle Standard_Poodles2 O O O O O O O O

SRR2827591_1 Dog Nigerian Indigenous Dog N_I_Dog1 O O O O O O O O O O

SRR2827592_1 Dog Nigerian Indigenous Dog N_I_Dog2 O O O O O O O O O O

SRR2827593_1 Dog Nigerian Indigenous Dog N_I_Dog3 O O O O O O O O O O

SRR2827594_1 Dog Nigerian Indigenous Dog N_I_Dog4 O O O O O O O O O O

SRR2149861_1 Dog Basenji Basenji O O O O O O O O O O

SRR3603090_1 Dog African dogs AF_Dog1 O O O O O O O O O O

SRR3603171_1 Dog African dogs AF_Dog2 O O O O O O O O O O

SRR3603205_1 Dog African dogs AF_Dog3 O O O O O O O O O O

SRR3603206_1 Dog African dogs AF_Dog4 O O O O O O O O O O

SRR3603236_1 Dog African dogs AF_Dog5 O O O O O O O O O O

SRR2017901_1 Gray Wolf Himalayan Wolf Wolf_chanco1 O O O O O O

SRR2017902_1 Gray Wolf Himalayan Wolf Wolf_chanco2 O O O O O O

SRR2017904_1 Gray Wolf Himalayan Wolf Wolf_chanco3 O O O O O O

SRR1518523_1 Gray Wolf Gray Wolf (Portugal) Wolf Portugal O O O O O O

SRR2149870_1 Gray Wolf Israeli Wolf Wolf_Israel O O O O O

SRR2149873_1 Gray Wolf Croatian Wolf Wolf_Croatian O O O O O O

SRR2149879_1 Gray Wolf Chinese Wolf Wolf_Chinese1 O O O O O O

SRR2149880_1 Gray Wolf Chinese Wolf Wolf_Chinese2 O O O O O O

SRR3384029_1 Gray Wolf Iberian Wolf Wolf_Iberia1 O O O O O O

SRR3384030_1 Gray Wolf Iberian Wolf Wolf_Iberia2 O O O O O O

SRR3574809 Gray Wolf Indian Wolf Wolf_India O O O O O O

SRR8049193_1 Gray Wolf Grey Wolf (Saudi Arabia) Wolf_Saudi_Arabia O O O O O O

SRR8049194_1 Gray Wolf Grey Wolf (Syria) Wolf_Syria O O O O O O

SRR8049195_1 Gray Wolf Grey Wolf (Daneborg) Wolf_Daneborg O O O O O O

SRR8066603_1 Gray Wolf Grey Wolf (StLawrenceIsland) Wolf_StLawrenceIsland O O O O O O

SRR8066604_1 Gray Wolf Grey Wolf (PacificCoast) Wolf_PacificCoast O O O O O O

SRR8066607_1 Gray Wolf Grey Wolf (BaffinNorth) Wolf_BaffinNorth O O O O O O

SRR8066615_1 Gray Wolf Grey Wolf (BanksIsland) Wolf_BanksIsland O O O O O O

SRR8380700_1 Gray Wolf Grey Wolf (Michigan) Wolf_Michigan O O O O O O

SRR8380701_1 Gray Wolf Grey Wolf (Minnesota) Wolf_Minnesota O O O O O O

SRR8380706_1 Gray Wolf Grey Wolf (Canada) Wolf_Canad1 O O O O O O

SRR8380708_1 Gray Wolf Grey Wolf (Canada) Wolf_Canad2 O O O O O O

SRR9095639_1 Gray Wolf Grey Wolf (Yellowstone) Wolf_Yellowstone O O O O O O

SRR3417116 Ancient dog Ancient dog Cherry Tree Cave Dog O

SRR3417117 Ancient dog Ancient dog Herxheim Dog O

SRR11193507 Ancient dog Ancient dog Zhokhov Dog O

ERR1341514 Ancient dog Ancient dog Newgrange Dog O

ERR4805960 Pleistocene canid Pleistocene canid Bunge-Toll-1885 O

ERR4805984 Pleistocene canid Pleistocene canid Tirekhtyakh O

ERR4805988 Pleistocene canid Pleistocene canid Tumat 2 O

ERR4805972 Pleistocene canid Pleistocene canid Ulakhan Sular O

SRR11193495 Pleistocene canid Pleistocene canid Yana RHS O

SRR7107770 out group Coyote Coyote O O O O O O O O O

SRR8049189 out group Dhole Dhole O

SRR8049190 out group Ethiopian wolf Ethi_W O

SRR8049192 out group Golden Jackal (Syria) G_Jackal_Syria O O O O

PRJCA000335 out group African Golden Wolf AGW O O O O

SRR1066702 out group Andean fox ad_fox O

Table S2 Sample information
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*European Dogs

NGSD1

Japanese Dogs

African dogs

Coyote

f4 ratio

Japanese Dogs f4-ratio (alpha) Standard error Z score

Akita 0.363 0.019328 18.768

Ks 0.366 0.020174 18.133

Shiba 0.445 0.017633 25.237

Table S3 The degree of mixing of the European dog genome into the Japanese dog genome

*European Dogs: Yorkshire_Terrier, P_V_Dog, Standard_Poodles1, Standard_Poodles2, Scottish_Deerhounds, BorderCollie, Boston_Terrier, 
Doberman_Pinscher, AS_Terriers, German_shepherd. 
See Table S2 for the name of the dogs.
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Ancient Dogs Years ago f4 stderr Zscore f4-ratio(alpha) stderr Zscore

Newgrange 4800 0.003171 0.000614 5.163 0.015764 0.00305 5.168

Cherry Tree Cave 5000 0.001028 0.000568 1.81 0.005231 0.002874 1.82

Herxheim 7000 0.003199 0.000606 5.278 0.016101 0.003041 5.295

Zhokhov 9500 0.004214 0.000715 5.897 0.021478 0.003612 5.947
Jw229

Jw284

Ancient Dogs
African dogs
Coyote

f4 ratiof4

Jw284

Ancient Dogs
African dogs

Coyote

Table S4 Gene flow between Japanese Wolf and ancient dogs
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Chromosome 5’ end 3’ end Genes in the region

2 6257975 6307631 *Ankyrin repeat domain 26 (ANKRD26)

3 36520617 36555078 Upstream of MKRN3, Downstream of CHRNA7

3 77467500 77472016 -

15 17047771 17058407 Upstream of FAM183A

19 13299716 13485166 **Upstream of INTU

30 8023335 8222693 INO80, ***DLL4, VPS18

Table S5  Genomic regions differentiated from Western Eurasian dogs and derived from Japanese Wolf

*Mice mutant in one of these genes, ANKRD26, become hyperphagia and also have enhanced adipocyte differentiation (Bera, et al. 2008; Fei, et al. 
2011). The traits resulting from the mutation of this gene may have been advantageous to the diet in the Japanese archipelago during Japanese dog 
evolution.
**INTU is part of a protein network called CPLANE, and mutations in INTU cause a number of skeletal morphological abnormalities, one of which is a 
flat nasal bridge (Toriyama, et al. 2016). Japanese wolves and Japanese dogs of the Jomon period (still found in a small number of Japanese dogs today) 
are known to have shallow stops, and perhaps mutations in this gene are related to the formation of shallow stops.
***Notch signaling plays an important role in the development and differentiation of many cell types in diverse organisms, and DLL4, the ligand for the 
Notch receptor, is known to have many roles during development (Benedito and Duarte 2005). Although this gene is multifunctional and therefore traits 
could not be identified, it may be involved in shaping the characteristics of Japanese dogs through the Notch signaling pathway.
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Position in 
CanFam3.1

2730 3346 4400 4766 5828 6461 7732 8473 9514 10464 10701 11461 12062 15225 15490 Mean (%) Estimated maximum 
contamination (%)

Jw258 97.0 97.0 94.9 96.3 99.8 100.0 100.0 99.8 100.0 100.0 100.0 100.0 96.4 99.8 100.0 98.7 1.3

Jw269 70.3 80.3 75.0 76.7 86.7 100.0 97.9 83.8 84.2 89.3 91.0 84.9 81.8 86.0 75.0 84.2 15.8

Jw229 92.5 93.9 94.8 94.4 97.2 99.7 97.0 96.3 95.9 97.8 97.6 97.0 90.9 95.2 95.8 95.7 4.3

Jw255 95.3 95.9 95.3 95.4 97.9 99.9 98.8 98.3 97.8 98.1 98.1 98.5 96.8 98.0 97.9 97.5 2.5

Jw284 99.6 99.6 99.7 99.7 99.9 99.8 99.8 99.8 99.7 99.8 99.9 99.9 99.7 99.8 99.7 99.8 0.2

Jw271 98.5 98.7 98.5 98.6 99.2 99.9 99.4 99.2 99.1 99.0 99.2 99.1 98.9 99.5 98.3 99.0 1.0

Jw275 98.6 98.4 98.1 98.0 99.3 100.0 99.5 99.5 99.0 99.0 98.6 98.6 97.7 99.0 99.0 98.8 1.2

Leiden_c 100.0 98.8 95.6 100.0 99.2 100.0 99.3 100.0 99.2 99.0 100.0 100.0 98.9 100.0 100.0 99.3 0.7

Leiden_b 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 99.9 95.7 100.0 94.5 98.8 100.0 99.3 0.7

Table S6  Mapping rate (%) of reads with Japanese Wolf specific substitutions in the mitochondria DNA
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