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Abstract 
The Klebsiella pneumoniae species complex (KpSC) is a set of seven Klebsiella taxa which 
are found in a variety of niches, and are an important cause of opportunistic healthcare-
associated infections in humans. Due to increasing rates of multi-drug resistance within the 
KpSC, there is a growing interest in better understanding the biology and metabolism of 
these organisms to inform novel control strategies. We collated 37 sequenced KpSC isolates 
isolated from a variety of niches, representing all seven taxa. We generated strain-specific 
genome scale metabolic models (GEMs) for all 37 isolates and simulated growth phenotypes 
on 511 distinct carbon, nitrogen, sulphur and phosphorus substrates. Models were curated 
and their accuracy assessed using matched phenotypic growth data for 94 substrates 
(median accuracy of 96%). We explored species-specific growth capabilities and examined 
the impact of all possible single gene deletions on growth in 145 core carbon substrates. 
These analyses revealed multiple strain-specific differences, within and between species 
and highlight the importance of selecting a diverse range of strains when exploring KpSC 
metabolism. This diverse set of highly accurate GEMs could be used to inform novel drug 
design, enhance genomic analyses, and identify novel virulence and resistance 
determinants. We envisage that these 37 curated strain-specific GEMs, covering all seven 
taxa of the KpSC, provide a valuable resource to the Klebsiella research community.  
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Introduction 
Klebsiella pneumoniae is a ubiquitous bacterium that inhabits a variety of host- and non-host 
associated environments and is a major cause of human disease. It is an opportunistic 
pathogen and a significant contributor to the spread of antimicrobial resistance globally 
(Pendleton et al. 2014; Navon-Venezia et al. 2017; Thorpe et al. 2021). Multi-drug resistant 
K. pneumoniae with resistance to the carbapenems (the ‘drugs of last resort’) cause 
infections that are extremely difficult to treat and are considered an urgent public health 
threat (Pendleton et al. 2014). Understanding the biology and ecological behaviour of these 
organisms is essential to inform novel control strategies.  
 
The past 6-7 years have seen an explosion of K. pneumoniae comparative genomics 
studies, revealing numerous insights into its epidemiology, evolution, pathogenicity and 
drug-resistance, and informing a genomic framework that facilitates surveillance and 
knowledge generation (recently summarised in (Wyres et al. 2020)). It is now clear that 
isolates identified as K. pneumoniae through standard microbiological identification 
techniques actually comprise seven distinct closely related taxa known as the K. 
pneumoniae species complex (KpSC): K. pneumoniae sensu stricto, Klebsiella variicola 
subsp. variicola, K. variicola subsp. tropica, Klebsiella quasipneumoniae subsp. 
quasipneumoniae, K. quasipneumoniae subsp. similipneumoniae, Klebsiella quasivariicola 
and Klebsiella africana  (Gorrie et al. 2017; Long et al. 2017; Rodrigues et al. 2019; Wyres et 
al. 2020). K. pneumoniae sensu stricto accounts for the majority of human infections and is 
therefore the most well-studied of these organisms.  
 
Each individual K. pneumoniae genome encodes between 5000 and 5500 genes; ~2000 are 
conserved among all members of the species (core genes) and the remainder vary between 
individuals (accessory genes) (Holt et al. 2015). The total sum of all core and accessory 
genes is estimated to exceed 100,000 protein coding sequences that can be assigned to 
various functional categories, many of which are not well-characterised. For example, the 
diversity, mechanism and phenotypic impact of antimicrobial resistance genes, accounting 
for 1% of the total gene pool, is well understood. In contrast the functional implications of 
metabolic genes, which account for the largest single fraction of the gene-pool (37%) (Holt et 
al. 2015), are relatively poorly understood. The sheer number of genes in this category 
suggests that substantial metabolic variability exists within the KpSC, a hypothesis 
supported by two studies that have generated growth phenotypes for multiple isolates 
(Brisse et al. 2009; Blin et al. 2017). However, these data are limited by the number and 
variety of substrates tested and it is difficult to consolidate the genotype data in the context 
of these phenotypes. Moreover, these phenotyping methods are slow, expensive, and non-
scalable across large numbers of isolates.  
 
Genome-scale metabolic modelling represents a powerful approach to bridge the gap 
between genotypes and phenotypes. Drawing on the accumulated biochemical knowledge-
base, it is possible to infer the metabolic network of an individual organism from its genome 
sequence and subsequently apply in silico modelling approaches to predict its metabolic 
capabilities (growth phenotypes) (O’Brien et al. 2015). Such models allow exploration of 
metabolic diversity (Monk et al. 2013; Seif et al. 2018; Bosi et al. 2016), prediction the impact 
of gene deletions or the response to drug exposure (Tong et al. 2020), identification of novel 
virulence factors or drug targets (Ramos et al. 2018; Bartell et al. 2017; Zhu et al. 2018), and 
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optimisation for the production of industrially-relevant compounds. (Li et al. 2016; Jung et al. 
2015). 
 
To-date, two curated and validated single strain genome-scale metabolic models (GEMs) 
have been reported for K. pneumoniae. The first was generated for the MGH78578 
laboratory strain and published in 2011 (model ID iYL1228) (Liao et al. 2011). It comprised 
1228 genes, 1188 enzymes and 1970 reactions, and was validated by comparison of in 
silico growth predictions to true phenotypes generated for 171 substrates using a Biolog 
phenotyping array. The estimated accuracy of iYL1228 was 84% when comparing to Biolog 
growth phenotypes. A second K. pneumoniae GEM, for laboratory strain KPPR1, was 
published in 2017 (model ID iKp1289) (Henry et al. 2017). This model contained 1289 genes 
and 2145 reactions. The KPPR1 model was found to be 79% accurate when compared to 
Biolog phenotype data in terms of predicting substrate-growth phenotypes. More recently, 
Norsigian and colleagues (Norsigian et al. 2019a) reported non-validated draft GEMs for 22 
antimicrobial-resistant K. pneumoniae clinical isolates built from the iYL1228 model via a 
subtractive approach. Subsequent in silico growth predictions indicated variability between 
isolates in terms of carbon, nitrogen and sulfur but not phosphorus utilisation. There was 
evidence that nitrogen substrate usage could be used to classify strains associated with 
distinct drug-resistance phenotypes. However, none of these models were experimentally 
validated.  
 
Here, we present an updated version of the MGH78578 GEM in addition to novel GEMs for 
36 KpSC strains, including representatives of all seven taxa in the species complex. We 
curate and validate the models using a combination of Biolog growth assays and additional 
targeted growth phenotype data, resulting in a median accuracy of 96%. We define the core 
reactomes of K. pneumoniae and the broader species complex, and identify species-specific 
metabolic capabilities. We then explore these models to identify strain-specific gene 
essentiality and metabolic pathway redundancy across growth on 145 core carbon 
substrates.  
 
Results 
Completed KpSC Genomes 
We collated 37 previously described isolates from the KpSC complex, including at least one 
representative per taxon (Blin et al. 2017; Rodrigues et al. 2019). The collection spanned a 
variety of sequence types (STs) within species with more than one strain, and represented a 
wide range of isolation sources (including human host-associated, water and the 
environment). The strains were geographically and temporally diverse, sampled from five 
continents and with isolation dates spanning 1935 - 2010 (Supplemental Table 1).  
 
Eight strains had previously-published complete genome sequences available, and we 
generated complete genome sequences for the remaining 29 strains using a combination of 
short- and long-read sequencing (see Methods). The median genome size was 5.5 Mbp 
(range 5.1 - 6.0 Mbp) with a median of 5145 genes (range 4798 - 5704 genes). The majority 
of strains carried at least one plasmid (n=29, 78%), with seven strains carrying five or more 
plasmids.  
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Model generation, curation and validation 
Using these completed genomes we created strain-specific GEMs, initially using the curated 
MGH78578 GEM (iYL1288) as a reference to identify conserved genes and reactions, 
followed by manual curation (see Methods). The latter was enabled by the availability of 
matched phenotype data (Blin et al. 2017) indicating the ability of each strain to grow in 
minimal media supplemented with each of 94 distinct sole carbon substrates for which we 
were able to predict growth in silico using the GEMs (Supplemental Table 2). Our 
phenotypic data included 12 carbon substrates for which growth was demonstrated for at 
least one strain and for which the corresponding metabolite transport and/or processing 
reactions were not present in the original iYL1288 model. Literature searches were 
undertaken to identify the putatively responsible candidate genes and reactions for GEM 
inclusion. For example, all strains were able to utilise palatinose as a carbon substrate; the 
reaction required to catabolise this compound was added based on the presence of core 
genes with ≥99% nucleotide homology to aglAB (that encode AglAB), which has been shown 
to catabolise palatinose in K. pneumoniae (Thompson et al. 2001) (Supplemental Table 3). 
When the model-based predictions and our phenotypic growth data disagreed, we attempted 
to correct the models by identifying alternative pathways from the literature or homologous 
genes in other Klebsiella or Enterobacteriaceae species with sufficient evidence to allow 
inclusion in our models (see Methods, Supplemental Table 3). Overall, we added 49 genes 
and 56 reactions across all models. 
 
The final curated, validated models were highly accurate for the prediction of growth 
phenotypes (median accuracy 95.7%, range 88.3 - 96.8%, Supplemental Table 1). The 
majority (87%) of the discrepancies were false positives, where the model predicted growth 
on a carbon substrate but we did not observe any phenotypic growth. False positives usually 
occur due to gene regulation, where strains carry the genes encoding the enzymes required 
to import and metabolise a substrate, however these genes are not expressed during the 
phenotypic growth experiments. False positives can also be related to technical issues with 
measuring metabolic phenotypes, e.g. the LOD, sensitivity of growth detection, and use of 
correct standards for measurements (Ibarra et al. 2002). Every model had at least one false 
positive (median 4, range 1 – 11, Supplemental Table 1) across 31 different carbon 
substrates. The most common false positive calls were predicted growth in 2-oxoglutarate 
(n=35 strains), ethanolamine (n=29), L-ascorbate (n=28) and 3-hydroxycinnamic acid 
(n=20); false positive calls for the remaining 27 carbon substrates were associated with ≤6 
strains each (Supplemental Table 4). 
 
Five carbon substrates had at least one strain with a false negative call, where the model did 
not predict growth but we observed a growth phenotype: L-tartaric acid (n=12 strains), L-
lyxose (n=5), L-sorbose (n=2), propionic acid (n=2) and L-galactonic acid-gamma-lactone 
(n=1) (Supplemental Table 4). In such cases it is assumed that the models are missing 
information required to optimise for growth on these substrates (Orth et al. 2012). Despite 
thorough literature and database searches, we were unable to identify alternate biological 
pathways that could plausibly fill these gaps in the models. This was particularly notable 
among the five K. quasipneumoniae subsp. quasipneumoniae strains, which all had false 
negative predictions for L-lyxose utilisation. These genomes were each missing sgaU 
(KPN_04590), which was present in all other KpSC genomes and encodes an enzyme that 
converts L-ribulose-5-phosphate to L-xylulose-5-phosphate. We were unable to detect any 
other proteins belonging to this enzyme class or carrying similar domains. As the phenotypic 
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results indicated that all K. quasipneumoniae subsp. quasipneumoniae can utilise L-lyxose, 
we hypothesise that they must contain unknown functional orthologue/s to sgaU, which can 
perform isomerase activity on L-ribulose 5-phosphate. 
 
Novel GEMs reveal species- and strain-specific metabolic diversity 
Our strain collection provided us with a novel opportunity to compare predicted metabolic 
functionality between all seven taxa within the KpSC. Overall there were median 1219 genes 
and 2294 reactions in each curated strain-specific GEM (range 1190 - 1243 and 2283 - 2305 
respectively), representing median 23.6% of all coding sequences in each genome 
(Supplemental Table 1). Each species had ~1200 core model genes and ~2200 core 
reactions (Table 1), with a slight decreasing trend with increasing sample size. Conversely, 
the total number of distinct reactions detected among the best represented species, K. 
pneumoniae (2312, n=20 genomes) was higher than those detected among each of the 
species represented by fewer genomes (2299 in K. quasipneumoniae subsp. 
quasipneumoniae; 2307 in both K. quasipneumoniae subsp. similipneumoniae and K. 
variicola subsp. variicola). In terms of the reactions themselves, the vast majority were core 
across all species (Fig. 1), however there was notable variability in reactions associated with 
carbohydrate metabolism, for which 16% (n=37/234) were not conserved across all models 
(Fig. 1). Among these variable reactions we identified three involved in the N-
acetylneuraminate pathway (ACNAMt2pp, ACNML and AMANK) which were species-
specific and were found to be core in K. quasipneumoniae subsp. similipneumoniae while 
absent from all other genomes. 
 
Table 1: Summary of genomes and the core elements of the GEMs. 

Species # 
genomes 

# STs # model 
genes (core) 

# reactions 
(core) 

# 
phenotypes 
(core) 

K. pneumoniae 20 18 1202 - 1243 
(1183) 

2288 - 2305 
(2276) 

277 - 282 
(277) 

K. quasipneumoniae 
subsp. 
quasipneumoniae 

5 5 1197 - 1209 
(1190) 

2283 - 2289 
(2283) 

270 - 274 
(268) 

K. quasipneumoniae 
subsp. 
similipneumoniae 

5 5 1200 - 1220 
(1194) 

2283 - 2299 
(2287) 

273 - 280 
(273) 

K. variicola subsp. 
variicola 

4 4 1212 - 1227 
(1214) 

2294 - 2301 
(2299) 

279 - 282 
(279) 

K. africana 1 1 1216 2289 279 

K. quasivariicola 1 1 1228 2299 279 

K. variicola subsp. 
tropica 

1 1 1237 2310 281 
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Figure 1: Number of model reactions by category. Bars are coloured to indicate core 
reactions (black, conserved in all strains) and accessory reactions (grey, variably present).   
 
We simulated growth on 511 substrates as the sole sources of either carbon (n=272), 
nitrogen (n=155), phosphorus (n=59) or sulfur (n=25) (see Methods, Supplemental Table 
2). A total of 224 (44%) were unable to support growth for any strain (carbon=107, 
nitrogen=87, phosphorus=15, sulfur=15). Overall the number of core growth-supporting 
phenotypes was very similar across taxa, with a median of 279 (range 268 - 281, Table 1). 
Of the 287 that were predicted to support growth for at least one strain, 262 were conserved 
across all 37 strains (carbon=145, nitrogen=64, phosphorus=43, sulfur=10), with only 25 
(5%) substrates variable between strains. Substrates that could be utilised as a carbon 
source had the most variation, with 7% of carbon substrates displaying variable predicted 
growth phenotypes by strain (Fig. 2). This was in stark contrast to substrates used as a 
source of sulfur, where no variation was observed (Fig. 2).  
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Figure 2: Predicted substrate utilisation by type. Bar height indicates number of 
substrates for each type, with segments coloured to indicate those associated with no 
growth for any strain (grey), variable growth (red) and conserved growth (blue).  
Percentages are indicated within each segment. 
 
Amongst the 20 variable carbon substrates, there was some species-specific variation. Six 
of these reflect core growth capabilities in all but one of the seven species (3-
hydroxycinnamic acid, 3-(3-hydroxy-phenyl)propionate, D-arabitol, L-ascorbate, L-lyxose, 
tricarballylate, Fig. 3). In the case of tricarballylate, we identified a new pathway which was 
absent from the original K. pneumoniae MGH78578 model: all KpSC species except for K. 
pneumoniae carried the tcuABC operon, which encodes the enzymes responsible for 
oxidising tricarballylate to cis-aconitate (Lewis et al. 2009) via the TCBO reaction (Fig. 3). In 
contrast, all KpSC were able to utilise L-ascorbate with the exception of K. quasipneumoniae 
subsp. quasipneumoniae, where all five genomes were lacking the ulaABC operon encoding 
the transport reaction ASCBptspp (Fig. 3). This reaction converts L-ascorbate into L-
ascorbate-6-phosphate as it is transported into the cytosol (Zhang et al. 2003). 
 
The remaining 14 variable carbon substrates were specific to five or fewer strains. For 
example, sn-glycero-3-phosphocholine could be utilised by all strains as a carbon and 
phosphorus substrate, except for the single K. africana and K. quasivariicola 
representatives, which share a common ancestor in the core-gene phylogenetic tree (Fig. 3). 
Both of these genomes lacked ugpQ, encoding the enzymes required to convert sn-glycero-
3-phosphocholine into sn-glycero-3-phosphate and ethanolamine (Brzoska and Boos 1988). 
There was only a single carbon substrate, N-acetylneuraminate, which supported growth for 
all K. quasipneumoniae subsp. similipneumoniae, due to the presence of the nan operon 
(Vimr and Troy 1985), encoding the proteins required to catalyse the ACNAMt2pp, ACNML 
and AMANK reactions, which were absent in all the other species (Fig. 3). 
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Figure 3: Variable growth phenotypes across all seven taxa in KpSC. Left, core gene 
phylogeny for all 37 strains, with tips coloured by species as per legend. Middle, heatmap of 
variable substrates for which both phenotypic growth results and model predicted results 
were available. White indicates no growth, colour indicates growth. False positive calls are 
shown in yellow, and false negative calls in grey (as per legend). Right, heatmap of variable 
substrates for which only model predictions were available. White indicates no growth, 
colour indicates growth, with substrate type indicated as per legend. 
 
Single gene knockout simulations reveal variable gene essentiality 
Strain-specific GEMs provide an unparalleled opportunity to simulate the impact of single 
gene knockout mutations for diverse strains. As carbon substrates were associated with the 
greatest amount of variation, we focused on the impact of single gene knockouts in this 
group. For each strain we simulated the impact of deletion of each unique gene in its GEM 
on growth in each of the core carbon substrates (those predicted to support growth of all 
strains, n=145), resulting in 6,544,865 unique simulations (Supplemental Table 5). Among 
these simulations, 639,365 (9.8%) were predicted to result in a loss of growth phenotype.  
 
In order to compare the diversity of knock-out phenotypes between strains, we focused on 
simulations representing core gene-substrate combinations (n=164,285 gene-substrate 
combinations; 1133 genes that were present in all GEMs x 145 substrates) and excluded 
those representing non-core gene-substrate combinations (n=19,140 combinations), 
because the former can be directly compared for all strains whereas the latter cannot (by 
definition not all strains harbour all of the genes). A total of 146,385 core gene-substrate 
combinations (89.1%) resulted in no loss of growth phenotype in any strain, while 7170 
(10.5%) combinations resulted in a loss of growth phenotype in all strains. At the gene level, 
807 genes (71.2%) were not predicted to be essential for growth for any substrate in any 
strain, and just 57 genes (5.0%) were predicted to be essential for all substrates in all 
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strains. The latter were associated with 194 distinct reactions (1-32 reactions each, 
median=1, Supplemental Table 6), encompassing 8 subsystem categories: cell membrane 
metabolism (n=76 reactions), lipid metabolism (n=42), amino acid metabolism (n=33), 
transport, inner- (n=29) or outer-transport (n=6), nucleotide metabolism (n=5), carbohydrate 
metabolism (n=2), and cofactor and prosthetic group biosynthesis (n=1).  
 
Gene essentiality varied considerably by strain, with reasonable consistency within species. 
The number of core gene-substrate combinations predicted to result in a loss of growth 
phenotype ranged from 0 to 519 (median=143, Fig. 4) and the number of core genes 
resulting in a phenotype on at least one growth substrate ranged from 0 to 15 (median=3). 
The vast majority of these genes (31 of 36 unique genes, 86.1%) were associated with loss 
of growth phenotypes for ≤6 substrates, with minimal variation in the total number of 
substrates among those strains that were impacted. In contrast, a small number of genes 
were associated with loss of growth for all or almost all substrates for some strains (4 genes, 
11.1%, each impacting ≥143 substrates per strain, Fig. 4).  
 
We further investigated the core gene deletions predicted to result in loss of growth 
phenotypes for ≥143 substrates in only a subset of strains, beginning with an apparent K. 
quasipneumoniae subsp. quasipneumoniae species-specific phenotype. The associated 
gene, KPN_03428, encodes the enzyme for catalysis of two reactions in the models: CYSDS 
(cysteine desulfhydrase) and CYSTL (cystathionine b-lyase), the latter of which may also be 
encoded by KPN_01511 (malY). Notably, malY was present in all other models but absent 
from all K. quasipneumoniae subsp. quasipneumoniae (closest bi-directional BLASTp hit had 
30.07% identity, well below the threshold required for inclusion as a homolog and 
considerably lower than the expected divergence between KpSC species (Holt et al. 2015)), 
and no alternate genes encoding putative cystathionine b-lyases could be identified by 
search of the KEGG database, indicating a lack of genetic redundancy for these reactions. 
Direct comparison of the K. quasipneumoniae subsp. quasipneumoniae 01A030T 
chromosome to K. pneumoniae MGH78578 revealed that the former harboured a ~5 kbp 
deletion relative to the latter, spanning the zntB, malY and malX genes as well as part of 
malI. The lack of malY (KPN_01511) in combination with the KPN_03428 deletion resulted in 
predicted loss of ability to produce three key metabolites (L-homocysteine, ammonium and 
pyruvate) and ultimately the predicted loss of biomass production. This deletion was 
replicated in all five K. quasipneumoniae subsp. quasipneumoniae strains. Inspection of an 
additional 149 publicly available K. quasipneumoniae subsp. quasipneumoniae genome 
assemblies (see Methods) found this region to be present in only 37 genomes (24%), 
suggesting that the most recent common ancestor of this species is lacking this region, with 
occasional re-acquisition in some lineages. 
 
Unlike the KPN_03428 deletion, deletion of KPN_04246 resulted in predicted loss of growth 
phenotypes for all 145 substrates for the single K. africana strain plus 13 of 20 K. 
pneumoniae strains (comprising multiple distantly related lineages including representatives 
of the well-known globally distributed ST14, ST23, ST86 and ST258). KPN_04246 encodes 
a protein that catalyses two reactions, ACODA, acetylornithine deacetylase, and NACODA, 
N-acetylornithine deacetylase, both of which may also be encoded by the product of 
KPN_01464 (homologs of this gene were identified in only those genomes that were not 
associated with loss of growth phenotype). Comparison of the K. pneumoniae strain CG43 
(ST86) chromosome lacking KPN_01464 to K. pneumoniae MGH78578 harbouring 
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KPN_01464 showed that the former contained a ~10 kbp deletion resulting in the loss of 
KPN_01464. This deletion was replicated in the K. africana 200023T genome and the 
remaining 12 K. pneumoniae genomes that lacked KPN_01464 (≤33.24% identity for the 
best bi-directional BLASTp hit, no alternate genes encoding putative acetylornithine 
deacetylases/N-acetylornithine deacetylases were identified in KEGG).  
 

 
Figure 4: Variable loss of growth phenotypes. Left, core gene phylogeny as per Fig 3, 
with tips coloured by species as indicated in legend: Ka, K. africana; Kp, K. pneumoniae; 
Kqq, K. quasipneumoniae subsp. quasipneumoniae; Kqs, K. quasipneumoniae subsp. 
similipneumoniae; Kqv, K. quasivariicola; Kvt, K. variicola subsp. tropica; Kvv, K. variicola 
subsp. variicola. Middle, heatmap showing core genes for which variable loss of growth 
phenotypes were predicted (columns). Shading indicates the number of substrates where 
loss of growth was predicted for each strain (rows) as per the scale legend. Right, bars show 
the total number of loss of growth phenotypes predicted for each strain. 
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Finally, we investigated the two gene deletions (KPN_02238 and KPN_00456) resulting in 
predicted loss of growth on all substrates in only K. pneumoniae NJST258-1. KPN_02238 
encodes the protein responsible for catalysing PRPPS (phosphoribosylpyrophosphate 
synthetase), for which no redundant genes were included in any of our KpSC models. This 
reaction converts alpha-D-ribose 5-phosphate to 5-phospho-alpha-D-ribose 1-diphosphate, a 
key substrate utilised as input for 14 downstream reactions. While the K. pneumoniae 
MGH78578 reference model contains a redundant pathway to support this conversion, one 
of the required reactions (R15BPK, catalysed by a ribose-1,5-bisphosphokinase) was 
missing from the NJST258-1 model because the associated genome lacked a homolog of 
KPN_04492 (best bi-direction BLASTp hit 26.19% identity), whereas all other genomes 
contained a homolog of this gene. Further investigation showed that the NJST258-1 
chromosome was missing a ~17 kbp region compared to MGH78578. In the NJST258-1 
chromosome, this region, which included KPN_04492, was replaced by the insertion 
sequence IS1294 (99% nucleotide identity). Unfortunately, we were not able to identify a 
similar deficiency to explain the strain-specific loss of growth phenotype associated with 
KPN_00456, which encodes a protein implicated in 14 distinct reactions. 
 
Discussion 
Here we present an updated GEM for K. pneumoniae MGH78578 plus novel GEMs for 36 
members of the KpSC, capturing all seven taxa and representing the first reported GEMs for 
the K. variicola (subsp. variicola and tropica), K. quasipneumoniae (subsp. quasipneumonaie 
and similipneumoniae), K. quasivariicola and K. africana species. All models were validated 
and curated by comparison of predicted and true growth phenotypes, and had a median 
accuracy of 95.7% (range 88.3 - 96.8%), higher than estimated for the previously published 
K. pneumoniae MGH78578 (84%) and KPPR1 (79%) models. 
 
Our in silico growth phenotype predictions for a diverse set of substrates highlighted 
variability among strains within the K. pneumoniae species, as has been indicated by 
previous smaller scale GEM comparisons and phenotypic comparisons (Norsigian et al. 
2019a; Blin et al. 2017; Brisse et al. 2009; Henry et al. 2017). Similar variability was also 
indicated within and between the other species in the KpSC (Fig. 3). Carbon substrates 
were associated with the greatest diversity; a total of 145 substrates (53%) predicted to 
support growth of all 37 strains and 20 (7%) predicted to support growth of 1-36 strains each 
(Fig. 2). These predictions were consistent with the observed reaction variability, where the 
highest proportion of accessory reactions was identified among those associated with 
carbohydrate metabolism (16%, Fig. 1). This is consistent with a previous pan-genome 
analysis of 328 K. pneumoniae which indicated that ~50% of the total gene-pool predicted to 
encode proteins with metabolic functions were specifically associated with carbohydrate 
metabolism (Holt et al. 2015). This trend is also consistent with previous studies of the 
closely related species, Escherichia coli, which demonstrated carbohydrate metabolism as 
the most diverse category for this organism (Fang et al. 2018; Monk et al. 2013).  
 
The extent of diversity reported for E. coli and Salmonella spp. (Seif et al. 2018) was much 
higher than reported here for KpSC. We propose two likely explanations for these 
differences: i) the current analysis for KpSC comprises just 37 strains, compared to 55 and 
110 strains included in the E. coli studies (Fang et al. 2018; Monk et al. 2013), and 410 in 
the Salmonella study (Seif et al. 2018). With greater sample size we expect to capture 
greater gene content diversity (Tettelin et al. 2008), including genes associated with 
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metabolic functions that drive metabolic diversity (as was shown to be the case for 
Salmonella spp. (Seif et al. 2018)); ii) our draft KpSC strain-specific models were generated 
using the reference-based protocol (Norsigian et al. 2019b), where homology search is used 
to identify genes in the reference model that are absent from the strain of interest and are 
therefore removed from the strain-specific model. We added novel genes/reactions to the 
models based on comparison of predicted vs observed growth phenotypes and manual 
sequence/literature search, but we did not conduct an automated screen to identify 
additional genes that are present in the novel strain collection. The latter approach is 
expected to reveal further diversity, but it requires significant manual curation and validation 
to ensure the high-quality status of the models is maintained, and is therefore beyond the 
scope of the current study.   
 
In addition to growth capabilities, our analyses revealed considerable variation in terms of 
predicted gene essentiality, as has been implicated for other bacterial species (Breton et al. 
2015; Poulsen et al. 2019; Rousset et al. 2021; Tong et al. 2020). Specifically, our data 
indicate that i) deletion of a single core gene in a given strain may result in loss of growth on 
all, none or only a subset of growth substrates; and ii) the impact of such deletions may vary 
considerably between strains (Fig. 4). Amongst genes where deletion was predicted to have 
variable impact, most were associated with the loss of growth for only a small number of 
substrates in the impacted strains. However, four genes were associated with predicted loss 
of growth on ≥143 of 145 substrates for between one and 14 strains each. In two cases 
(genes KPN_03428 and KPN_04246), the impacted strains were missing redundant genes 
that were present in the MGH78578 reference model, i.e., those encoding proteins with the 
same functional annotation as the deleted gene. Comparisons of the chromosomes of these 
strains suggested that the genes were lost via large scale chromosomal deletions (5-10 
kbp). One of these deletions was uniquely conserved among strains belonging to K. 
quasipneumoniae subsp. quasipneumoniae, suggesting that it may have occurred in the 
most recent common ancestor of this subspecies and has been inherited via vertical 
descent, with evidence from additional public genome data pointing towards recent re-
acquisition of this region in some lineages. The other chromosomal deletion was found 
among a distantly related subset of K. pneumoniae as well as the single K. africana isolate, 
and therefore its distribution cannot be explained by simple vertical ancestry. Rather, we 
speculate that this deletion has been disseminated horizontally via chromosomal 
recombination, as is known to occur frequently among K. pneumoniae (Wyres et al. 2019; 
Bowers et al. 2015) and has been reported between KpSC species (Holt et al. 2015).  
 
Deletion of two genes (KPN_02238 and KPN_00456) resulted in the loss of growth on all 
substrates for only a single strain (K. pneumoniae NJST258-1). This strain is of particular 
interest because it was associated with the highest number of deletion phenotypes (Fig. 4), 
and it belongs to ST258, a globally distributed cause of carbapenem-resistant K. 
pneumoniae infections (Wyres et al. 2020; Bowers et al. 2015). We were unable to identify 
the cause of this rare knockout phenotype (lacking adenylate kinase, encoded by 
KPN_00456), which converts D-ribose 1,5-bisphosphate to 5-phospho-alpha-D-ribose 1-
diphosphate at the cost of 1 ATP. Comparison of the metabolic networks of NJST258-1 and 
MGH78578 indicated that NJST258-1 was lacking an additional reaction pathway 
(phosphoribosylpyrophosphate synthetase) present in MGH78578, allowing an alternative 
means of 5-phospho-alpha-D-ribose 1-diphosphate production in the absence of ribose-1,5-
bisphosphokinase.  Further investigation showed that the NJST258-1 chromosome was 
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missing a ~17 kbp region containing one of the genes required to express this redundant 
pathway, which had been replaced by an insertion sequence (IS). IS are frequently identified 
among Klebsiella and other Enterobacteriaceae where they are particularly associated with 
large plasmids and the dissemination of antimicrobial resistance (Che et al. 2021; Adams et 
al. 2016). The carbapenem-resistant K. pneumoniae lineage, ST258, has been associated 
with particularly high IS burden (Adams et al. 2016), and we hypothesise that such insertions 
contribute to the increased number of gene deletion phenotypes predicted for NJST258-1 
compared to other K. pneumoniae strains. Further analyses will be required to assess 
whether this reduced redundancy is a general feature of ST258 or a trait specific to 
NJST258-1. 
 
These findings indicate that KpSC can differ substantially in terms of metabolic redundancy. 
While we cannot exclude the possibility that the predicted knockout phenotypes might be 
rescued by products of non-orthologous genes that are not currently captured in our models, 
we note that at least for the examples described above, search of the KEGG database did 
not indicate any additional known redundant metabolic pathways. Additionally, our findings 
are consistent with a recent experimental exploration of gene essentiality in E. coli (Rousset 
et al. 2021), which showed that 7-9% of ~3,400 conserved genes were variably essential 
among 18 E. coli strains grown in three different conditions. Importantly, genomic 
comparisons of these E. coli implicated a key role for horizontal gene transfer in driving 
strain-specific essentiality patterns and redundancies through the mobilisation of 
homologous or analogous genes and/or those driving epistatic interactions (Rousset et al. 
2021). 
 
Taken together our findings highlight the importance of strain-specific genomic variation in 
determining strain-specific metabolic traits and redundancy. More broadly, these analyses 
demonstrate the value of an organism investing in redundant systems, either through i) 
encoding multiple genes capable of performing the same reaction, or through ii) encoding 
multiple, alternative pathways for producing key metabolites from different substrates. Given 
what is known about the extent of genomic diversity among K. pneumoniae and the broader 
KpSC (Holt et al. 2015; Wyres et al. 2019; Thorpe et al. 2021), it is clear that studies seeking 
to understand the metabolism of these species – e.g., for novel drug design, or to identify 
novel virulence and drug resistance determinants – should include a diverse set of strains. In 
this regard, we anticipate that the GEMs, growth predictions and single gene deletion 
predictions presented here will provide a valuable resource to the Klebsiella research 
community. As exemplified for the E. coli K-12 reference strain, such resources can be 
continually improved and expanded to maximise their utility and facilitate biological discovery 
for years to come (Schilling et al. 1999; Monk et al. 2017). 
 
Methods 
Genome collection 
The 37 strains used in this study were sourced from two previous studies (Blin et al. 2017; 
Rodrigues et al. 2019). Eight strains had completed genome sequences already publicly 
available, generated using various sequencing and assembly methods (see Supplemental 
Table 1 for details). For the remaining 29 strains, short- and long-read sequencing was 
conducted as follows. Genomic DNA was extracted from overnight cultures, using GenFind 
v3 reagents (Beckman Coulter). The same DNA extraction was used for both Illumina and 
MinION libraries. Illumina sequencing libraries were made with Illumina DNA Prep reagents 
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(20018705) and the Illumina Nextera DNA UD Indexes (20027217) as per manufacturer’s 
instructions with one major deviation from described protocol; reactions were scaled down to 
25% of recommended usage. Illumina libraries were sequenced on the NovaSeq platform 
using the 6000 SP Reagent Kit (300 cycles; 20027465). Long-read sequencing libraries 
were prepared using the ligation library kit (LSK-109, ONT) with native barcoding expansion 
pack (EXP-NBD104 and NBD114, ONT). The library was run on a R9.4.1 MinION flow cell, 
and was base called with Guppy v3.3.3 using the dna_r9.4.1_450bps_hac (high-accuracy) 
basecalling model.   
 
The Illumina and MinION read data were combined to generate completed genomes for 
n=28/29 strains with Unicycler v0.4.8 (Wick et al. 2017) using default parameters. SB610 
could not be assembled into a completed genome using this approach, so we used Trycycler 
v0.3.3 (Wick et al. 2021) to combine 12 independent long-read only assemblies into a single 
consensus assembly. The 12 assemblies were generated from 12 independent subsets of 
the long reads (randomly selected) at 50x depth, which were assembled with one of three 
assemblers (n=4 assemblies each): Flye v2.7 (Kolmogorov et al. 2019), Raven v1.1.10 
(Vaser and Šikić 2021) and Miniasm v0.3 (Li 2016). The final consensus assembly was then 
polished with the long reads using Medaka v1.1.3 (https://github.com/nanoporetech/medaka) 
followed by three rounds of polishing using the Illumina reads with Pilon v1.23 (Walker et al. 
2014). All 37 completed genomes were annotated with Prokka v1.13.3 (Seemann 2014), 
using a trained annotation model (created using 10 genomes with Prodigal v2.6.3 (Hyatt et 
al. 2010)). All genomes were analysed with Kleborate v2.0.3 (Lam et al. 2021) to obtain ST 
and other genomic information (see Supplemental Table 1). 
 
Phenotypic testing 
We utilised the Biolog growth phenotypes for 190 carbon substrates generated previously 
(Blin et al. 2017; Rodrigues et al. 2019). As determined in Blin et al., a maximum value in the 
respiration curve of ≥150 was used to indicate growth, whilst a value of <150 indicated no 
growth. We performed additional phenotypic tests on six carbon substrates; two which were 
not available on Biolog, 3-(3-hydroxy-phenyl)propionate (Sigma Cat Number PH011597) and 
3-hydroxycinnamic acid (CAS Number 14755-02-3); and four Biolog substrates for which we 
required further evidence, gamma-amino butyric acid (CAS Number 56-12-2), L-sorbose 
(CAS Number 87-79-6), D-galactarate (CAS Number 526-99-8), and tricarballylate (CAS 
Number 99-14-9). 
 
Overnight cultures of all 37 isolates were grown in M9 minimal media (2x M9, Minimal Salts 
(Sigma), 2 mM MgSO4 and 0.1 mM CaCl2) plus 20 mM D-glucose, at 37°C, shaking at 200 
RPM. Each carbon source substrate solution was prepared to a final concentration of 20 mM 
in M9 minimal media, pH 7.0. Then, 200 µL of each substrate solution was added to 
separate 96-well cell culture plates (Corning) and 5 µL of overnight cultures added to the 
wells, diluted to McFarland standard of 0.4 – 0.55. Negative controls were included on every 
independent plate and included i) no substrate solution controls (20 mM M9 minimal media) 
and ii) no isolate controls but 20 mM substrate solution. For positive controls, each isolate 
was also grown independently in M9 minimal media containing 20 mM D-glucose. Every 
growth condition was performed in technical triplicate. Plates were then sealed with 
AeraSeal film (Sigma), then grown aerobically for 18 hours at 37°C, shaking at 200 RPM. 
Plates were then read using the FLUOstar Omega plate reader (BMG Labtech) using Read 
Control version 5.50 R4, firmware version 1.50, using 595 nm absorbance after 30 seconds 
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of shaking at 200 RPM. No isolate controls were used as blanks for to generate the OD 
value for each technical replicate, then mean calculated to obtain the OD value. To 
determine growth/no growth using the OD method, we calculated the mean OD for growth 
on a particular substrate for each strain at 24h, and subtracted from this the OD value of M9 
media alone. Subsequently, for each carbon substrate we divided the mean OD value for a 
strain by the mean OD for that strain in M9 media alone to get an OD fold change. OD fold 
changes ≥2 were considered sufficient evidence of growth (Supplemental Figure 1). 
 
Creating and curating strain-specific GEMs 
Using the method outlined by Norsigian et al (Norsigian et al. 2019b), we extracted and 
translated all CDS from each genome and used bi-directional BLASTp hits (BBH) to 
determine orthologous genes compared to the reference K. pneumoniae MGH78578 GEM 
(iYL1288) (Liao et al. 2011). Genes with at least 75% amino acid identity were considered 
orthologous. Genes and their reactions that did not meet this threshold were removed from 
their respective models. 
 
During GEM creation, we discovered that the original biomass function (BIOMASS_) in 
iYL1288 required the production of both rhamnose, which is a component of the capsule in 
K. pneumoniae MGH 78578, as well as UDP-galacturonate and UDP-galactose, which are 
components of the variable O antigen. As both the capsule and O antigens are known to 
differ greatly between strains (Wyres et al. 2016; Follador et al. 2016), we created a new 
biomass function (BIOMASS_Core_Oct2019) that no longer required the associated 
metabolites dtdprmn_c, udpgalur_c and udpgal_c.   
 
To validate each GEM against its respective phenotypic growth results, we used flux based 
analysis (FBA) implemented in the COBRApy framework (Ebrahim et al. 2013) to simulate 
growth of each GEM in M9 media with all possible sole carbon, nitrogen, phosphorous or 
sulfur substrates. The updated BIOMASS function, BIOMASS_Core_Oct2019, was used as 
the objective to be optimised. M9 media was defined by setting the lower bound of the 
cob(I)alamin exchange reaction to -0.01, and the lower bound of the following exchange 
reactions to -1000: Ca2+, Cl-, CO2, Co2+, Cu2+, Fe2+, Fe3+, H+, H20, K+, Mg2+, Mn2+, 
MoO4 2-, Na+, Ni2+, Zn2+. To predict growth on alternate carbon substrates, we set the 
lower bound of glucose to zero (to prevent the model utilising this as a carbon source), and 
then set the lower bound of all potential carbon substrates to -1000 in turn. The carbon 
substrate was considered growth supporting if the predicted growth rate was ≥0.001. 
 
While identifying carbon substrates, the default nitrogen, phosphorous and sulfur substrates 
were ammonium (NH4), inorganic phosphate (HPO4) and inorganic sulfate (SO4). Prediction 
of nitrogen, phosphorus and sulfur supporting substrates was performed in the same way as 
carbon, but setting glucose as the default carbon substrate.  
 
We matched predictions and phenotypic growth data for all strains for 94 distinct carbon 
substrates. These data were used to i) curate and update the models; and ii) estimate model 
accuracy. Where we had evidence of phenotypic growth but a lack of simulated growth, we 
attempted to identify the missing reactions using gene homology searches and literature 
searches in related bacteria (see Supplemental Table 3 for a full list of reactions added and 
the evidence for each). During this process it became apparent that the directionality of the 
following transport reactions in the original iYL1288 GEM were set to export the compound 
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from the cell, rather than allow uptake (TARTRtex, SUCCtex, FORtex, FUMtex, THRtex, 
ACMANAtex, MALDtex, ABUTtex, AKGtex). Each of these reactions were updated to be 
reversible (bound range -1000 to 1000), restoring the ability for the model to utilise the 
associated compounds.  
 
Strain model accuracy was determined by calculating the percentage of true positive and 
negative compounds, as well as calculating Matthew’s correlation coefficient using the 
following formula (TP = true positive; TN = true negative; FP = false positive; FN = false 
negative): 

𝑇𝑃	 × 	𝑇𝑁	 − 	𝐹𝑃	 × 	𝐹𝑁
((𝑇𝑃	 + 	𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

	

 
Gene essentiality for growth on core carbon substrates 
To determine which genes were essential for growth in each core carbon substrate (n=145) 
for each strain, we used the single_gene_deletion functions in COBRAPy (Ebrahim et al. 
2013). For each GEM, on every core carbon substrate we simulated growth in M9 media 
with that substrate as the sole carbon source using FBA (as described above), but with one 
gene knocked out using the single_gene_deletion function. Each gene was knocked out in 
turn, and optimised biomass values ≥0.001 were considered positive for growth. 
 
Four gene-substrate combinations were selected for further investigation by interrogation of 
the model gene-protein-reaction rules and search of the KEGG database (Kanehisa et al. 
2002) using KofamKOALA (Aramaki et al. 2019) for redundant genes/pathways. Where 
relevant, pairwise chromosomal comparisons were performed using BLASTn (Camacho et 
al. 2009) and visualised using the Artemis Comparison Tool (Carver et al. 2005). The 
putative insertion sequence was identified by BLASTn search of the ISFinder database 
(Siguier et al. 2006). 
 
Core genome phylogeny 
The core genome for the set of 37 genomes was determined using panaroo v1.1.2 (Tonkin-
Hill et al. 2020) in strict mode with a gene homology cutoff of 90% identity, which generated 
a core gene alignment consisting of 3717 genes with 75,899 variable sites. We generated a 
phylogeny using this core gene alignment with IQTree v2 (Minh et al. 2020), which selected 
GTR+F+I+G4 as the best-fit substitution model. The resulting phylogeny was visualised 
using ggtree (Yu et al. 2017) in R. 
 
Supplemental Legends 
Supplemental Figure 1: Distribution of OD fold changes for growth on six carbon 
substrates. Each panel is a substrate showing total number of strains (y axis) with a 
particular OD fold change (x axis). Red line indicates OD fold change of 2, fold changes 
greater than this value were considered sufficient evidence of growth. 
Supplemental Table 1: Strain collection in this study. Genome information, model 
information. 
Supplemental Table 2: Growth/no growth for each strain-specific GEM in all possible 
substrates. Prefix in front of the substrate indicates what source type it belongs to, 
C=carbon; N=nitrogen; P=phosphorous; S=sulfur. 
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Supplemental Table 3: Details of reactions added to each strain-specific GEM. 
Evidence level is in four categories (1-4) as per (Thiele and Palsson 2010): 1, no evidence 
available, reaction required for modelling; 2, evidence for gene function (genome annotation 
or SEED annotation), or indirect evidence based on phenotypic data; 3, direct and indirect 
evidence for gene function such as knockouts or expression analysis; 4, direct evidence of 
gene function and biochemical reaction. 
Supplemental Table 4: Details of model predictions vs phenotypic growth for all 94 
substrates in each strain-specific GEM. 
Supplemental Table 5: Growth phenotype predictions for all possible single-gene 
deletions in all strains, for growth on 145 carbon substrates. 
Supplemental Table 6: Genes predicted to be essential for growth on all core carbon 
substrates for all strains.  
 
Data Access 
All completed genomes generated in this study have been deposited in GenBank under 
BioProject PRJNA768294 (accessions for individual genomes listed in Supplemental Table 
1). All strain metabolic models generated in this study have been deposited in json format, 
along with the gene annotations used in the models, in figshare doi:10.26180/16702840. 
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