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ABSTRACT

The human genome contains roughly 1,600 transcription factors (TFs) (1),
DNA-binding proteins recognizing characteristic sequence motifs to exert regulatory effects
on gene expression. The binding specificities of these factors have been profiled both in
vitro, using techniques such as HT-SELEX (2), and in vivo, using techniques including
ChIP-seq (3, 4). We previously developed Factorbook, a TF-centric database of annotations,
motifs, and integrative analyses based on ChIP-seq data from Phase II of the ENCODE
Project. Here we present an update to Factorbook which significantly expands the breadth of
cell type and TF coverage. The update includes an expanded motif catalog derived from
thousands of ENCODE Phase II and III ChIP-seq experiments and HT-SELEX experiments;
this motif catalog is integrated with the ENCODE registry of candidate cis-regulatory
elements to annotate a comprehensive collection of genome-wide candidate TF binding
sites. The database also offers novel tools for applying the motif models within machine
learning frameworks and using these models for integrative analysis, including annotation of
variants and disease and trait heritability. We will continue to expand the resource as
ENCODE Phase IV data are released.

INTRODUCTION

The human genome includes the instructions for producing an estimated 1,600
transcription factors (TFs), a broad class of proteins that interact with DNA in order to
modulate regulatory element activity and gene expression (1). TFs typically possess a DNA
binding domain (DBD) which recognizes 6-20 base-pair (bp) long characteristic consensus
binding sequences, or a motif, present within the TF’s target regulatory elements. TFs may
be grouped according to several known families of DBDs which frequently recognize similar
DNA sequences.

Numerous resources have been developed to catalog TF motifs. The HOCOMOCO
catalog (5) indexes binding specificities for nearly 700 human TFs and more than 400 mouse
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TFs identified from ChIP-seq and HT-SELEX data, and the JASPAR catalog (6) contains
more than 700 curated non-redundant binding profiles for eukaryotic TFs. The earlier
UniPROBE (7) resource contains more than 700 binding profiles from in vitro protein binding
microarray experiments, and the broader CisBP (8) incorporates data from these sources
and others, including our previous release of Factorbook (9, 10), to annotate both measured
and inferred binding profiles for thousands of TFs across tens of species.

Here we present an update to Factorbook which leverages the extensive ChIP-seq
data available through Phase III of the ENCODE Project to build a comprehensive TF motif
catalog for more than 1,000 TFs. We also provide two notable features not available in
existing catalogs to our knowledge. First, we catalog motif models built using convolutional
neural networks (CNNs), which are finding increasing applications in genomics including in
discovering TF motifs and predicting TF binding (11–13); these will be easily integrated into
future models for transfer learning. Second, we leverage the ENCODE Registry of candidate
Cis-Regulatory Elements (14) to provide a genome-wide catalog of motif sites in regulatory
sequences, with associated epigenetic and evolutionary annotations; we illustrate the
usefulness of this catalog for downstream applications by using it to quantify trait heritability
using partitioned LD score regression (15).

OVERVIEW

Factorbook is a transcription factor-centric database cataloging information for 694
distinct human TFs and 62 mouse TFs profiled in 249 and 38 human and mouse cell types;
this is a substantial increase from the 119 human TFs in the first Factorbook release (10). At
this scale, Factorbook’s previous matrix-view entry point (10) has become intractable; the
primary entry point is now a factor search (Figure 1A), which directs users to a detailed
information page for the searched TF. Each factor’s information page contains curated
information from various external sources, including NCBI, Uniprot, HGNC, and Ensembl
(Figure 1B). Rich data tables separately listing the available TFs and cell types are also
available for browsing (Figure 1C). Furthemore, we display the expression levels of each TF
using ENCODE RNA-seq data in a variety of primary cells, primary tissues, and cell lines
(Figure 1D), and also display primary data resulting from several integrative analyses
described in detail below.

From a technical perspective, we have replaced the Wiki-based technology of the
first Factorbook release (10) with an architecture utilizing a ReactJS frontend and GraphQL
Application Programming Interfaces (APIs). This offers a number of improvements and novel
capabilities, including 1) facilitating programmatic data access, 2) offering interactive rather
than static visualizations, and 3) enabling Factorbook to perform a variety of interactive
analyses described in detail below, including SNP annotation and intersection of resources
with user-uploaded BED files in real time.

A comprehensive motif catalog derived from ChIP-seq and HT-SELEX data

A cornerstone of the primary data contained within Factorbook is a comprehensive
catalog of TF recognition motifs. We expanded on previous catalogs (5, 16) in two ways:
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first, we aimed to annotate binding sequences for as many transcription factors as possible,
including TFs not profiled by other efforts to our knowledge (5, 8, 17, 18); and second, we
aimed to provide motifs in optimal formats that will integrate seamlessly into the variety of
machine learning frameworks which are actively being developed to study TF binding (12,
13, 19) in addition to conventional downstream analysis using tools such as the MEME suite
(20).

We thus designed two complementary pipelines for de novo motif identification
(Methods). First, we applied our previous MEME-based pipeline (9) to the top 500 strongest
ChIP-seq peaks from each transcription factor ChIP-seq dataset produced during the first
three phases of ENCODE. This pipeline identifies up to five enriched motifs per ChIP-seq
dataset; these motifs are subsequently filtered by quality control metrics we developed
previously (9), including peak centrality and enrichment against permuted genomic
sequences. Second, we developed a convolutional neural network, ZMotif, for motif
discovery applicable to HT-SELEX (Methods).

In total, MEME identifies 6,921 motifs from human ChIP-seq datasets. The MEME
catalog contains several redundant motifs for well-profiled factors such as CTCF and REST;
we therefore applied UMAP (21, 22) to the motifs to map them into a reduced-dimension
space. The UMAP projection for MEME motifs is shown in Figure 2A, with several clusters
of known motifs annotated. The number of motif clusters ranges from 100 to 300 depending
on hyperparameter selection; we make several interactive UMAP plots with different
hyperparameters available through Factorbook to aid users in identifying motif clusters for
downstream analysis. We then applied TOMTOM (23) to compare our MEME motifs against
the HOCOMOCO and JASPAR catalogs (5, 16); we find that the Factorbook catalog
includes nearly 100% of the motifs in these two sources, and further identifies novel motifs
not present therein; novel motifs include candidate motifs for 358 TFs which are not profiled
in HOCOMOCO or JASPAR to our knowledge, including 101 of 428 factors previously
classified as “likely sequence-specific factors” (1) but without annotated binding specificity
annotated elsewhere (Figure 2B). One example novel motif is that of ZNF407 (Figure 2C),
which shows high evolutionary conservation (Figure 2D), prefers to reside in the center of
ChIP-seq peaks (Figure 2E), and is protected from DNase I cleavage (Figure 2F). Each
individual factor page contains indexed lists of all motifs identified by MEME; these and the
HT-SELEX motifs can also be searched through Factorbook either by consensus sequence
or by uploading motifs in MEME format to match against the catalog; visual results are
provided in real time (Figure 2G).

ZMotif identifies a total of 6,700 motifs from HT-SELEX two public HT-SELEX
datasets (2, 24); we perform similar UMAP projection and cluster annotation for these motifs
(Figure 3A). SELEX motifs are also available for visualization on each TF’s information
page; motifs are shown for each HT-SELEX cycle, along with enrichment statistics (Figure
3B). Motifs from all three methods are made available for download as PWMs in MEME
format; deep-learned filters are further available in HDF5 format that can be directly used by
models such as neural networks for transfer learning. The motif page also displays
TOMTOM matches against HOCOMOCO and JASPAR for each motif.
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Genome-wide instances of motifs in ChIP-seq peaks

For ChIP-seq motifs identified with MEME, we use the FIMO tool from the MEME
suite (20) to scan IDR thresholded ChIP-seq peaks from human TF ChIP-seq datasets for
motif instances, filtering at the standard p-value cutoff of 10-4. We identified 110,001,176
(overlapping allowed) motif instances in total; when overlapping regions are merged, the
motif sites number 6,720,871. These instances are available for download through
Factorbook in BED format through the associated motif page; additionally, we have
implemented a novel database-backed service allowing users to upload their own BED files
for real-time intersection with motif instances, accessible through the same page. Bulk
downloads of the complete set of BED files are also offered in TAR format.

To aid the user in evaluating how likely a given motif we identify is to be recognized
by the TF of a ChIP-seq experiment (as opposed to, for example, a cofactor), we compute
three metrics for the motif instances. First, we assess the evolutionary conservation of the
motif instance and surrounding peak sequence using several phyloP scores across
collections of vertebrates and mammals (25) (Figure 2D). Second, we compute the distance
between each motif instance and the corresponding peak summit since the instances of
bona fide motifs tend to be near peak summits (Figure 2E). Third, we compute the
distribution of DNase-seq and ATAC-seq reads around each motif instance when matched
data are available in the corresponding cell type (Figure 2F). We display histograms and
aggregated signal profiles for each of these three metrics on the motif page. In general, we
find that high quality motif instances are central within peaks, are more evolutionarily
conserved than the surrounding peak sequences, and are less accessible to DNase I and
Tn5 than surrounding non-motif peak sequences. Conservation scores are also available for
individual motif sites in the motif site BED files, and the visualizations of the aggregate plots
can also be exported in image or raw data formats.

Genome-wide motif instances in candidate cis-regulatory elements

We previously developed the ENCODE Registry of candidate cis-regulatory elements
(cCREs), a collection of nearly 1 million candidate human enhancers, promoters, and
insulators, which are the subset of representative DNase hypersensitive sites (rDHSs) with
high signals from two histone modifications (H3K4me3, a promoter mark, and H3K27ac, an
enhancer mark) and the insulator-binding protein CTCF (14). The Registry integrates data
from more than 1,000 cell types, while the transcription factor ChIP-seq data included in
Factorbook derives primarily from five human cell lines (HepG2, K562, HEK293, GM12878,
and MCF-7). Accordingly, motif instances in ChIP-seq peaks are most common within
cCREs and rDHSs from the Registry that are active in primary cell types biologically similar
to the aforementioned five cell lines. For example, embryonic bone marrow and liver are
responsible for hematopoiesis, and nearly twice as many rDHSs active in those embryonic
tissues contain peak motif instances as those active in other tissues, in line with the
prevalence of ChIP-seq data in the red blood cell precursor K562 (Figure 4A). Therefore, we
applied FIMO to identify instances of all the high-quality motifs from both our ChIP-seq
MEME catalog and our HT-SELEX ZMotif catalog within cCREs and rDHSs. Given the larger
scale of the rDHS set, we used a more stringent FIMO p-value threshold of 10-6 for MEME
ChIP-seq motifs and 10-5 for ZMotif HT-SELEX motifs to reduce false positives. We also
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generated sets at more stringent thresholds of p<10-7 and p<10-8 for users preferring even
higher confidence sets (Figure 4B).

In total, we define a catalog of 33,452,885 (overlapping allowed) candidate regulatory
transcription factor motif sites within rDHSs using MEME-identified ChIP-seq motifs at a
FIMO p-value of <10-6. These number 7,189,228 when overlapping motif sites are merged;
of these, 4,902,200 (68.2%) are not present in the TF ChIP-seq peak motif site catalog.
More than 95% of rDHSs contain at least one of these motif sites, with most having between
1 and 4; in total, the motif sites cover 30% of the base pairs in rDHS sequence (Figure 4B).
The more stringent sets, numbering 2,840,049 and 1,572,634 non-overlapping motifs,
respectively, cover a smaller portion of sequence within a smaller number of rDHSs (Figure
4B). We aggregate evolutionary conservation and DNase-seq reads at each of the motif
sites at the most lenient threshold of p<10-6; this highlights that these motifs are significantly
more conserved than surrounding rDHS sequences and are also less accessible to DNase I,
suggesting the protection of the associated DNA by the bound TF. These findings regarding
conservation (Figure 4C) and DNase I protection (Figure 4D) hold even for motifs present in
rDHSs but not ChIP-seq peaks, supporting the idea that at least a subset of these motifs are
true transcription factor binding sites which would be identified if ChIP-seq were performed in
the correct biological context . These metrics are available through the motif page for each
TF, as are the complete sets of instances in BED format. Instances can also be searched by
BED file upload (Figure 4E). We performed the same analysis for HT-SELEX, identifying
9,205,043 distinct non-overlapping motif sites within rDHSs at a FIMO p-value <10-5, also
accounting for roughly 30% of rDHS sequence. These sites are also available for download
and searching through Factorbook.

Tools for integrating motifs with GWAS results

It is hypothesized that many non-coding disease-associated variants confer risk for a
given trait or disease by impacting transcription factor recognition sequences within
regulatory elements. We therefore designed an interactive platform within Factorbook to
facilitate the annotation of SNPs with candidate impacts on TF motif instances in our catalog,
available through the Factorbook homepage. Users input a SNP’s rsID and optionally select
a population or subpopulation from the 1,000 Genomes Project from which to include SNPs
in linkage disequilibrium (LD) (Figure 5A). Factorbook intersects these SNPs with motif
instances from our catalog in real time and displays the results, sorted by impact on the
position weight matrix (PWM) of the canonical motif from MEME and the predicted impact on
binding from our deep learning models (Figure 5B). Simultaneously, Factorbook searches
all annotated TF peaks from ENCODE that intersect the SNPs, allowing users to determine if
there is direct ChIP-seq support for any candidate TFs identified by motif analysis (Figure
5C).

Additionally, we have built heritability models for partitioned LD score regression (15)
from the motif sites in our catalog within ChIP-seq peaks. We provide one model which
includes the complete set of motif instances as well as one which includes motif sites
grouped by the cell type in which the corresponding ChIP-seq peak was identified. Overall,
heritability for traits is highly enriched within motif sequences, with enrichment generally
being the strongest within motif sites identified in ChIP-seq peaks from disease-relevant cell
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lines. For example, heritability for red blood cell distribution width is most strongly enriched in
TF motifs from K562, an erythroid cell line, heritability for rheumatoid arthritis, an
autoimmune condition, is strongly enriched within TF motifs in ChIP-seq peaks from
GM12878, a B-cell line; and heritability for serum cholesterol level is most strongly enriched
in TF motifs from HepG2, a hepatocyte cell line (Figure 5D). These models are available for
download through Factorbook for application to the summary statistics of additional
genome-wide association studies (GWAS); we provide a Docker image and associated
scripts for running this analysis through GitHub.

High-resolution nucleosome and epigenetic profiles around binding sites

In the previous iteration of Factorbook, we generated aggregated epigenetic signal
profiles, including histone modifications and nucleosome positions from MNase-seq, around
the summits of TSS-proximal and TSS-distal transcription factor ChIP-seq peaks. We find
that aggregating around motif instances rather than peak summits improves the resolution
and phasing of epigenetic signals; additionally, it offers a natural orientation which reveals
asymmetries in the organization of features around regulatory sites which have previously
been suggested to be of biological relevance (26); we highlight, for example, asymmetric
positioning of nucleosomes assayed by MNase-seq around oriented CTCF motif sites
(Figure 6A). Therefore, on each factor’s page, Factorbook now displays aggregated signal
profiles around motif instances for all cataloged motifs in addition to profiles surrounding
ChIP-seq peak summits (illustrated for histone marks H3K4me3 and H3K4me1 around
GATA4 motif sites, Figure 6B); we separate motif sites according to TSS proximity, which
highlights differences in epigenetic profiles around TSS-proximal and TSS-distal sites.

Tools for machine learning and integrative analysis

Building deep learning models which can predict regulatory readouts is a primary
focus of ongoing computational efforts in regulatory genomics. Prediction targets include
cross-cell type transcription factor binding (13, 19) as well as epigenetic sequence profiles in
a given cell type (12). Frequently these models include one-dimensional convolutional neural
network layers which learn predictive sequences including transcription factor motifs.
Transfer learning, or using existing models as starting points for new models applied to new
tasks, has been proposed for sequence-based problems in biology (27, 28); seeding new
models with our motif features could offer great potential to reduce training time while
improving both the predictive power and human interpretability of learned models. Therefore
we aimed to make Factorbook a platform for sharing motif kernels which can be applied
directly to new machine learning tasks. To aid users in applying the kernels learned by our
neural networks from HT-SELEX and ChIP-seq data to new biological questions, we provide
the option to export all ZMotif-derived motifs in HDF5 format. These kernels may then be
loaded into Python and used to seed weights in convolutional layers in a variety of
commonly-used machine learning packages including PyTorch and Tensorflow. For users
interested in more conventional downstream analysis, we also offer the option to export all
MEME- and ZMotif-derived motifs as PWMs in MEME format, which may then be used by a
variety of downstream tools including those in the MEME suite (20).
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Genomic visualization of motifs and TF binding sites

Human interaction remains essential in interpreting the biological significance of
transcription factor motifs and regulatory elements. We implemented lightweight embedded
genome visualizations within Factorbook which display TF peaks from ENCODE datasets
alongside motif instances from our resource. Evolutionary conservation and relevant
epigenetic signal profiles are displayed alongside gene and transcript tracks (Figure 7A).
Additionally, we have designed a novel sequence importance track which scales bases in
the reference sequence according to a signal track of associated scores; we demonstrate
the use of this track to highlight evolutionarily conserved motif instances using PhyloP as the
scaling score (Figure 7B). We have engineered this track to extend easily to additional
scores provided through BigWig format signal tracks. All these tracks are rendered with
vector graphics, allowing rich interactive interactions; for example, we layer popup views of
SNPs and consensus logos onto these motif tracks in response to mouse events to aid
users in quantifying the impact of alternative alleles using our LogoJS package. In addition,
we have designed a public Factorbook trackhub for release on the UCSC Genome Browser
(29).

Planned future expansion

We will further expand Factorbook to include integrative analysis of ENCODE Phase
IV ChIP-seq, DNase-seq, and ATAC-seq data as they are released, and will update our motif
and rDHS catalog accordingly. Additionally, we will update our motif instance catalog with the
release of the final version of the ENCODE Registry of cCREs at the conclusion of ENCODE
Phase IV.
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FIGURE CAPTIONS

Figure 1. Overview of the main Factorbook interface. (A) An example of the main TF search
for human and mouse. (B) The information page for REST, highlighting information curated
from external sources. (C) The transcription factor table, listing all 682 human TFs with
available data for browsing. (D) Factorbook’s display of the RNA-seq expression profile for
GATA4 in human embryonic primary tissues.
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Figure 2. Overview of the Factorbook MEME ChIP-seq motif catalog. (A) A UMAP projection
of motifs passing QC, with some DNA binding domains colored (C2H2 Zinc Finger in red,
GATA in teal, nuclear receptor in dark purple) and several motif clusters annotated. (B)
Overview of novel motifs cataloged by Factorbook. (C) A novel motif for ZNF407, with
supporting evolutionary conservation (phyloP 100-way) (D), peak centrality (E), and
DNase-seq footprint (F) aggregate plots. (G) The Factorbook motif search interface, showing
matches for the consensus sequence for the CTCF motif.

Figure 3. The Factorbook HT-SELEX motif catalog. (A) A UMAP projection of 6,700
HT-SELEX motifs with clusters annotated. (B) Example of the SELEX motif interface for
GATA4, showing motifs for each of the four SELEX cycles for a GATA4 HT-SELEX
experiment as well as two motif enrichment metrics, an ROC curve (top) and a readout of
the fraction of reads at each cycle containing the motif (bottom).

Figure 4. Overview of the Factorbook regulatory motif site catalog. (A) Fraction of
representative DNase hypersensitive sites (rDHSs) active in a variety of embryonic cell types
containing at least one motif identified in a ChIP-seq peak; cell types similar to K562 (fetal
liver) and GM12878 (fetal bone) are most enriched due to the prevalence of ChIP-seq for
those cell lines. (B) Distribution of motif sites within rDHSs and fraction of rDHS sequence
covered by motifs at different thresholds. (C) Aggregated evolutionary conservation and (D)
DNase I cleavage in embryonic kidney at 10,000 randomly chosen motif sites from the
catalog within rDHSs active in embryonic kidney. (E) The motif site search interface, showing
CTCF motif sites in a genomic region on chromosome 1.

Figure 5. Annotation of variants with Factorbook. (A) The variant annotation interface; the
user inputs a SNP rsID and can optionally select to include SNPs in LD with the searched
SNP. (B) Example search results for a given SNP showing an impact on an E-box motif from
the Factorbook rDHS motif site catalog. (C) The variant peak intersection view showing
ChIP-seq peaks intersecting variants in LD with an example query. (D) Heritability
enrichment for a variety of traits within motif sites identified in ChIP-seq peaks from seven
distinct ENCODE cell lines, computed using partitioned LD score regression.

Figure 6. Epigenetic signal aggregation profiles on Factorbook. (A) Aggregated MNase-seq
signal around CTCF motifs, highlighting asymmetry depending on motif orientation. (B)
Aggregated H3K4me3 ChIP-seq signal around GATA4 peak summits as displayed in
Factorbook. (C) Aggregated H3K4me1 ChIP-seq signal around GATA4 peak summits as
displayed in Factorbook.

Figure 7. The Factorbook embedded genome browser view. (A) For a given experiment,
ChIP-seq signal and IDR peaks from the ENCODE portal are displayed alongside transcripts
and evolutionary conservation. (B) When the view is zoomed in, motif sites from the
Factorbook catalog are displayed along with the underlying sequence scaled according to
evolutionary conservation using a novel sequence importance track.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


REFERENCES

1. Lambert,S.A., Jolma,A., Campitelli,L.F., Das,P.K., Yin,Y., Albu,M., Chen,X., Taipale,J.,
Hughes,T.R. and Weirauch,M.T. (2018) The Human Transcription Factors. Cell, 172,
650–665.

2. Jolma,A., Yan,J., Whitington,T., Toivonen,J., Nitta,K.R., Rastas,P., Morgunova,E.,
Enge,M., Taipale,M., Wei,G., et al. (2013) DNA-binding specificities of human
transcription factors. Cell, 152, 327–339.

3. Johnson,D.S., Mortazavi,A., Myers,R.M. and Wold,B. (2007) Genome-wide mapping of in
vivo protein-DNA interactions. Science, 316, 1497–1502.

4. Robertson,G., Hirst,M., Bainbridge,M., Bilenky,M., Zhao,Y., Zeng,T., Euskirchen,G.,
Bernier,B., Varhol,R., Delaney,A., et al. (2007) Genome-wide profiles of STAT1 DNA
association using chromatin immunoprecipitation and massively parallel sequencing.
Nat. Methods, 4, 651–657.

5. Kulakovskiy,I.V., Vorontsov,I.E., Yevshin,I.S., Sharipov,R.N., Fedorova,A.D.,
Rumynskiy,E.I., Medvedeva,Y.A., Magana-Mora,A., Bajic,V.B., Papatsenko,D.A., et al.
(2018) HOCOMOCO: towards a complete collection of transcription factor binding
models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res.,
46, D252–D259.

6. Fornes,O., Castro-Mondragon,J.A., Khan,A., van der Lee,R., Zhang,X., Richmond,P.A.,
Modi,B.P., Correard,S., Gheorghe,M., Baranašić,D., et al. (2020) JASPAR 2020: update
of the open-access database of transcription factor binding profiles. Nucleic Acids Res.,
48, D87–D92.

7. Newburger,D.E. and Bulyk,M.L. (2009) UniPROBE: an online database of protein binding
microarray data on protein-DNA interactions. Nucleic Acids Res., 37, D77–82.

8. Weirauch,M.T., Yang,A., Albu,M., Cote,A.G., Montenegro-Montero,A., Drewe,P.,
Najafabadi,H.S., Lambert,S.A., Mann,I., Cook,K., et al. (2014) Determination and
inference of eukaryotic transcription factor sequence specificity. Cell, 158, 1431–1443.

9. Wang,J., Zhuang,J., Iyer,S., Lin,X., Whitfield,T.W., Greven,M.C., Pierce,B.G., Dong,X.,
Kundaje,A., Cheng,Y., et al. (2012) Sequence features and chromatin structure around
the genomic regions bound by 119 human transcription factors. Genome Res., 22,
1798–1812.

10. Wang,J., Zhuang,J., Iyer,S., Lin,X.-Y., Greven,M.C., Kim,B.-H., Moore,J., Pierce,B.G.,
Dong,X., Virgil,D., et al. (2013) Factorbook.org: a Wiki-based database for transcription
factor-binding data generated by the ENCODE consortium. Nucleic Acids Res., 41,
D171–6.

11. Quang,D. and Xie,X. (2019) FactorNet: A deep learning framework for predicting cell
type specific transcription factor binding from nucleotide-resolution sequential data.
Methods, 166, 40–47.

12. Avsec,Ž., Weilert,M., Shrikumar,A., Krueger,S., Alexandari,A., Dalal,K., Fropf,R.,
McAnany,C., Gagneur,J., Kundaje,A., et al. (2021) Base-resolution models of
transcription-factor binding reveal soft motif syntax. Nat. Genet., 53, 354–366.

13. Alipanahi,B., Delong,A., Weirauch,M.T. and Frey,B.J. (2015) Predicting the sequence
specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol., 33,

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

http://paperpile.com/b/bG4CHO/o5Ow
http://paperpile.com/b/bG4CHO/o5Ow
http://paperpile.com/b/bG4CHO/o5Ow
http://paperpile.com/b/bG4CHO/utML
http://paperpile.com/b/bG4CHO/utML
http://paperpile.com/b/bG4CHO/utML
http://paperpile.com/b/bG4CHO/UaJug
http://paperpile.com/b/bG4CHO/UaJug
http://paperpile.com/b/bG4CHO/KXQYq
http://paperpile.com/b/bG4CHO/KXQYq
http://paperpile.com/b/bG4CHO/KXQYq
http://paperpile.com/b/bG4CHO/KXQYq
http://paperpile.com/b/bG4CHO/tgQn
http://paperpile.com/b/bG4CHO/tgQn
http://paperpile.com/b/bG4CHO/tgQn
http://paperpile.com/b/bG4CHO/tgQn
http://paperpile.com/b/bG4CHO/tgQn
http://paperpile.com/b/bG4CHO/mY4Jt
http://paperpile.com/b/bG4CHO/mY4Jt
http://paperpile.com/b/bG4CHO/mY4Jt
http://paperpile.com/b/bG4CHO/mY4Jt
http://paperpile.com/b/bG4CHO/doZwL
http://paperpile.com/b/bG4CHO/doZwL
http://paperpile.com/b/bG4CHO/arPH
http://paperpile.com/b/bG4CHO/arPH
http://paperpile.com/b/bG4CHO/arPH
http://paperpile.com/b/bG4CHO/bUOq
http://paperpile.com/b/bG4CHO/bUOq
http://paperpile.com/b/bG4CHO/bUOq
http://paperpile.com/b/bG4CHO/bUOq
http://paperpile.com/b/bG4CHO/2Ym4
http://paperpile.com/b/bG4CHO/2Ym4
http://paperpile.com/b/bG4CHO/2Ym4
http://paperpile.com/b/bG4CHO/2Ym4
http://paperpile.com/b/bG4CHO/rus5D
http://paperpile.com/b/bG4CHO/rus5D
http://paperpile.com/b/bG4CHO/rus5D
http://paperpile.com/b/bG4CHO/wDDj
http://paperpile.com/b/bG4CHO/wDDj
http://paperpile.com/b/bG4CHO/wDDj
http://paperpile.com/b/bG4CHO/2Dqj
http://paperpile.com/b/bG4CHO/2Dqj
https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


831–838.

14. ENCODE Project Consortium, Moore,J.E., Purcaro,M.J., Pratt,H.E., Epstein,C.B.,
Shoresh,N., Adrian,J., Kawli,T., Davis,C.A., Dobin,A., et al. (2020) Expanded
encyclopaedias of DNA elements in the human and mouse genomes. Nature, 583,
699–710.

15. Finucane,H.K., Bulik-Sullivan,B., Gusev,A., Trynka,G., Reshef,Y., Loh,P.-R., Anttila,V.,
Xu,H., Zang,C., Farh,K., et al. (2015) Partitioning heritability by functional annotation
using genome-wide association summary statistics. Nat. Genet., 47, 1228–1235.

16. Khan,A., Fornes,O., Stigliani,A., Gheorghe,M., Castro-Mondragon,J.A., van der Lee,R.,
Bessy,A., Chèneby,J., Kulkarni,S.R., Tan,G., et al. (2018) JASPAR 2018: update of the
open-access database of transcription factor binding profiles and its web framework.
Nucleic Acids Res., 46, D260–D266.

17. Mathelier,A., Fornes,O., Arenillas,D.J., Chen,C.-Y., Denay,G., Lee,J., Shi,W., Shyr,C.,
Tan,G., Worsley-Hunt,R., et al. (2016) JASPAR 2016: a major expansion and update of
the open-access database of transcription factor binding profiles. Nucleic Acids Res.,
44, D110–5.

18. Hume,M.A., Barrera,L.A., Gisselbrecht,S.S. and Bulyk,M.L. (2015) UniPROBE, update
2015: new tools and content for the online database of protein-binding microarray data
on protein-DNA interactions. Nucleic Acids Res., 43, D117–22.

19. Chen,C., Hou,J., Shi,X., Yang,H., Birchler,J.A. and Cheng,J. (2021) DeepGRN:
prediction of transcription factor binding site across cell-types using attention-based
deep neural networks. BMC Bioinformatics, 22, 38.

20. Bailey,T.L., Johnson,J., Grant,C.E. and Noble,W.S. (2015) The MEME Suite. Nucleic
Acids Res., 43, W39–49.

21. Becht,E., McInnes,L., Healy,J., Dutertre,C.-A., Kwok,I.W.H., Ng,L.G., Ginhoux,F. and
Newell,E.W. (2018) Dimensionality reduction for visualizing single-cell data using UMAP.
Nat. Biotechnol., 10.1038/nbt.4314.

22. McInnes,L., Healy,J. and Melville,J. (2018) UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat].

23. Gupta,S., Stamatoyannopoulos,J.A., Bailey,T.L. and Noble,W.S. (2007) Quantifying
similarity between motifs. Genome Biol., 8, R24.

24. Yin,Y., Morgunova,E., Jolma,A., Kaasinen,E., Sahu,B., Khund-Sayeed,S., Das,P.K.,
Kivioja,T., Dave,K., Zhong,F., et al. (2017) Impact of cytosine methylation on DNA
binding specificities of human transcription factors. Science, 356.

25. Pollard,K.S., Hubisz,M.J., Rosenbloom,K.R. and Siepel,A. (2010) Detection of
nonneutral substitution rates on mammalian phylogenies. Genome Res., 20, 110–121.

26. Kundaje,A., Kyriazopoulou-Panagiotopoulou,S., Libbrecht,M., Smith,C.L., Raha,D.,
Winters,E.E., Johnson,S.M., Snyder,M., Batzoglou,S. and Sidow,A. (2012) Ubiquitous
heterogeneity and asymmetry of the chromatin environment at regulatory elements.
Genome Res., 22, 1735–1747.

27. Mignone,P., Pio,G., D’Elia,D. and Ceci,M. (2020) Exploiting transfer learning for the
reconstruction of the human gene regulatory network. Bioinformatics, 36, 1553–1561.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

http://paperpile.com/b/bG4CHO/2Dqj
http://paperpile.com/b/bG4CHO/fFpe
http://paperpile.com/b/bG4CHO/fFpe
http://paperpile.com/b/bG4CHO/fFpe
http://paperpile.com/b/bG4CHO/fFpe
http://paperpile.com/b/bG4CHO/8lE7
http://paperpile.com/b/bG4CHO/8lE7
http://paperpile.com/b/bG4CHO/8lE7
http://paperpile.com/b/bG4CHO/FL9k
http://paperpile.com/b/bG4CHO/FL9k
http://paperpile.com/b/bG4CHO/FL9k
http://paperpile.com/b/bG4CHO/FL9k
http://paperpile.com/b/bG4CHO/Esm4
http://paperpile.com/b/bG4CHO/Esm4
http://paperpile.com/b/bG4CHO/Esm4
http://paperpile.com/b/bG4CHO/Esm4
http://paperpile.com/b/bG4CHO/IE82
http://paperpile.com/b/bG4CHO/IE82
http://paperpile.com/b/bG4CHO/IE82
http://paperpile.com/b/bG4CHO/Sgje
http://paperpile.com/b/bG4CHO/Sgje
http://paperpile.com/b/bG4CHO/Sgje
http://paperpile.com/b/bG4CHO/KoaW
http://paperpile.com/b/bG4CHO/KoaW
http://paperpile.com/b/bG4CHO/oX9u
http://paperpile.com/b/bG4CHO/oX9u
http://paperpile.com/b/bG4CHO/oX9u
http://dx.doi.org/10.1038/nbt.4314
http://paperpile.com/b/bG4CHO/oX9u
http://paperpile.com/b/bG4CHO/LXOd
http://paperpile.com/b/bG4CHO/LXOd
http://paperpile.com/b/bG4CHO/8ao6
http://paperpile.com/b/bG4CHO/8ao6
http://paperpile.com/b/bG4CHO/CNLj
http://paperpile.com/b/bG4CHO/CNLj
http://paperpile.com/b/bG4CHO/CNLj
http://paperpile.com/b/bG4CHO/L1GZ
http://paperpile.com/b/bG4CHO/L1GZ
http://paperpile.com/b/bG4CHO/Efqe
http://paperpile.com/b/bG4CHO/Efqe
http://paperpile.com/b/bG4CHO/Efqe
http://paperpile.com/b/bG4CHO/Efqe
http://paperpile.com/b/bG4CHO/oeIO
http://paperpile.com/b/bG4CHO/oeIO
https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


28. Heinzinger,M., Elnaggar,A., Wang,Y., Dallago,C., Nechaev,D., Matthes,F. and Rost,B.
(2019) Modeling aspects of the language of life through transfer-learning protein
sequences. BMC Bioinformatics, 20, 723.

29. Kent,W.J., Sugnet,C.W., Furey,T.S., Roskin,K.M., Pringle,T.H., Zahler,A.M. and
Haussler,D. (2002) The human genome browser at UCSC. Genome Res., 12,
996–1006.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

http://paperpile.com/b/bG4CHO/59NR
http://paperpile.com/b/bG4CHO/59NR
http://paperpile.com/b/bG4CHO/59NR
http://paperpile.com/b/bG4CHO/x2Hb
http://paperpile.com/b/bG4CHO/x2Hb
http://paperpile.com/b/bG4CHO/x2Hb
https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


Factorbook: an Updated Catalog of Transcription Factor
Motifs and Candidate Regulatory Motif Sites

Henry E. Pratt*, Gregory R. Andrews*, Nishigandha Phalke, Michael J. Purcaro, Arjan
van der Velde, Jill E. Moore, and Zhiping Weng†

*Joint first authors

Program in Bioinformatics and Integrative Biology, UMass Medical School, Worcester, MA,
USA

† To whom correspondence should be addressed. Tel: +1 508 856 8866; Fax: +1 508 856
0017; Email: zhiping.weng@umassmed.edu

METHODS

Motif discovery with MEME
We downloaded replicated IDR peaks from the ENCODE Portal for all non-histone ChIP-seq
experiments in human and mouse from ENCODE Phases II and III. A full list of experiments
and corresponding peak files is provided in Supplement 1. We then resized all peaks to a
uniform 300 bp centered on the peak summit as provided in the peak file, sorted peaks by
q-value, took the top 500, converted coordinates to FASTA sequence using the GRCh38
reference genome sequence and twoBitToFa tool from UCSC (1), and performed MEME (2)
with the following parameters: -zoops -dna -mod -nmotifs 5 -minw 6 -maxw 30 -revcomp.
The pipeline is available with a corresponding Docker image on GitHub
(https://www.github.com/weng-lab/motif-workflow).

Comparison with existing databases
We downloaded the full set of HOCOMOCO (3) and JASPAR 2020 (4, 5) motifs in MEME
format. We then identified best matches for each of our HT-SELEX motifs and each of our
MEME motifs using TOMTOM (2) with default parameters. The pipeline is available with a
corresponding Docker image on GitHub (https://www.github.com/weng-lab/motif-workflow).

Motif site identification within ChIP-seq peaks
We converted the original peak coordinates for each IDR peak set to a FASTA using the
GRCh38 reference genome sequence and twoBitToFa tool from UCSC (1). We then
scanned these sequences for each MEME motif using FIMO (2) with default parameters. For
each motif instance, we then computed a single peak centrality value as the distance
between the peak summit and the motif site center. Negative values indicate a motif
upstream of the peak summit (toward a smaller genomic coordinate) for plus-strand motifs
and downstream (toward a larger coordinate) for minus strand motifs. The pipeline is
available with a corresponding Docker image on GitHub
(https://www.github.com/weng-lab/motif-workflow).
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Conservation and DNase-seq aggregation
For each motif, we computed conservation and DNase-seq aggregate plots for all ChIP-seq
peak motif sites. For conservation, we used the pyBigWig package to calculate the phyloP
100-way conservation at base-pair resolution for 1,000 base pairs in each direction centered
on the motif site center; aggregation was strand-aware (directionality was reversed for minus
strand motifs). For DNase-seq, we used the pysam package to count 5’ cut sites at base pair
resolution within a 1,000 base pair window in each direction centered on the motif site
center, also reversing orientation for minus-strand motifs. The pipeline is available with a
corresponding Docker image on GitHub (https://www.github.com/weng-lab/motif-workflow).

Motif site identification within rDHSs
We obtained representative DNase hypersensitive sites (rDHSs) from V3 of the ENCODE
Registry of candidate Cis-Regulatory Elements (cCREs) (6) from the ENCODE Portal
(accession ENCSR890YQQ) and converted the rDHSs to a FASTA using the GRCh38
reference sequence and twoBitToFa. We then scanned these sequences for each MEME
motif passing QC using FIMO (2) with default parameters except for --max-stored-scores,
which we set to 10 million given the larger size of the rDHS set. We then filtered the resulting
motif sites at three different FIMO p-value thresholds: 10-6, 10-7, and 10-8.

Motif UMAP
Distance metric
For each motif pair, we compute a Euclidean distance between position weight matrices for
all possible alignments between the motifs, once with both oriented forward and once with
one motif reverse complemented. For each aligned position, we compute the sum of the
squared differences in information content for A in motif 1 vs. A in motif 2, C in motif 1 vs. C
in motif 2, etc. When one motif extends past the end of the other, we consider the second
motif to have 0 information content for each of A, C, G, and T at any extra positions. We take
the square root of the summed differences at each position and normalize by dividing the
total by the length of the shorter motif. The final distance between motif 1 and motif 2 is the
minimum distance across all alignments, i.e., the distance at the optimal alignment. This
distance metric is used both for UMAP and motif searching on Factorbook.

UMAP
We precomputed a distance matrix for all MEME motifs passing QC and a second distance
matrix for all HT-SELEX motifs (7) using our Euclidean distance metric described above. We
then performed UMAP on these distance matrices using the umap-learn package in Python
with the following hyperparameters: min_dist=0.1, n_neighbors=5, 6, 7, 8, 9, or 10. For
plotting, we colored motifs according to the DNA binding domain family for the corresponding
factor as annotated by Lambert and colleagues (8).

ZMotif: A convolution neural network for identifying transcription factor
binding sites in TF ChIP-seq peaks
Network architecture
An input DNA sequence is one-hot-encoded (A=[1,0,0,0], C=[0,1,0,0], G=[0,0,1,0] and
T=[0,0,0,1]). Sequences are padded with stretches of Ns ([0.25, 0.25. 0.25, 0.25]) on either
side, equal in length to the width of the convolution kernels. If sequences are of variable
length, they are padded with Ns to the length of the longest sequence. The reverse
complement of the encoded sequence is generated and passed along with the original
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sequence to a shared convolution layer consisting of 16 kernels of width 24 and a linear
activation function. Training a single, shared convolution layer on both the forward and
reverse complement representations prevents the learning of averaged and duplicated motif
representations. The bias of each convolution kernel is set to 0 so only the product of the
convolution kernel and the one-hot-encoded sequence is passed to subsequent layers. The
convolved sequence is then passed to two max pooling layers; the first over the strand
dimension and the second over the spatial dimension. The maximum value over both
dimensions for each kernel is then passed to a single output neuron with a sigmoid
activation. The resulting logistic regression architecture, lacking intermediate layers,
prevents the learning of distributed motif representations across multiple kernels. The
weights of the output neuron are constrained to be greater than 0 to prevent the network
from learning anti-motifs (i.e., motifs enriched in the negative sequence set compared to the
positive set). The architecture is implemented and trained in Keras with the Model API and
Tensorflow as the backend.

Convolution kernel k-mer initialization
A single convolution kernel is initialized with the one-hot-encoded representation of the most
enriched 6-mer in input sequences. Initializing a single convolution kernel using the most
strongly enriched k-mer often ensures that the corresponding motif is learned in full,
especially for TFs with longer recognition sequences. All 6-mers in the input sequence are
counted. The most significant k-mer is determined using a two-proportion z-test under the
null hypothesis that the proportions of each individual k-mer are equal. The most enriched
6-mer is one-hot-encoded and inserted into the center of the first convolution kernel with the
remaining values generated at random according to a uniform distribution.

Network training
Input sequences are randomly shuffled with 10% held out to monitor model accuracy and
assess motif significance post-training. Sequences are fed to the network with a batch size
of 32. If the classes are imbalanced, an equal number of positive and negative sequences
(generated by dinucleotide shuffling positive sequences) are drawn in each batch. The
model is trained using the Adam optimizer and cyclical learning rates between 0.1 and 0.01.
The simple network architecture and small batch size permit the use of relatively high
learning rates without experiencing exploding gradients. The network is trained for 1000
epochs consisting of 5000 total sequences. Fixing the number of epochs and sequences per
epoch allows for a consistent training time independent of input datasets size. Stochastic
weight averaging is used to create an ensemble model of the last 200 epochs.

Motif discovery from convolution kernels
Input positive sequences (HT-SELEX reads) are scanned simultaneously with all trained
convolution kernels. If a given subsequence produces an activation greater than 0 (i.e.,
under our network constraints must contribute positively to the probability that the given
sequence is bound by the TF), it is considered an instance of the corresponding kernel (also
called a TF binding site). All instances of a given kernel are stacked and summed to produce
a position frequency matrix and the corresponding position probability matrix (PPM) and
position weight matrix (PWM). Motifs are trimmed by removing all positions from each end
having an information content less than 0.25.

Assessing motif significance
For each convolution kernel, all output weights corresponding to every other kernel are set to
0. The area under the receiver-operator curve (auROC) of the resulting single feature logistic
regression evaluated on the held out sequence set is used as a measure of the discovered
motif’s significance.
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LD Score Regression
We downloaded summary statistics for GWAS for three distinct traits from the UK Biobank:
red blood cell distribution width, rheumatoid arthritis, and serum cholesterol level. We used
bedtools merge to generate union sets of ChIP-seq peaks for seven ENCODE cell lines:
K562, GM12878, HepG2, MCF-7, H1-hESC, A549, and HEK293, by combining all IDR
peaks from each of these cell lines. We then used bedtools intersect and bedtools subtract
to identify motif sites and non-motif site sequences, respectively, within these peaks. We
lifted both sets of regions from GRCh38 down to hg19 for compatibility with the summary
statistics. We also lifted down the complete set of ChIP-seq motif sites as well as each set of
union ChIP-seq peaks without motif sites removed.

We built a custom Docker image with all dependencies required for LDSC pre-installed
(available for use through GitHub; see https://www.github.com/weng-lab/ldr). We then built
LD score regression models for each set of lifted down regions by extending v2.2 of the
LDSC baseline model (9) using the following command within the Docker image:

python -m ldr.annotations --files {input regions} --extend-annotations

--file-output-prefix annotations --output-directory {LD output path}

We packaged the outputs from this command into TAR archives for each region set. We then
partitioned heritability for each set of summary statistics using the same Docker image and
the following command:

python -m ldr.annotations --ld-scores {LD output path}

--summary-statistics {summary statistics} --skip-munge --ld-prefix

annotations > {output}.h2.txt

We then plotted heritability enrichment and error for each partition for each set of summary
statistics.

1. Kent,W.J., Sugnet,C.W., Furey,T.S., Roskin,K.M., Pringle,T.H., Zahler,A.M. and
Haussler,D. (2002) The human genome browser at UCSC. Genome Res., 12,
996–1006.

2. Bailey,T.L., Boden,M., Buske,F.A., Frith,M., Grant,C.E., Clementi,L., Ren,J., Li,W.W. and
Noble,W.S. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids
Res., 37, W202–8.

3. Kulakovskiy,I.V., Vorontsov,I.E., Yevshin,I.S., Sharipov,R.N., Fedorova,A.D.,
Rumynskiy,E.I., Medvedeva,Y.A., Magana-Mora,A., Bajic,V.B., Papatsenko,D.A., et al.
(2018) HOCOMOCO: towards a complete collection of transcription factor binding
models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res.,
46, D252–D259.

4. Khan,A., Fornes,O., Stigliani,A., Gheorghe,M., Castro-Mondragon,J.A., van der Lee,R.,
Bessy,A., Chèneby,J., Kulkarni,S.R., Tan,G., et al. (2018) JASPAR 2018: update of the
open-access database of transcription factor binding profiles and its web framework.
Nucleic Acids Res., 46, D260–D266.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://www.github.com/weng-lab/ldr
https://paperpile.com/c/UiFqPV/uDdZ
http://paperpile.com/b/UiFqPV/Hc8e
http://paperpile.com/b/UiFqPV/Hc8e
http://paperpile.com/b/UiFqPV/Hc8e
http://paperpile.com/b/UiFqPV/vTuv
http://paperpile.com/b/UiFqPV/vTuv
http://paperpile.com/b/UiFqPV/vTuv
http://paperpile.com/b/UiFqPV/0O5B
http://paperpile.com/b/UiFqPV/0O5B
http://paperpile.com/b/UiFqPV/0O5B
http://paperpile.com/b/UiFqPV/0O5B
http://paperpile.com/b/UiFqPV/0O5B
http://paperpile.com/b/UiFqPV/NTv6
http://paperpile.com/b/UiFqPV/NTv6
http://paperpile.com/b/UiFqPV/NTv6
http://paperpile.com/b/UiFqPV/NTv6
https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


5. Fornes,O., Castro-Mondragon,J.A., Khan,A., van der Lee,R., Zhang,X., Richmond,P.A.,
Modi,B.P., Correard,S., Gheorghe,M., Baranašić,D., et al. (2020) JASPAR 2020: update
of the open-access database of transcription factor binding profiles. Nucleic Acids Res.,
48, D87–D92.

6. ENCODE Project Consortium, Moore,J.E., Purcaro,M.J., Pratt,H.E., Epstein,C.B.,
Shoresh,N., Adrian,J., Kawli,T., Davis,C.A., Dobin,A., et al. (2020) Expanded
encyclopaedias of DNA elements in the human and mouse genomes. Nature, 583,
699–710.

7. Jolma,A., Yan,J., Whitington,T., Toivonen,J., Nitta,K.R., Rastas,P., Morgunova,E.,
Enge,M., Taipale,M., Wei,G., et al. (2013) DNA-binding specificities of human
transcription factors. Cell, 152, 327–339.

8. Lambert,S.A., Jolma,A., Campitelli,L.F., Das,P.K., Yin,Y., Albu,M., Chen,X., Taipale,J.,
Hughes,T.R. and Weirauch,M.T. (2018) The Human Transcription Factors. Cell, 172,
650–665.

9. Finucane,H.K., Bulik-Sullivan,B., Gusev,A., Trynka,G., Reshef,Y., Loh,P.-R., Anttila,V.,
Xu,H., Zang,C., Farh,K., et al. (2015) Partitioning heritability by functional annotation
using genome-wide association summary statistics. Nat. Genet., 47, 1228–1235.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

http://paperpile.com/b/UiFqPV/TjHt
http://paperpile.com/b/UiFqPV/TjHt
http://paperpile.com/b/UiFqPV/TjHt
http://paperpile.com/b/UiFqPV/TjHt
http://paperpile.com/b/UiFqPV/vAhK
http://paperpile.com/b/UiFqPV/vAhK
http://paperpile.com/b/UiFqPV/vAhK
http://paperpile.com/b/UiFqPV/vAhK
http://paperpile.com/b/UiFqPV/ZhQg
http://paperpile.com/b/UiFqPV/ZhQg
http://paperpile.com/b/UiFqPV/ZhQg
http://paperpile.com/b/UiFqPV/gLwl
http://paperpile.com/b/UiFqPV/gLwl
http://paperpile.com/b/UiFqPV/gLwl
http://paperpile.com/b/UiFqPV/uDdZ
http://paperpile.com/b/UiFqPV/uDdZ
http://paperpile.com/b/UiFqPV/uDdZ
https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


Pratt Andrews et al., Figure 1

A B

C D

OR

G
AT

A
4 

ex
pr

es
si

on
 le

ve
l (

lo
g1

0 T
P

M
)

-1

0

1

2

3

4

ad
re

na
l g

la
nd

br
ai

n

co
lo

n

co
nn

ec
tiv

e 
tis

su
e

ep
ith

el
iu

m

pa
nc

re
as

go
na

d

he
ar

t

th
ym

us

lim
b

lu
ng

ly
m

ph
 n

od
es

sk
el

et
al

 m
us

cl
e

sk
in

st
om

ac
h

th
yr

oi
d 

gl
an

d

ut
er

us

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


G
distance (bp) from 

-300 0 300

5

6

7

8

ZNF407 motif center

F

D
N

as
e 

I c
le

av
ag

e

m
ot

if 
de

ns
ity

 (x
0.

00
1)

0

4

8

12

16

-300 0 300

E

distance (bp) from 
ZNF407 ChIP peak summit

 e
vo

lu
tio

na
ry

 c
on

se
rv

at
io

n

0

0.2

0.4

0.6

0.8

-30 -10 10 30

D

distance (bp) from 
ZNF407 motif sites

0

1

2

in
fo

rm
at

io
n 

(b
its

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ZNF407 motif

C

not ChIPPed (324)

no motif identified (3)

460 candidate motifs

motif identified (101)

database match (334)novel (126)

428 likely sequence-specific TFs
B

U
M

AP
 2

-10

-5

0

5

10

15

20

30

UMAP 1

-1
0 30-5 0 5 10 15 20

A
FOS/JUN

ZNF143

REST
YY1

GATA

FOX
CTCF

BHLH

CEBP

NFKB

FOS/JUN

NFY

ESR1/NR3C1

CREB/ATF

MAF

ZNF407

motifs from ChIP-seq

Pratt Andrews et al., Figure 2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


true positive rate

fa
ls

e 
po

si
tiv

e 
ra

te

HT-SELEX cycle
1

cy
cl

e 
1 2

cy
cl

e 
2

3

cy
cl

e 
3

4

cy
cl

e 
4

1 2 3 4 5 6
0

1

2

in
fo

rm
at

io
n 

(b
its

)

1 2 3 4 5 6
0

1

2

in
fo

rm
at

io
n 

(b
its

)

1 2 3 4 5 6
0

1

2

in
fo

rm
at

io
n 

(b
its

)

1 2 3 4 5 6 7
0

1

2

in
fo

rm
at

io
n 

(b
its

)

fra
ct

io
na

l o
f r

ea
ds

0

0.2

0.4

0.6

0.8

1

 w
ith

 m
ot

if

HT-SELEX cycle
1 2 3 4

GATA motif from HT-SELEX

Pratt Andrews et al., Figure 3

BA

RFX

GATAbHLH

DUXA

HOX

GCM

DPRXEGR

OVOL

NFATC

CEBP

CUX

SIX

FOX3

TCF7

TFAP

ZFP41

SOX

MAF

SP1
NKX

ZIC/CTCF OTX
MEF

bHLH

POU
OSR

NFI

HSF

NR

motifs from HT-SELEX

-15

-10

-5

0

5

10

15

20

25

-1
5

-1
0 -5 0 5 10 15 20 25

U
M

AP
 2

UMAP 1

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


E
OR

D

0.5

0.6

motif
width

distance from motif center (bp)

0.4

0.3

-150 -100 -50 0 50 100 150

D
N

as
e 

I c
le

av
ag

e

C

0.45

distance from motif center (bp)

0.40

0.30

0.25

0.35

-40 -20 0 20 40

ph
yl

oP
 1

00
-w

ay
ev

ol
ut

io
na

ry
 c

on
se

rv
at

io
n

motif
width

% rDHS 
basepairs

outside motif

p<10-6

p<10-7

p<10-8

N
. r

D
H

Ss
 (m

ill
io

n)

N. distinct motifs in rDHS

0.2

0.4

0.6

0.8

1

0
1 2 3 4 ≥5

p<10-6

p<10-7

p<10-8

B

%
 rD

H
S

s 
w

ith
 a

 m
ot

if

50

100

0

–log 10 (FIMO p-value)
>6 >7 >8

fra
ct

io
n 

of
 a

ct
iv

e 
rD

H
S

s
w

ith
 a

t l
ea

st
 o

ne
 T

F 
m

ot
if

ad
re

na
l g

la
nd

pl
ac

en
ta

br
ai

n

ey
e

ki
dn

ey

liv
er

in
te

st
in

e

go
na

d

he
ar

t

th
ym

us

m
ou

th

lim
b

lu
ng

bo
ne

sk
el

et
al

 m
us

cl
e

sk
in

st
om

ac
h

sp
in

al
 c

or
d

ur
et

er

0.5

0.3

0.3

0.2

A
* *

Pratt Andrews et al., Figure 4

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


0 10 200 5 10 15

non-synonymous (0.36%)
synonymous (0.35%)

fine-mapped GTEx eQTLs (0.1%)
coding (1.6%)

TSS (1.9%)
GM12878, in motif (2.8%)

GM12878, outside motif (8.2%)
K562, in motif (4.8%)

K562, outside motif (17.7%)
HepG2, in motif (4.2%)

HepG2, outside motif (21.3%)
MCF-7, in motif (3.5%)

MCF-7, outside motif (14.2%)
H1, in motif (3.4%)

H1, outside motif (16.8%)
HEK293, in motif (3.8%)

HEK293, outside motif (11.2%)
A549, in motif (4.3%)

A549, outside motif (29.1%)

0 5 10 15 20

D

heribility enrichment for heribility enrichment forheribility enrichment for
red blood cell distribution width rheumatoid arthritis serum cholesterol

CB

ALT (42%)

REF (58%)

rs6484778

E-box

A

Pratt Andrews et al., Figure 5

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


Pratt Andrews et al., Figure 6

-2000 2000-1000 0 1000

B

H
3K

4m
e1

 C
hI

P
 s

ig
na

l

0

2

4

6

8

distance from ChIP peak summit (bp)

TSS-proximal TSS-distal

-2000 2000-1000 0 1000H
3K

4m
e3

 C
hI

P
 s

ig
na

l

0

2

4

8

6

10

distance from ChIP peak summit (bp)

TSS-proximal TSS-distal

CA
1.6

1.4

1.2

1.0

0.8

0.6

motif sites

distance from motif center (bp)
-2000 2000-1500 -1000 0 500-500 1000 1500

M
N

as
e 

si
gn

al

+ strand
– strand

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/


CTCF peaks
CTCF motif

with motifs

sequence scaled
by PhyloP 100-way

A

B

coordinates

scale
40 kb

53,316,000 53,328,000 53,340,000 53,352,000 53,364,000 53,376,000 53,388,000

GENCODE

GENCODE v29 transcripts
AAAS-220 AC073611.1-201 SP1-204

AAAS-202 AC073611.1-202
AAAS-201 AC073611.1-203

AAAS-217 SP1-203
AAAS-212 AC073611.1-204

AAAS-207
AAAS-203

DNase
Aggregated DNase-seq from ENCODE

CTCF ChIP
CTCF ChIP-seq signal in GM12878 (ENCFF485CGE)

phyloP
phyloP 100-way conservation

CTCF peaks
IDR thresholded CTCF peaks in GM12878 (ENCFF929GSU; zoom in to see motif sites)

hg38:chr12

Pratt Andrews et al., Figure 7

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463518
http://creativecommons.org/licenses/by-nc/4.0/

	Factorbook Database (September 2021)
	Factorbook Database Supplement
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

