1	Serine/arginine-rich splicing factor 7 plays oncogenic roles through specific regulation of
2	m ⁶ A RNA modification
3	
4	Yixian Cun ^{1,2,#} , Sanqi An ^{3,4,5,#} , Haiqing Zheng ^{1,#} , Jing Lan ⁶ , Wenfang Chen ^{3,4} , Wanjun Luo ⁶ ,
5	Chengguo Yao ⁴ , Xincheng Li ^{1,2} , Xiang Huang ^{3,4} , Xiang Sun ^{3,4} , Zehong Wu ^{3,4} , Yameng Hu ^{1,2} ,
6	Ziwen Li ^{1,2} , Shuxia Zhang ^{1,2} , Geyan Wu ⁷ , Meisongzhu Yang ^{1,2} , Miaoling Tang ⁷ , Ruyuan Yu ^{1,2} ,
7	Xinyi Liao ^{1,2} , Guicheng Gao ^{3,4} , Wei Zhao ⁴ , Jinkai Wang ^{3,4,8,*} , Jun Li ^{1,2,*}
8	
9	1 Department of Rehabilitation Medicine, Key Laboratory of Liver Disease of Guangdong
10	Province, The Third Affiliated Hospital, Sun Yat-sen University
11	2 Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University
12	3 Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen
13	University
14	4 Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and
15	Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080,
16	China
17	5 Biosafety Level-3 Laboratory, Life Sciences Institute, Guangxi Medical University,
18	Nanning 530020, China.
19	6 Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen
20	University
21	7 State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University

- 22 8 RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University,
- 23 Guangzhou 510080, China
- 24 [#] Equal contribution.
- 25 ^{*} Corresponding authors.
- 26 Correspondence to:
- 27 Jun Li, Ph.D. Key Laboratory of Liver Disease of Guangdong Province, The Third
- Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, Guangdong
- 29 510080, China; Phone: +86(20)87335828; Fax: +86(20)87335828; E-mail:
- 30 <u>lijun37@mail.sysu.edu.cn</u>
- Jinkai Wang, PhD. Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan
- Road II, Guangzhou, Guangdong 510080, China; Phone: +86(20)87335142; Fax:
- 33 +86(20)87331209; Email: <u>wangjk@mail.sysu.edu.cn</u>
- 34
- 35 Number of figures: 7
- 36 Number of supplementary figures: 11
- 37 Number of supplementary tables: 3

39 Abstract

40	Serine/Arginine-Rich Splicing Factor 7 (SRSF7), which is previously recognized as a
41	splicing factor, has been revealed to play oncogenic roles in multiple cancers. However, the
42	mechanisms underlying its oncogenic roles have not been well addressed. Here, based on
43	N6-methyladenosine (m ⁶ A) co-methylation network analysis across diverse cell lines, we
44	found SRSF7 positively correlated with glioblastoma cell-specific m ⁶ A methylation. We then
45	proved SRSF7 is a novel m ⁶ A regulator that specifically facilitates the m ⁶ A methylation near
46	its binding sites on the mRNAs involved in cell proliferation and migration through recruiting
47	methyltransferase complex. Moreover, SRSF7 promotes the proliferation and migration of
48	glioblastoma cells largely dependent on the m ⁶ A methyltransferase. The two single-nucleotide
49	m ⁶ A sites on <i>PBK</i> are regulated by SRSF7 and partially mediate the effects of SRSF7 on
50	glioblastoma cells through recognition by IGF2BP2. Together, our discovery revealed a novel
51	role of SRSF7 in regulating m ⁶ A and timely confirmed the existence and functional
52	importance of RNA binding protein (RBP) mediated specific regulation of m ⁶ A.
53	KEYWORDS: N6-methyladenosine; SRSF7; specific regulation; glioblastoma
54	

56 Introduction

57	Serine/arginine-rich splicing factor 7 (SRSF7, also known as 9G8) belongs to the
58	serine/arginine (SR) protein family, which contains 7 canonical members (SRSF1-7) [1]. It is
59	previously known as a splicing factor to regulate alternative splicing as well as a regulator of
60	alternative polyadenylation [2-5]. SRSF7 is also an adaptor of NXF1, which exports mature
61	RNAs out of nucleus, and plays important roles in coupling RNA alternative splicing and
62	polyadenylation to mRNA export [5]. It was reported that hyperphosphorylated SRSF7 binds
63	to pre-mRNA for splicing and it becomes hypophosphorylated during splicing, the later form
64	of SRSF7 can bind the NXF1 for the subsequent export of the spliced RNAs [3].
65	The oncogenic roles of SRSF7 have been widely reported. It was discovered as a critical
66	gene required for cell growth or viability in multiple cancer cell lines based on a genome-wide
67	CRISPR-Cas9 screening [6]. Aberrantly elevated expression of SRSF7 had been observed in
68	lung cancer, colon cancer and gastric cancer [7-9]. It was also reported to be highly expressed
69	in glioblastoma (GBM, grade IV glioma) and associated with poor patient outcome [10].
70	However, although SRSF7 has been reported to regulate splicing, APA, and mRNA export,
71	the mechanisms underlying its oncogenic roles have not been well addressed.
72	N6-methyladenosine (m ⁶ A) is a reversible RNA modification prevalent in eukaryotic
73	messenger RNAs (mRNAs) and long non-coding RNA [11-13]. It plays critical roles in
74	various biological process, including stem cell differentiation, immune system, learning and
75	memory, cancer development [14-18]. The m ⁶ A modification is marked by the m ⁶ A
76	methyltransferase (also known as "writers") complex, which consists of METTL3, METTL14,
77	WTAP, VIRMA, ZC3H13, RBM15/15B and HAKAI (also known as CBLL1) [19, 20]. m ⁶ A
78	can also be removed by demethylases (also known as "erasers") including FTO and ALKBH5
79	[21, 22]. The m ⁶ A-modified RNAs are recognized by a series of readers such as YTH-domain

81	degradation of methylated RNAs and is important for cell fate transitions [23-26]. IGF2BP1-3
82	are a different type of readers that can stabilize the methylated RNAs and play oncogenic
83	roles in multiple types of cancers [27]. In addition, m ⁶ A can also down-regulate gene
84	expression through degrading chromosome-associated regulatory RNAs (carRNAs) [28] and
85	up-regulate gene expression by demethylating H3K9me2 histone modification [29].
86	Unlike global regulation of m ⁶ A by the methyltransferase complex, selective
87	modification of m ⁶ A on specific targets can shape the cell-specific methylome and mediate
88	specific functions in diverse biological systems. There are different mechanisms that confer
89	the specificities of m ⁶ A. Although the components of methyltransferase complex VIRMA and
90	ZC3H13 mainly affect the m ⁶ A at stop codon and 3' UTR, their substantial effects on m ⁶ A
91	suggest fundamental but limited specificities for m ⁶ A installation, consistent with that they do
92	not have RNA binding domain and ZC3H13 works to take the methyltransferase into nucleus
93	[30, 31]. Since m ⁶ A occurs co-transcriptionally, m ⁶ A could be specifically regulated
94	co-transcriptionally through H3K36me3 and transcription factors. Depletion of H3K36me3
95	also resulted in global reduction of m ⁶ A, especially the m ⁶ A at 3'UTRs and protein-coding
96	regions, suggesting a fundamental but relatively low specificity in regulation of m ⁶ A [32]. On
97	the other hand, transcription factors CEBPZ and SMAD2/3 can recruit the methyltransferase
98	to methylate the nascent RNAs being transcribed by them and play important roles in acute
99	myeloid leukemia oncogenesis and stem cells differentiation respectively [33]. The
100	specificities of transcription factors are conferred by their binding specificities on the
101	promoters. Therefore, they can mediate highly specific methylation other than global
102	regulation of m ⁶ A. However, transcription factors usually bind at the 5' end thus cannot
103	precisely direct the m ⁶ A modification at specific loci of the RNAs. In contrast to transcription
104	factors, which select RNAs other than sites, RBPs have the potential to precisely guide the
105	methylation at specific sites of RNAs in the similar manner as they regulate alternative

106	splicing [34]. Recently, we developed a co-methylation network based computational
107	framework and revealed a large number of RBPs act as m ⁶ A trans-regulators to specifically
108	regulate m ⁶ A to form cell-specific m ⁶ A methylomes [35]. However, firm experimental
109	validations and profound characterizations are still lacking, and whether these RBPs play
110	important functional roles through regulating the m ⁶ A of specific sites are not clear either.
111	In this study, we found SRSF7 specifically regulates the m ⁶ A on genes involved in cell
112	proliferation and migration and plays oncogenic roles through recruiting the m ⁶ A
113	methyltransferase near its binding sites in GBM cells. Our discovery revealed a novel role of
114	SRSF7 in regulating m ⁶ A and timely confirmed the existence and importance of
115	RBP-mediated specific regulation of m ⁶ A.

117 **Results**

SRSF7 is a potential m⁶A regulator that interacts with m⁶A methyltransferase complex 118 To elucidate how cells establish cell-specific m⁶A methylomes, we previously developed 119 a co-methylation network based computational framework to systematically identify the 120 cell-specific *trans*-regulators of m⁶A [35]. We first identified the RBPs with gene expression 121 correlated with the m⁶A ratio (level) of specific co-methylation module (a subset of 122 123 co-methylated m⁶A peaks) across 25 different cell lines (the detailed information of cell lines can be found in the supplementary table of [35]). By further investigating the enrichment of 124 binding targets of the RBPs within their correlated modules based on CLIP-seq data of 157 125 RBPs and motifs of 89 RBPs, we revealed widespread cell-specific trans-regulation of m⁶A 126 127 and predicted 32 high-confidence m⁶A regulators [35]. It is of great importance to understand whether these RBP-mediated specific regulation of m⁶A plays critical functional roles. This 128 129 co-methylation network provides the information about cell specificities of different modules, which give valuable clues for us to speculate the functions of these modules. We realized that 130 one of the modules (M5) were highly methylated in two glioblastoma (GBM) cell lines 131 (PBT003 and GSC) (Figure 1A). Coincidently, although not significant enough to bear 132 multiple testing correction, the mostly enriched Gene Ontology (GO) terms for the 133 134 corresponding genes of this module are glioma and cancer related pathways, suggesting that the specific methylation of this module may play a role in the development of glioma (Figure 135 1B). We then tried to dissect the RBPs that direct the specific $m^{6}A$ methylation of this glioma 136 related module. As we have previously determined [35] and shown at the bottom of Figure 1A, 137 there were 6 RBPs with gene expression significantly correlated with the m⁶A index (the first 138 component of PCA) of module M5, including 2 positive and 4 negative correlations. We 139 140 further analyzed the prognostic relevance of these 6 RBPs in GBM patients from Chinese 141 Glioma Genome Atlas (CGGA) dataset [36]. We found that the expression of SRSF7 was

142 most significantly correlated with the survival time of GBM patients (Figure 1C). Highly expression of SRSF7 was associated with highly m⁶A methylation of the m⁶A sites in this 143 module and poor prognosis of the GBM patients (Figure 1D and E). Although the other 5 144 RBPs may also regulate m⁶A of this module in GBM cells, they cannot really affect the 145 prognosis of GBM patients, we therefore focused on SRSF7 to investigate whether and how it 146 plays important role in GBM through specific regulation of m⁶A. 147 To test whether SRSF7 is a genuine $m^{6}A$ regulator that facilitates the installation of $m^{6}A$ 148 at specific m⁶A sties, we first examined whether SRSF7 can interact with the core m⁶A 149 methyltransferase complex composed of METTL3, METTL14, and WTAP in a GBM cell line 150 U87MG. Co-immunoprecipitation (Co-IP) assays revealed that Flag-tagged SRSF7 could pull 151 152 down the endogenous METTL3, METTL14, and WTAP independent of RNA (Figure 1F and 153 G). Reciprocally, both Flag-tagged METTL3 and WTAP could also pull down endogenous 154 SRSF7 in an RNA independent manner respectively in U87MG cells (Figure 1H and I). Similar results were observed in 293T cells, suggesting the interaction between SRSF7 and 155 methyltransferase complex is a universal mechanism (Figure S1A). In addition, we performed 156 co-IP using truncated SRSF7 with RRM (RNA recognition motif) domain and RS 157 (arginine/serine) domain deleted respectively in U87MG cells and found deletion of RRM 158 domain other than RS domain could disrupt the interaction with METTL3, METTL14, and 159 160 WTAP, indicating that SRSF7 interacts with the methyltransferase complex through its RPM

161 domain (Figure 1J and Figure S1B).

We then used 3D-SIM super-resolution microscopy to test the protein colocalization between SRSF7 and m⁶A methyltransferase complex in U87MG cells. We found a portion of SRSF7 proteins were colocalized with portions of METTL3, METTL14, and WTAP in the nuclear respectively, implying that at least a part of SRSF7 proteins can specifically regulate

166 m^6A (Figure 1K). The above results suggest that SRSF7 may be able to regulate m^6A through 167 recruiting the m^6A methyltransferase complex.

168 SRSF7 specifically facilitates the m⁶A modification near its binding sites

To further investigate whether SRSF7 regulates m⁶A modification, we knocked down 169 SRSF7 and performed m⁶A-seq to examine the m⁶A alteration due to *SRSF7* depletion in 170 U87MG cells. The typical m⁶A motif was enriched in the m⁶A peaks of both knockdown and 171 control cells (Figure S2A). As shown in Figure S2B, the m⁶A peaks were enriched near the 172 stop codons in both knockdown and control cells, which is consistent with previous studies 173 [11, 12]. In contrast to the RBPs in the m⁶A methyltransferase complex, which usually cause 174 massive loss of m⁶A upon depletion [20], depletion of *SRSF7* did not alter the distribution 175 (Figure S2B) and overall peak intensities of the m⁶A peaks (Figure S2C), suggesting that 176 SRSF7 may be a different type of m⁶A regulator that regulates a small number of highly 177 specific m⁶A sites in U87MG cells. 178 We then determined the differentially methylated m⁶A sites between *SRSF7* knockdown 179 and control to understand the specific sites regulated by SRSF7. After SRSF7 knockdown, 180 3334 m⁶A peaks in 2440 genes were down-regulated; in contrast, only 2447 peaks in 1850 181 genes were up-regulated (Figure 2A and Figure S2D). Gene ontology (GO) analysis and 182 KEGG analysis showed that these differentially methylated genes were enriched in terms 183 including cell division, cell migration, cell proliferation, and pathway in cancer (Figure S2E 184 and F). 185

To further confirm that SRSF7 regulates the m⁶A sites through binding near the m⁶A
sites, we performed iCLIP-seq [37] for SRSF7 to identify the transcriptome-wide binding
sites of SRSF7 in U87MG cells. We identified 40476 iCLIP-seq peaks using CTK took kit [38]
(Table S1). The enriched motifs were similar as the previously reported motif of SRSF7
(GAYGAY) [39], suggesting the high reliability of our iCLIP-seq data (Figure 2B).

Interestingly, the m⁶A motif were also enriched in the SRSF7 iCLIP-seq peaks (Figure 2B), 191 suggesting the co-localization of SRSF7 with m⁶A sites. We found only 7.9% and 3.1% of the 192 peaks were in introns and noncoding RNAs respectively; in contrast, 66.9% of the peaks were 193 in protein-coding regions, which are similar as the distribution of m⁶A (Figure S2G). However, 194 the peaks were more enriched at the 5' end of the protein-coding regions, which was distinct 195 from m⁶A peaks; while the peaks colocalized with m⁶A peaks were enriched at both 5' end 196 and 3'end, further suggesting that SRSF7 specifically regulates only a portion of m⁶A peaks 197 other than global regulation (Figure 2C and Figure S2H). 198

We were then interested in whether SRSF7 binding were related to the m⁶A alteration 199 due to SRSF7 depletion. We found that although the overall m⁶A ratios of all m⁶A peaks do 200 201 not change upon SRSF7 knockdown, the m⁶A ratios of m⁶A peaks colocalized with SRSF7 202 iCLIP-seq peaks were significantly down-regulated upon SRSF7 knockdown, suggesting SRSF7 can only promote the m⁶A near its binding sites (Figure 2D). As compared with the 203 m⁶A peaks unbound by SRSF7, the m⁶A ratio of SRSF7 bound m⁶A peaks were significantly 204 down-regulated due to SRSF7 knockdown, indicating that SRSF7 specifically facilitates the 205 m⁶A near its binding sites (Figure 2E). As shown in Figure 2F, we also revealed significant 206 enrichment of SRSF7 iCLIP-seq peaks in (or overlap with) the down-regulated m⁶A peaks 207 upon SRSF7 knockdown. In addition, the SRSF7 binding sites were significantly enriched in 208 m⁶A peaks down-regulated upon SRSF7 knockdown as compared with the up-regulated and 209 unchanged m⁶A peaks, further supporting that SRSF7 binding results in locally enhanced 210 other than decreased m⁶A methylation (Figure 2G). On the other hand, although the module 211 was constructed from diverse cell lines, the SRSF7 binding sites in U87MG cells were still 212 marginally significantly enriched (P = 0.03) in the orange module, which is a larger module 213 214 merged by M5 and other 4 correlated modules, as compared with other modules. The m⁶A 215 peaks in the orange module were also significantly down-regulated upon SRSF7 knockdown

as compared with the m⁶A peaks in other modules, suggesting SRSF7 promotes the m⁶A of

this module (Figure S2I).

218 SRSF7 significantly regulates gene expression through regulating m⁶A

We then studied whether SRSF7 affects the gene expression through regulating m⁶A in 219 U87MG cell. The expression of 1012 and 1275 genes were up-regulated and down-regulated 220 respectively due to SRSF7 knockdown (Figure S3A). GO enrichment analyses found that the 221 down-regulated genes were enriched in terms such as cell division, cell migration, cell cycle, 222 consistent with the GO terms enriched in differentially methylated genes (Figure S3B). 223 However, the up-regulated genes were enriched in terms macroautophagy, vesicle docking, 224 protein transport, which were quite different from the GO terms enriched in differentially 225 226 methylated genes (Figure S3C). Gene set enrichment analysis (GSEA) also support the gene 227 expression changes were involved in cell division, cell cytoskeleton and cell cycle (Figure 228 S3D-F). We found both the up-regulated genes and down-regulated genes significantly enriched for $m^{6}A$ modified genes as compared with the genes without expression change (P =229 4.8×10^{-14} for up-regulated genes; $P = 3.2 \times 10^{-20}$ for down-regulated genes; two-tailed 230 231 Chi-square test; Figure 2H). This result suggests SRSF7 can both up-regulate and down-regulate gene expression through m⁶A, consistent with the previous reports that m⁶A 232 has dual effects on gene expression depends on how these m⁶A sites are recognized by diverse 233 m^{6} A readers [23, 27-29]. To further clarify the direct effects of SRSF7, we investigated the 234 effects of SRSF7 binding on gene expression though regulating m⁶A. As shown in Figure 2I, 235 the genes with SRSF7 targeted m⁶A peaks are overall significantly down-regulated as 236 compared with non-modified genes upon SRSF7 knockdown ($P = 3.6 \times 10^{-11}$, two-tailed 237 Wilcoxon test, Figure 2I). 238

Artificially tethering SRSF7 on RNA directs *de novo* m6A methylation through
 recruiting METTL3

241	We then performed a tethering assay to test whether direct tethering of SRSF7 protein
242	was sufficient to dictate the m ⁶ A modification nearby in U87MG cells. For this purpose, we
243	respectively fused the full-length CDS region SRSF7 and METTL3 with λ peptide, which can
244	specifically recognize BOX B RNA [40]. We utilized a previously established F-luc-5BoxB
245	luciferase reporter, which has five Box B sequence in the 3'UTR and a m ⁶ A motif (GGACU)
246	73 bp upstream of the stop codon (Figure 2J) [30]. We found tethering SRSF7 and METTL3
247	could both significantly up-regulate the modification of m ⁶ A site on the reporter to the similar
248	degree using SELECT method [41], indicating that SRSF7 can similarly dictate the
249	methylation of nearby m ⁶ A site as METTL3 (Figure 2K). A disruptive synonymous point
250	mutation in the m^6A motif, which changes the GGA <u>C</u> U to GGA <u>U</u> U, completely disrupted the
251	effects of m ⁶ A change by tethering SRSF7 and METTL3 respectively, indicating the high
252	reliability of the tethering assay (Figure 2K). In addition, we found that binding of METTL3
253	on F-luc RNA was significantly up-regulated when tethered SRSF7 to F-luc-5BoxB,
254	indicating that SRSF7 promotes the installation of m ⁶ A through recruiting METTL3 (Figure
255	2L).
256	SRSF7 specifically targets and facilitates the methylation of m ⁶ A on genes involved in

257 cell proliferation and migration

258 Since SRSF7 iCLIP-seq peaks are significantly enriched in down-regulated m⁶A peaks

upon SRSF7 knockdown (Figure 2G), to further dissect the specific m^6A targets that directly

regulated by SRSF7 binding, we intersected the 40476 SRSF7 iCLIP-seq peaks and 3334

- down-regulated m⁶A peaks upon SRSF7 knockdown to obtained 911 SRSF7 directly
- regulated m⁶A peaks in 760 genes (Figure 3A and Table S2). As shown in Figure 3B, the
- distribution of SRSF7 directly regulated m⁶A peaks was still similar as the canonical
- distribution of m^6A peaks, suggesting SRSF7 are not accounting for the formation of the
- canonical topology of m^6 A like VIRMA [30]. Gene Otology analysis revealed that the genes

with SRSF7 directly regulated m⁶A peaks were mainly involved in cell migration, cell adhesion, cell proliferation, glioma, cell cycle and pathway in cancer (Figure 3C and Figure S4A). In contrast, the genes with SRSF7 iCLIP-seq peaks not colocalize with m⁶A peaks were enriched in totally different terms which were not directly related to cell proliferation and migration (Figure S4B). The results suggest that the elevated expression of SRSF7 in GBM patients may involve in migration and proliferation of the cancer cells through regulating the m⁶A of corresponding genes.

To further validate the 911 SRSF7 directly regulated m^6A peaks, we then selected 3 m^6A

peaks in 3 tumorigenic genes involved in migration or proliferation of GBM. All of the 3

275 peaks on *PBK*, *MCM4*, and *ROBO1* were successfully validated (the signal tracks of these

 m^{6} A peaks were demonstrated in Figure 3D-E and Figure S4C). We detected 4

single-nucleotide m⁶A sites in the 3 m⁶A peaks according to the public available miCLIP-seq

data [42, 43]. The methylation levels of the 4 m^6A sites in the 3 m^6A peaks (*PBK* at 1041 and

279 1071, MCM4 at 1515, ROBO1 at 672) were significantly decreased upon SRSF7 knockdown

and METTL3 knockdown respectively based on SELECT method [41], indicating SRSF7 has

similar effects of promoting m^6A as METTL3 on these selected m^6A sites (Figure 3F-I). We

also found that the binding efficiencies of METTL3, METTL14, and WTAP on the RNAs of

these 3 genes were significantly reduced upon *SRSF7* knockdown based on RIP-qPCR

(Figure 3J-L). Collectively, these results show that SRSF7 promotes m⁶A modification on

tumorigenic genes through recruiting METTL3.

SRSF7 promotes proliferation and migration of glioblastoma cells partially dependent on METTL3

Since SRSF7 specifically regulates the m^6A of tumorigenic genes in GBM cells, we therefore wanted to confirm whether it plays important roles in GBM. We found the expression of *SRSF7* was highly elevated in glioma specimens, especially in glioblastoma

291	(grade IV) tissues according to CGGA data (Figure 4A), which was confirmed by
292	Immunohistochemistry (IHC) in human glioma tissues (Figure 4B) and consistent with
293	previous report [10]. To further confirm this finding, we tested the expression of SRSF7 in 11
294	GBM cell lines as well as normal human astrocytes (NHAs). We found the mRNA expression
295	of SRSF7 was significantly elevated in most of the glioma cell lines and the protein level was
296	highly expressed in all glioma cell lines as compared with NHA (Figure 4C and D).
297	Because the genes with SRSF7 directly regulated m ⁶ A peaks were enriched in cell
298	proliferation and migration related GO terms (Figure 3C), we knocked down SRSF7 in
299	U87MG cells and LN229 cells and performed EdU, colony formation, and transwell assays to
300	test the effects of SRSF7 on cell proliferation and migration. We found overexpression of
301	SRSF7 prompted the cell proliferation and migration of these two cell lines (Figure 4E-F and
302	Figure S5A). Consistently, depletion of SRSF7 significantly impaired the proliferation and
303	migration in U87MG and LN229 cell lines (Figure 4G-H and Figure S5B-D) and
304	overexpression of SRSF7 can rescue the inhibition of proliferation and migration caused by
305	SRSF7 knockdown (Figure S5E-G), which were similar as the effects of METTL3 knockdown
306	in the same cell lines [44, 45]. Although METTL3 has been reported to regulate the stemness
307	of GBM cells [44-47], the genes with SRSF7 directly regulated m ⁶ A peaks have no
308	enrichment of stemness related terms (Figure 3C). Here, we found neither knockdown or
309	overexpression of SRSF7 could affect the neurosphere formation in U87MG cells, which
310	suggesting that SRSF7 plays more specific roles in GBM than METTL3 through specific
311	regulation of m ⁶ A (Figure S5H). To investigate the oncogenic role of SRSF7 in GBM cells <i>in</i>
312	vivo, we utilized an intracranial xenograft tumor model, in which we transplanted SRSF7
313	depleted as well as control U87MG stable cell lines into the nude mice. Consistent with the in
314	vitro findings, SRSF7 knockdown significantly inhibited the growth of glioma xenografts
315	(Figure 4I-K). We further confirmed that SRSF7 cannot regulate the gene or protein

316	expression of the core methyltransferase complex (Figure 5A and Figure S6A-E), and
317	METTL3 or WTAP cannot regulate the expression of SRSF7 either in U87MG or LN229
318	cells (Figure S6F-G). In addition, SRSF7 knockdown did not change the nuclear speckle
319	localization of METTL3, METTL14, or WTAP (Figure S6H-J). The above results indicate
320	that SRSF7 promotes the proliferation and migration, which are usually related to oncogenic
321	roles, of GBM cells.
322	It was reported that METTL3 plays oncogenic roles in GBM [48-51], we were therefore
323	interested in whether SRSF7 plays oncogenic roles through specifically guiding METTL3 to
324	oncogenic genes. We found METTL3 knockdown largely, although not completely, disrupted
325	the effects of SRSF7 overexpression on promoting the migration (Figure 5A-C) and
326	proliferation (Figure 5D-F) of U87MG and LN229 cell, indicating that SRSF7 regulates
327	migration and proliferation partially depends on METTL3. The above results are consistent
328	with our model that SRSF7 specifically guides METTL3 to the specific oncogenes and
329	METTL3 takes in charge to install the m ⁶ A on these RNAs.
330	SRSF7 promotes the proliferation and migration of GBM cells partially through the
331	m ⁶ A on <i>PBK</i> mRNA
332	We were then interested in the downstream targets of SRSF7 that mediated the
333	proliferation and migration changes of GBM cells via m ⁶ A. Out of the 760 genes with SRSF7
334	directly regulated m ⁶ A peaks, <i>PBK</i> is the most significantly down-regulated gene upon <i>SRSF7</i>

knockdown. Meanwhile, as shown in Figure 3D and Figure 3F-G, we have confirmed that

- 336 SRSF7 knockdown significantly reduced the m^6A of two m^6A sites on PBK (A1041 and
- A1071). PBK is also a serine/threonine protein kinase which is aberrantly overexpressed in
- various cancers and plays important roles in promoting the proliferation and migration of
- multiple cancers including glioma [52-56]. Based on the CGGA dataset, *PBK* is significantly
- higher expressed in WHO IV of glioma patients as compared with WHO II and WHO III, the

341	highly expression of PBK is significantly associated with poor prognosis in GBM (Figure
342	S7A-B). Furthermore, the gene expression of <i>PBK</i> is positively correlated with <i>SRSF7</i> and
343	METTL3 based on CGGA dataset, suggesting a regulatory role between them (Figure 6A and
344	Figure S7C). We found that overexpression of PBK could partially rescue the SRSF7
345	knockdown induced inhibition of proliferation and migration of U87MG and LN229 cells,
346	indicating that PBK is an important downstream target of SRSF7 and partially mediated the
347	effects of SRSF7 on promoting the proliferation and migration of GBM cells (Figure 6B-C
348	and Figure S7D-E). We were therefore interested in whether and how the expression of PBK
349	was regulated by SRSF7.
350	First, we tested whether SRSF7 played a regulator role on <i>PBK</i> through regulating its
351	m ⁶ A. We found that SRSF7 knockdown significantly decreased the mRNA and protein
352	expression of <i>PBK</i> in U87MG cells (Figure 6D and E). Overexpression of <i>SRSF7</i>
353	significantly up-regulated the gene expression of <i>PBK</i> , and <i>METTL3</i> knockdown largely
354	disrupted the effect of SRSF7 on the expression of <i>PBK</i> in U87MG cells, indicating that
355	SRSF7 regulates <i>PBK</i> depends on METTL3 (Figure 6F and Figure S7F-G).
356	We then asked how the m^6A of <i>PBK</i> affects its expression. We found <i>SRSF7</i> knockdown
357	also significantly promoted the degradation of PBK mRNAs, suggesting that SRSF7 increase
358	<i>PBK</i> gene expression through promoting the stability of <i>PBK</i> mRNAs (Figure 6G). To further
359	confirm this regulation of RNA stability depends on the m^6A of <i>PBK</i> , we introduced two
360	synonymous A to G mutations to disrupt the two m^6A sites on <i>PBK</i> (Figure 6H). We found
361	the overexpression of <i>PBK</i> mutants exhibited significantly lower expression and lower
362	stability of <i>PBK</i> mRNA than overexpression of wild type <i>PBK</i> , suggesting the modification of
363	the two m^6A sites on <i>PBK</i> are essential for the stability of <i>PBK</i> mRNA (Figure 6I and J).
364	Because m ⁶ A readers IGF2BP1-3 have been reported to promote the stabilities of mRNAs
365	and play oncogenic roles in multiple cancers [27]. We then tested whether IGF2BP2, a gene

366 significantly up-regulated in GBM, could affect the RNA stability of *PBK* through binding the m⁶A sites. We found knockdown of *IGF2BP2* decreased the expression and stability of 367 endogenous PBK mRNA (Figure 6K and Figure S7H), which is consistent with the finding 368 369 that the gene expression of *IGF2BP2* is positively correlated with *PBK* based on CGGA dataset (Figure S7I). Knockdown of *IGF2BP2* could also significantly decrease the stability 370 of the exogenous overexpressed wild type PBK other than PBK mutants with the two m⁶A 371 sites disrupted, suggesting that the regulatory roles of IGF2BP2 on the stability of PBK 372 depends on the two m⁶A sites (Figure 6L). 373

374 SRSF7 regulates m⁶A independent of alternative splicing and polyadenylation

Since SRSF7 was previously recognized as a splicing factor [2-4], to test whether SRSF7 375 376 can regulate alternative splicing in U87MG cells, we analyzed the differential alternative 377 splicing of input RNAs between SRSF7 knockdown and control using rMATS [57]. We found 378 1344 differentially spliced events, including 734 skipped exons (SE), 222 retained introns 379 (RI), 129 alternative spliced 5' splice sites (A5SS), 173 alternative spliced 3' splice sites (A3SS), and 86 mutually exclusive exons (MXE). Of note, none of PBK, MCM4, or ROBO1 380 381 has alternative splicing change upon SRSF7 knockdown. We then used rMAPS2 [58] to study the enrichment of SRSF7 iCLIP-seq peaks near the splice sites of differentially spliced SE 382 383 events, which are the most abundant type for reliable analyses. We found the iCLIP-seq 384 targets of SRSF7 were significantly enriched in the alternative exons of the differentially 385 spliced evens, suggesting SRSF7 binding directs the splicing changes (Figure 7A). GO 386 analysis revealed that the genes with significant splicing changes were also enriched in 387 functional terms "Cell-cell adhesion", "Cell cycle", suggesting SRSF7 can also regulate cell proliferation and migration through alternative splicing (Figure 7B). For the 760 genes with 388 389 SRSF7 directly regulated m⁶A, only 102 (13.4%) of them had significant splicing changes 390 upon SRSF7 knockdown (Figure 7C), which represented a non-significant overlap that could

391	easily occur by random chance ($P = 0.3$, two tailed Chi-square test). For the 129 m ⁶ A peaks in
392	the 102 genes, only 36 peaks in 28 genes were localized within the local regions of
393	differentially splicing events spanning between upstream exons to downstream exons, of
394	which only 7 m^6 A peaks were located within the alternative exons or regions. The above
395	results indicate that SRSF7 regulates m ⁶ A and alternative splicing independently through
396	distinct binding sites, consistent with our observation that only a part of SRSF7 proteins
397	co-localize with METTL3 and only a part of SRSF7 binding sites can regulate m ⁶ A.
398	Since SRSF7 was also reported to regulate alternative polyadenylation (APA) of RNAs
399	[5], we also analyzed the differential APAs of input RNAs between SRSF7 knockdown and
400	control in U87MG cells using DaPars [59]. We only found 14 APA events were significantly
401	changed (Figure 7D), and none of the SRSF7 directly regulated m ⁶ A peaks was located within
402	the 14 APA regions regulated by SRSF7, suggesting noninterference between SRSF7
403	regulated m ⁶ A and APA.

404 **Discussion**

m⁶A has been reported to play important roles in diverse systems through different 405 targets, there are widespread m⁶A sites on most of the genes with diverse functions, it is very 406 important for cells to dynamically coordinate the methylation of different genes to fulfil 407 specific functions. In this study, we found SRSF7 specifically regulate the m⁶A on genes 408 involved in cell proliferation and migration, it demonstrated an important role of 409 RBP-mediated specific regulation of m⁶A in co-regulating and coordinating a batch of related 410 m⁶A sites in order to modulate the specific functions in cells. These diverse specific m⁶A 411 412 regulators provide a versatile toolkit for cells to deal with various inner and outer stimulates. On the other hand, widespread involvement of RBPs in regulating m⁶A suggests that the m⁶A 413 414 signaling pathways are deeply involved in the regulatory network of genes. Therefore, other signaling or regulatory pathways can modulate the m⁶A through regulating the RBPs in order 415

416 to fulfil the downstream functions. It is very possible that more and more important functional roles of RBP-mediated specific regulation of m⁶A will be revealed in the future. 417 SRSF7 is an adaptor of NXF1, which exports mature RNAs out of nucleus, and plays 418 important roles in coupling RNA alternative splicing and polyadenylation to mRNA export 419 [5]. We revealed a novel role for SRSF7 as a regulator of m⁶A methylation via recruiting 420 METTL3. It is very possible that SRSF7 may also couple m⁶A methylation to mRNA export, 421 422 in this way the specific RNAs must be methylated before export. RBM15, a component of methyltransferase complex, is also an adaptor of NXF1 [60], furthering suggesting that 423 methylation and export could be linked by a series of m⁶A regulators with RNA binding 424 specificities. 425 Interaction of SRSF7 with the nucleic m⁶A reader YTHDC1 has been reported by 426 427 different groups [61, 62]. Xiao et al found SRSF7 does not mediate the splicing change regulated by YTHDC1 [61]. While Kasowitz et al proposed that YTHDC1 regulates 428 alternative polyadenylation through recruiting SRSF7 [62]. The interactions of SRSF7 with 429 both writers and readers of m⁶A suggest that SRSF7 may also work to coordinate the 430 feedback between writing and reading of m⁶A. On the other hand, although the association 431 between m⁶A and alternative polyadenylation has been reported in multiple studies, the 432 mechanism is not clear yet [30, 62-64]. Our finding that SRSF7 specifically regulates m⁶A 433 may provide a novel potential mechanism that link m⁶A and alternative polyadenylation by 434 SRSF7. 435 We found SRSF7 knockdown did not affect the overall peak intensities of all m⁶A peaks, 436 but the overall peak intensities of SRSF7 targeted m⁶A peaks were significantly 437 down-regulated upon SRSF7 knockdown. The indicated fact that SRSF7 only regulates a 438 small portion of m⁶A sites may be a general feature of all specific regulators of m⁶A, it 439 represents the advantage of using specific m⁶A regulators for cells that require precise 440

441	regulation of a small portion of m ⁶ A targets. As we have previously proposed, the specific
442	regulators of m ⁶ A may work in a similar way as splicing factors [35, 65], which usually do
443	not affect the global splicing levels but a small portion of cell-specific splicing events [34].
444	On the other hand, although we have proved that only down-regulated m ⁶ A peaks upon
445	SRSF7 knockdown enriched for SRSF7 binding sites, we cannot rule out there are also
446	indirect effects of SRSF7 knockdown that up-regulates m ⁶ A, which may counteract the direct
447	effects of SRSF7. We found significant ($P < 1 \times 10^{-4}$) enrichment of 8 motifs in the
448	up-regulated m ⁶ A peaks using all m ⁶ A peaks as background, suggesting that other specific
449	regulators may recruit methyltransferase locally as indirect effects of SRSF7 knockdown
450	(Figure S8A).
451	To understand why only a small part of SRSF7 binding peaks can affect m ⁶ A
452	methylation, we performed motif enrichment analysis for the SRSF7 iCLIP-seq peaks that
453	overlapped with the 911 SRSF7 directly regulated m ⁶ A peaks using all SRSF7 iCLIP-seq
454	peaks as background. As shown in Supplementary Figure S8B, there are 10 motifs
455	significantly ($P < 1 \times 10^{-4}$) enriched in the SRSF7 iCLIP-seq peaks that affect m ⁶ A. The most
456	significantly enriched motifs are m ⁶ A motifs, suggesting that the existence of m ⁶ A motif near
457	SRSF7 binding sites are necessary for SRSF7 to promote the m ⁶ A methylation. This is
458	consistent with our finding that tethering SRSF7 promotes the m ⁶ A methylation of a nearby
459	m ⁶ A motif but not the disruptive m ⁶ A motif with mutation right beside the m ⁶ A site (Figure
460	2K). The enrichments of non-m ⁶ A motifs suggesting that the regulatory role of SRSF7 on
461	m ⁶ A may be modulated by other factors colocalized with SRSF7 (Supplementary Figure S8B).
462	On the other hand, it was reported that protein modifications of SRSF7 are important for
463	SRSF7 to play different roles on RNA metabolisms. For example, phosphorylated SRSF7
464	affects RNA splicing, while dephosphorylated SRSF7 promotes nuclear exportation of RNAs
465	[3]. In this study, we found SRSF7 regulated alternative splicing events and alternative

466	polyadenylation events occur independently with m ⁶ A peaks (Figure 7A-D), suggesting that
467	there is also a comparable fraction of SRSF7 binding sites required for proper alternative
468	splicing and alternative polyadenylation other than m ⁶ A in GBM cells, probably more sites
469	take charge for nuclear export of RNAs. In addition, not all RBP binding sites reported by
470	CLIP-seq are functional because the binding may not be strong enough. Considering that
471	there are also a small portion of SRSF7 binding sites that can affect alternative splicing, the
472	number of m ⁶ A regulating SRSF7 binding sites look reasonable for specific regulators that do
473	not affects the nuclear speckle localization of methyltransferase (Figure S6H-I).
474	m ⁶ A has been reported to play important roles in cancer development [48-51]. Global
475	disruption of m ⁶ A by METTL3 depletion has been found to affect tumor growth, invasion,
476	migration, metastasis, chemoresistance, and et al in a variety of cancers via regulating the
477	m ⁶ A of diverse downstream genes [15, 17, 66]. Glioblastoma (GBM, WHO grade IV glioma)
478	is the most prevalent and malignant primary brain tumor, and characterized by rapid tumor
479	growth, highly diffuse infiltration, chemoresistance, as well as poor prognosis, with the
480	median survival of GBM patients less than 15 months after diagnosis [67]. Cui et al reported
481	that METTL3 functions as a tumor suppressor to inhibit the growth and self-renewal of
482	glioblastoma stem cell [47]. Consistently, Zhang et al reported demethylase ALKBH5 is
483	essential for glioblastoma stem cell self-renewal and proliferation [46]. Based on different
484	GBM cell lines used by Cui et al and Zhang et al, another two groups reported that METTL3
485	is highly expressed in GBM cells and plays oncogenic roles in promoting the growth,
486	migration, invasion, and radiotherapy resistance in GBM cells [44, 45]. These diverse and
487	somewhat conflicting roles of m ⁶ A in GBM are mediated by different m ⁶ A targets, suggesting
488	that the roles of m ⁶ A in GBM depends on the contexts and specific downstream m ⁶ A targets.
489	Since different m ⁶ A sites may direct different roles of m ⁶ A on GBM, targeting more specific
490	m ⁶ A sites may be a promising direction in GBM therapy. It is possible that the abnormal

491	expression of <i>trans</i> regulators of m ⁶ A that guide the deposition of METTL3 on highly specific
492	downstream targets may cause dysregulation of specific m ⁶ A sites with more converged
493	functions in GBM. On the other hand, the gene expression of SRSF7 and METTL3 are
494	positively correlated in majority of cancer types of The Cancer Genome Atlas (TCGA)
495	(Figure S9), and both SRSF7 and PBK showed significantly higher gene expression in
496	multiple cancer types (Figure S10-11), suggesting that the regulatory role of SRSF7 on $m^{6}A$
497	may also contribute the tumorigenicities of other cancers. Elucidating the m ⁶ A regulators that
498	underlie this process may provide diverse drug targets with much fewer side effects for a
499	variety of cancers.

501 Materials and methods

502 Cell culture and reagents

- 503 HEK293T cells, the Normal human astrocytes (NHA, ScienCell) and Glioma cell lines,
- including U87MG, LN229, A172, LN18, LN428, LN443, SNB19, T98G, U118MG, U251,
- and U138MG were cultured in Gibco DMEM containing 10% FBS at 37 in a humidified
- incubator with 5% CO₂. All cells used in this study were confirmed mycoplasma-free.

507 **Tissue specimens**

- 508 Both paraffin-embedded normal brain and glioma specimens were collected from glioma
- patients diagnosed from 2001 to 2006 at the First Affiliated Hospital of Sun Yat-sen
- 510 University. Written informed consent and approval was obtained from the Institutional
- 511 Research Ethics Committee of Sun Yat-sen University.

512 Plasmids, siRNAs and stable cell line construction

- 513 For overexpression, the full-length coding region of *SRSF7* was subcloned into the pSin-EF2
- 514 lentiviral system. For gene silencing, short-hairpin RNA (shRNA) oligos were constructed
- 515 into pLKO.1 vector. The psin-EF2-SRSF7 and pLKO.1-shSRSF7#1/2 plasmids were
- transfected into HEK293T cells with packing plasmids pMD2.G and psPAX2 to produce
- 517 lentiviruses. Glioma cell lines were infected with these lentiviruses for 48h respectively, and
- later treated with puromycin for 7 days at a concentration of $0.5 \,\mu$ g/ml to construct stable cell
- 519 lines. In addition, for the plasmids used in co-IP, the Flag-tagged full-length coding regions of
- *SRSF7*, *METTL3*, and *WTAP* were subcloned into pcDNA3.1 vector respectively and were
- transfected into U87MG cells with Lipofectamine 3000 (Invitrogen). For rescue assays, the
- full-length coding region of SRSF7 with synonymous point mutations (mutate
- 523 AGAACTGTATGGATTGCGAGA to AGAACCGTGTGGATCGCGCGC) was inserted into
- 524 pLVX-IRES-neo plasmid to avoid being targeting by shRNAs of *SRSF7*. The PBK

525 overexpression plasmid was constructed by inserting the full-length coding region of the

- 526 major isoform of PBK (RefSeq ID: NM_018492) into pCDH-CMV-MCS-EF1-Puro vector.
- 527 The two synonymous point mutations, which do not change amino acids, were introduced at
- m^6 A sites 1041 and 1071 by mutating A to G respectively.
- 529 Moreover, three *SRSF7* siRNAs, two *METTL3* siRNAs, two *WTAP* siRNAs, and two
- 530 IGF2BP2 siRNAs were purchased from RiboBio, China. All the sequences of siRNA oligos,
- 531 PCR primers, and shRNA oligos are listed in Table S3.

532 **Co-immunoprecipitation** (Co-IP) and Western blot

- Cells were lysed with $1 \times E1A$ lysis buffer (250 mM NaCl, 50 mM HEPES, 0.1% NP-40, 5
- mM EDTA, PH adjusted at 7.5), which supplemented with 1mM PMSF and $1 \times$ protease
- inhibitor cocktail (Sigma-Aldrich). The lysate was sonicated on ice and centrifuged at 4 \square for
- 15 minutes, then immunoprecipitated with Flag beads (M8823, Sigma-Aldrich) overnight.
- 537 The immunoprecipitates were washed five times with $1 \times E1A$ lysis buffer and samples were
- boiled with $2 \times$ sodium dodecyl sulphate (SDS) loading buffer at 100 \square for 10 minutes and
- ready for western blot.
- 540 Western blot was performed by using SDS-polyacrylamide gel electrophoresis,
- transferred onto PVDF membranes, blocked with 5% nonfat milk, and then probed with the
- following antibodies: anti-METTL3 (1:1000, 15073-1-AP, Proteintech), anti-METTL14
- 543 (1:1000, HPA038002, Sigma-Aldrich), anti-WTAP (1:1000, ab195380, Abcam), anti-SRSF7
- 544 (1:1000, 11044-1-AP, Proteintech), anti-PBK (1:1000, 16110-1-AP, Proteintech),
- anti-α-tubulin (1:1000, 66031, Proteintech), anti-Flag (1:1000, F3615, Sigma-Aldrich).

546 **3D Structured Illumination Microscopy (3D-SIM)**

For protein colocalization between SRSF7 and methyltransferase complex, 1.5×10^3 cells of

- 548 SRSF7 (Flag-tagged) overexpressed U87MG stable cell line were seeded into a chambered
- cover glass (Lab-Tek, Cat #155411), and the immunofluorescence staining was performed

550 with Immunofluorescence Application Solutions Kit (CST, #12727) according to the

- 551 manufacturer's protocol. In brief, cells were fixed with 4% formaldehyde the next day, and
- then permeabilized with 0.2% Triton X-100 and blocked with Immunofluorescence Blocking
- 553 Buffer for 1 hour, then incubated with primary antibodies (anti-METTL3: 1:1000, ab195352,
- 554 Abcam; anti-METTL14: 1:200, HPA038002, Sigma-Aldrich; anti-WTAP: 1:500, ab195380,
- Abcam; anti-Flag: 1:200, F3165, Sigma-Aldrich) at 4 □ overnight. The samples were washed
- three times with $1 \times$ Wash Buffer the next day and probed with Alexa 488- and 647-
- 557 conjugated secondary antibodies (Thermo Fisher Scientific). The images were taken by using
- 558 100× oil-immersion objective of A1R N-SIM N-STORM microscope (Nikon). All SIM
- 559 images were cropped and processed with NIS Elements software.
- 560 For nuclear speckle localization of methyltransferase, the U87MG cells were transfected
- with *SRSF7* siRNA and negative control siRNA for 48 hours, and the immunofluorescence
- staining was performed as described above, and incubated with primary antibodies
- 563 (anti-METTL3: 1:1000, ab195352, Abcam; anti-METTL14: 1:200, HPA038002,
- 564 Sigma-Aldrich; anti-WTAP: 1:500, ab195380, Abcam; anti-SC35: 1:200, ab11826, Abcam) at
- 565 4 \Box overnight.

566 **RNA isolation, quantitative reverse transcriptase PCR**

- 567 Total RNA was extracted using Trizol reagent (Thermo Fisher Scientific). 1 µg RNA was
- reverse transcribed using GoScript Reverse Transcription Mix (A2790, Promega,) according
- to the manufacturer's protocol. Quantitative real time PCR was performed using SYBR qPCR
- 570 master Mix (Vazyme). Primers used in the qRT-PCR are listed in Table S3.

571 **m⁶A-seq**

- 572 Low input m⁶A-seq was performed by using a protocol reported by Zeng *et al* [68] with some
- 573 modifications. Briefly, total RNA was isolated from control U87MG cells and U87MG cells

574	transfected with si-SRSF7-1 for 48 hours. A total volume of 8-10 μ g total RNA was
575	fragmented using the 10 \times RNA Fragmentation Buffer (100mM Tris-HCl, 100 mM ZnCl ₂).
576	The fragmented RNA was immunoprecipitated with 5 μ g anti- m ⁶ A antibody (202003,
577	Synaptic Systems), 30 µl protein-A/G magnetic beads (10002D/10004D, Thermo Fisher
578	Scientific), 200U RNase inhibitor (N2611, Promega) in 500 µl IP Buffer (150 mM NaCl, 10
579	mM Tris-HCl, pH 7.5, 0.1% IGEPAL CA-630 in nuclease free H2O) at $4\square$ for 6 hours. Then
580	washed twice using IP buffer and eluted by competition with m ⁶ A sodium salt (M2780,
581	Sigma-Aldrich). For high-throughput sequencing, both input and IP samples were used for
582	library construction with the SMARTer Stranded Total RNA-seq Kit v2 (634413, Takara),
583	and sequenced by Illumina HiSeq X Ten to produce 150 bp paired-end reads.
584	iCLIP-seq
585	iCLIP was performed based on a protocol described by Yao et al [69] with minor
586	modifications. Briefly, U87MG cells were UV-crosslinked with 400 mJ/cm^2 at 254 nm and
587	lysed with 500 μl cell lysis buffer (50 mM Tris–HCl, pH 7.4; 100 mM NaCl; 1 % NP-40; 0.1%
588	SDS; 0.5% sodium deoxycholate), followed by immunoprecipitation with 10 μ g anti-SRSF7
589	antibody (RN079PW, MBL), 100 μl protein A beads (10002D, Thermo Fisher Scientific) at $4\square$
590	overnight and washing as described. After dephosphorylation of the 5' ends of RNAs, linker
591	ligation, RNA 5' end labeling, SDS-PAGE and membrane transfer, the RNA was harvested
592	and reverse transcribed by Superscript III (Thermo Fisher Scientific). The cDNA libraries
593	were generated as protocol described and sequenced by Illumina NovaSeq 6000 to produce
594	50bp single-end reads.
595	Validation of differentially methylated m ⁶ A sites

596 We used SELECT method to validate the differentially methylated m^6A sites according to the

described protocol [41]. Briefly, total RNA was mixed with 40 nM up/down primer and 5 μ M

598 dNTP	1n I / W	$I I \times$	CutSmart	buffer.	The mixture	was annealed	at a tem	perature	gradient
-----------------	----------	--------------	----------	---------	-------------	--------------	----------	----------	----------

- 599 90°C, 1min; 80°C, 1min; 70°C, 1min; 60°C, 1min; 50°C, 1min, and 40°C, 6min. Then 0.5 U
- 600 SplintR ligase, 0.01 U Bst 2.0 DNA polymerase and 10 nmol ATP was added to a final
- volume of 20 μ l and incubated at 40 \square for 20 minutes, denatured at 80 \square for 20 minutes,
- followed by qPCR. The Ct values of SELECT samples at indicated m^6A site were normalized
- to the Ct values of corresponding non-modification control site. Primers used in the SELECT
- assay are listed in Table S3.

605 Tethering assay

- The full-length coding regions of *SRSF7* and *METTL3* fused with a lambda peptide sequence
- were cloned into pcDNA3.1, the plasmid with only a lambda peptide sequence was used as
- negative control. The reporter plasmid (pmirGLO-dual luciferase-5BoxB) and the effector
- plasmids (λ, SRSF7-λ, METTL3-λ) was transfected in U87MG cells at the ratio 1:9. The
- transfected cells were harvested at 24 hours after transfection and the total RNA was extracted
- 611 with Trizol reagent (Thermo Fisher Scientific) and subjected to SELCET analysis [41].
- 612 Primers designed for plasmid construction and SELECT are listed in Table S3.

613 **RNA immunoprecipitation-qPCR analysis**

- 614 Cells were harvested and lysed in NP-40 lysis buffer (20 mM Tris–HCl at pH 7.5, 100 mM
- KCl, 5 mM MgCl₂, and 0.5% NP-40), then cell lysates were immunoprecipitated with $10 \,\mu g$
- anti-METTL3 (15073-1-AP, Proteintech), or anti-METTL14 (26158-1-AP, Proteintech), or
- anti-WTAP (ab195380, Abcam) respectively, and 100 µl protein G beads (10004D, Thermo
- Fisher Scientific) at 4□ overnight, followed by DNase I treatment, proteinase K treatment.
- The bound RNAs were extracted by Trizol reagent, reverse transcribed into cDNAs, and
- 620 subjected to qPCR analysis.

621 Cell proliferation, colony formation assay, migration assay, and sphere formation assay

622	For cell growth curve,	1×10^{3}	cells were seede	ed into 96-well	plates and stained	with MTT
-----	------------------------	-------------------	------------------	-----------------	--------------------	----------

- 623 (Sigma-Aldrich) dye, and measured the absorbance at 570 nm. Colony formation was
- 624 performed by seeding cells (1×10^3) into 12-well plates, cultured for 7 days, then fixed with
- 625 methanol and stained with Crystal violet.
- For EdU assays, 2×10^4 cells were seeded into 48-well plates and EdU assays were
- 627 performed using the EdU Cell Proliferation Assay Kit (Cat.C10310-1, RiboBio, China). Cell
- migration assays were performed by seeding 2×10^4 cells into 24-well transwell
- 629 polycarbonate membrane cell culture inserts and stained with Crystal violet.
- For sphere formation assay, 3×10^3 cells were seeded into Ultra-Low Attachment
- Multiple Well Plate, and cultured in the stem cell culture condition for 7 days.

632 Intracranial Xenograft

- Five-week-old female BALB/c nude mice was obtained from Beijing Vital River (Beijing,
- 634 China) and divided into two groups (SRSF7-KD and control, n=6 per group). Each mouse
- was injected with 5×10^5 U87MG cells which expressing luciferase in the right cerebrum.
- Tumor growth was monitored by Bioluminescent imaging every week. The study protocol
- 637 was approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University
- 638 Cancer Center.

639 **RNA stability assays**

- 640 Cells were treated with 5 μ g/ml actinomycin D (A9415, Sigma-Aldrich) and collected at 0
- hour, 3 hours, 6 hours, 9 hours after treatment. The total RNA was isolated, reverse
- transcribed into cDNA, and subjected to qPCR analysis.

643 **m⁶A-seq data analyses**

- 644 The first end of the raw paired-end reads of the $m^{6}A$ -seq were trimmed to 50 bp from the 3'
- end for $m^{6}A$ peak calling and downstream analyses. We mapped the reads to hg19 human

genome using HISTA2 (v2.1.0) [70]. The m⁶A peaks were identified according to the methods 646 as described in our previous paper [14, 35], which was modified from the method published 647 by Dominissini et al [12]. We created 100 bp sliding windows with 50 bp overlapped along 648 the longest isoforms of each Ensembl annotated gene and calculated the RPKM (Reads Per 649 Kilobase of transcript, per Million mapped reads) for each window for IP and input 650 651 respectively. For each window, the ratio of RPKM+1 between IP and input were calculated as the intensity. The winscore of each window was then calculated as the ratio of intensities 652 between this window and the median of all windows in the same gene. Windows with RPKM > 653 10 in the IP and winscore (enrichment score) > 2 were defined as the enriched windows in 654 each sample. The m⁶A peaks were defined as the enriched windows with winscores greater 655 656 than neighboring windows. The overlapped or just neighboring peaks of the two biological 657 replicates were merged into larger windows and the 100 bp region in the middle of the merged 658 peak were considered as the common peaks, which were further filtered by requiring the winscores > 2 in both replicates. The distributions of m⁶A peaks along 30 bins of mRNA were 659 calculated as we have previously described [14]. 660

The m⁶A ratio, which quantifies m⁶A peaks, of each m⁶A peak were calculated as the 661 ratio of peak RPKM between IP and input. To calculate the fold change of m⁶A ratios upon 662 SRSF7 knockdown, we first took the union of the m⁶A peaks of all samples. The union peaks 663 of two replicates were merged, centralized, and filtered to obtain a set of 100 bp peak regions 664 in the same way as above described for obtaining common peaks. To avoid using the 665 unreliable m⁶A ratios due to tiny denominators, we filtered out the peaks with input window 666 RPKM < 5 at least one sample or m⁶A ratio < 0.1 in any control samples. Then the m⁶A peaks 667 with fold change of m⁶A ratios upon SRSF7 knockdown > 1.5 or < 2/3 were determined as the 668 up-regulated or down-regulated m⁶A peaks respectively. The data were visualized using the 669 670 Integrative Genomics Viewer (IGV) tool [71], the biological replicates were merged and the

average read coverages were used for visualization. StringTie (v1.3.4d) [72] was used to

- calculate the TPMs (Transcripts Per Million) of Ensembl annotated genes using the input
- libraries. We filtered out the genes with mean TPMs < 1 in control samples to avoid using
- unreliable fold change of TPMs due to tiny denominators. Differentially expressed genes were
- determined using DESeq2 [73] according to the read counts of genes calculated by HTSeq
- [74]. The genes with FDR < 0.05 and mean CPM (Counts per Million) > 100 were determined
- as the differentially expressed genes. Gene Ontology analysis was performed using DAVID
- [75] with all expressed genes (TPM >1) as background. The GSEA analysis was performed
- using GSEA (version 2.2.2.0) [76] based on the predefined gene sets from the Molecular
- 680 Signatures Database (MSigDB v5.0) [76].

681 Analyses of the clinical data of glioma patients

- The gene expression, mutation, and clinical data of glioma patients were downloaded from
- 683 CGGA database (<u>http://www.cgga.org.cn/</u>) [36] We used the Cox regression to examine the
- 684 correlations between gene expression indexes of the cancer module and patient survival in
- each cancer type. The gene expression data of all cancer types were downloaded from
- 686 TCGA (https://tcga-data.nci.nih.gov/).

687 iCLIP-seq data analyses

688 We used the CLIP Tool Kit (CTK) to call the peaks from the iCLIP-seq data according to the

- described data processing procedure of iCLIP-seq [38]. HOMER software [77] was used for
- 690 motif enrichment analysis with randomly permutated sequences as the background. The
- 691 overlapped peaks between the peaks of m^6A -seq and iCLIP-seq were determined as the peaks
- with distances < 100 bp using BEDTools [78].

Alternative splicing and alternative polyadenylation (APA) analyses

......

694	We used rMATS [57] to perform the differential alternative splicing analysis using the input
695	RNAs of $m^{6}A$ -seq with FDR < 0.05 as the threshold of significance. The binding enriched of
696	SRSF7 around splicing events were analyzed using rMAPS2. To test whether the genes with
697	alternative splicing and the genes with SRSF7 regulated m ⁶ A are significantly overlapped, we
698	only considered all m ⁶ A modified genes with rMATS detected alternative splicing in the
699	Chi-square test. Differential alternative polyadenylation (APA) analysis was performed using
700	DaPars [59] with FDR < 0.1 as the threshold of significance.

701 Statistics

- 702 Comparisons between two groups were performed using Student's two-tailed *t* test.
- 703 Comparisons during more than two groups are performed using ANOVA. Data represent

mean \pm SEM, *P* value or adjusted *P* value for ANOVA less than 0.05 were considered

- statistically significant. Survival curves were plotted by the Kaplan–Meier method and
- compared by the log-rank test. The statistics of bioinformatic analyses were all described
- along with the results or figures.

.

708 Data Availability Statement

- The raw sequencing reads of m^6A -seq and iCLIP-seq have been deposited in Genome
- 710 Sequence Archive (GSA) for Human under the accession code HRA001166 (reviewer access
- 711 link: https://ngdc.cncb.ac.cn/gsa-human/s/vrR56Et5).

712 Authors' contributions

- JW and JLi conceived and supervised the project; YC, CX, JLan, WL performed experiments
- with the assistances from CY, XL, XH, XS, YH, ZL, SZ, GW, MY, MT, RY, XL, GG, WZ;
- SA and WC performed bioinformatics analyses with the help of ZW; YC draft the manuscript;

716 JW and JLi revised the manuscript. All authors read and approved the final manuscript.

717 Competing interests

718 The authors declare no competing interests.

719 Acknowledgments

- 720 We thank Jianzhao Liu for providing the vectors of tethering assay. This work was supported
- by the National Key R&D Program of China [2018YFA0107200 to JW], the National Natural
- 722 Science Foundation of China [81830082, 82030078, and 81621004 to JL; 31771446 and
- 31970594 to JW], Guangzhou Science and Technology Program [201904010181 to JW],
- Guangzhou Science and Technology Plan Projects [201803010098 to JL]; Natural Science
- Foundation of Guangdong Province [2018B030311009 to JL].

726

727

729 **References**

- Howard JM, Sanford JR. The RNAissance family: SR proteins as multifaceted
 regulators of gene expression. Wiley Interdiscip Rev RNA 2015;6:93-110.
- 732 2. Chen J, Crutchley J, Zhang D, Owzar K, Kastan MB. Identification of a DNA
 733 Damage-Induced Alternative Splicing Pathway That Regulates p53 and Cellular
- 734 Senescence Markers. Cancer Discov 2017;7:766-81.
- Huang Y, Yario TA, Steitz JA. A molecular link between SR protein dephosphorylation
 and mRNA export. Proc Natl Acad Sci U S A 2004;101:9666-70.
- Gao L, Wang J, Wang Y, Andreadis A. SR protein 9G8 modulates splicing of tau exon
 10 via its proximal downstream intron, a clustering region for frontotemporal
 dementia mutations. Mol Cell Neurosci 2007;34:48-58.
- Muller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD,
 Steiner MC, et al. SR proteins are NXF1 adaptors that link alternative RNA processing
 to mRNA export. Genes Dev 2016;30:553-66.
- 6. Behan FM, Iorio F, Picco G, Goncalves E, Beaver CM, Migliardi G, et al.
 Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature
 2019;568:511-6.
- 746 7. Fu Y, Wang Y. SRSF7 knockdown promotes apoptosis of colon and lung cancer cells.
 747 Oncol Lett 2018;15:5545-52.
- Saijo S, Kuwano Y, Masuda K, Nishikawa T, Rokutan K, Nishida K.
 Serine/arginine-rich splicing factor 7 regulates p21-dependent growth arrest in colon
 cancer cells. J Med Invest 2016;63:219-26.
- 9. Park WC, Kim HR, Kang DB, Ryu JS, Choi KH, Lee GO, et al. Comparative
 expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in
 gastric and colorectal cancer. BMC Cancer 2016;16:358.

- 10. Song X, Wan X, Huang T, Zeng C, Sastry N, Wu B, et al. SRSF3-Regulated RNA
- Alternative Splicing Promotes Glioblastoma Tumorigenicity by Affecting Multiple
 Cellular Processes. Cancer Res 2019;79:5288-301.
- Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive
 analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons.
 Cell 2012;149:1635-46.
- Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L,
 Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed
 by m6A-seq. Nature 2012;485:201-6.
- Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in
 messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A
 1974;71:3971-5.
- Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, et al. m(6)A RNA modification
 controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell
 2014;15:707-19.
- Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat Cell Biol
 2019;21:552-9.
- Shulman Z, Stern-Ginossar N. The RNA modification N(6)-methyladenosine as a
 novel regulator of the immune system. Nat Immunol 2020;21:501-12.
- 17. Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer
 2020;20:303-22.
- 18. Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The
 m(6)A epitranscriptome: transcriptome plasticity in brain development and function.
 Nat Rev Neurosci 2020;21:36-51.
- 19. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat

779 Rev Mol Cell Biol 2019;20:608-24.

- Shi H, Wei J, He C. Where, When, and How: Context-Dependent Functions of RNA
 Methylation Writers, Readers, and Erasers. Mol Cell 2019;74:640-50.
- 782 21. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear
- 783 RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011;7:885-7.
- 784 22. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a
- 785 mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol786 Cell 2013;49:18-29.
- GC. Y. 787 23. Wang X. Lu Z. Gomez Α. Hon Yue Han D. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 788 2014;505:117-20. 789
- Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine
 Modulates Messenger RNA Translation Efficiency. Cell 2015;161:1388-99.
- Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, et al. Ythdc2 is an N(6)-methyladenosine
 binding protein that regulates mammalian spermatogenesis. Cell Res
 2017;27:1115-27.
- Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation
 and decay of N(6)-methyladenosine-modified RNA. Cell Res 2017;27:315-28.
- 797 27. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA
 798 N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation.
 799 Nat Cell Biol 2018;20:285-95.
- Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, et al. N (6)-methyladenosine of
 chromosome-associated regulatory RNA regulates chromatin state and transcription.
 Science 2020;367:580-6.
- 803 29. Li Y, Xia L, Tan K, Ye X, Zuo Z, Li M, et al. N(6)-Methyladenosine

- co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet
 2020;52:870-7.
- 30. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, et al. VIRMA mediates preferential
 m(6)A mRNA methylation in 3'UTR and near stop codon and associates with
 alternative polyadenylation. Cell Discov 2018;4:10.
- Wen J, Lv R, Ma H, Shen H, He C, Wang J, et al. Zc3h13 Regulates Nuclear RNA
 m(6)A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Mol Cell
- 811 2018;69**:**1028-38 e6.

822

36.

- 32. Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, et al. Histone H3 trimethylation
 at lysine 36 guides m(6)A RNA modification co-transcriptionally. Nature
 2019;567:414-9.
- 815 33. Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, et al. The
 816 SMAD2/3 interactome reveals that TGFbeta controls m(6)A mRNA methylation in
 817 pluripotency. Nature 2018;555:256-9.
- 818 34. Lee Y, Rio DC. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu
 819 Rev Biochem 2015;84:291-323.
- 820 35. An S, Huang W, Huang X, Cun Y, Cheng W, Sun X, et al. Integrative network analysis
- identifies cell-specific trans regulators of m6A. Nucleic Acids Res 2020;48:1715-29.

Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, et al. Chinese Glioma Genome

- Atlas (CGGA): A Comprehensive Resource with Functional Genomic Data from Chinese Glioma Patients. Genomics Proteomics Bioinformatics 2021.
- 825 37. Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, et al. iCLIP reveals the
 function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct
 827 Mol Biol 2010;17:909-15.
- 828 38. Shah A, Qian Y, Weyn-Vanhentenryck SM, Zhang C. CLIP Tool Kit (CTK): a flexible

- and robust pipeline to analyze CLIP sequencing data. Bioinformatics 2017;33:566-7.
- 830 39. Konigs V, de Oliveira Freitas Machado C, Arnold B, Blumel N, Solovyeva A, Lobbert
- S, et al. SRSF7 maintains its homeostasis through the expression of Split-ORFs and
 nuclear body assembly. Nat Struct Mol Biol 2020;27:260-73.
- 833 40. Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA
 834 degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and
 835 DCP1:DCP2 decapping complexes. Genes Dev 2006;20:1885-98.
- Xiao Y, Wang Y, Tang Q, Wei L, Zhang X, Jia G. An Elongation- and Ligation-Based
 qPCR Amplification Method for the Radiolabeling-Free Detection of Locus-Specific
 N(6) -Methyladenosine Modification. Angew Chem Int Ed Engl 2018;57:15995-6000.
- 42. Tang Y, Chen K, Song B, Ma J, Wu X, Xu Q, et al. m6A-Atlas: a comprehensive
- knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome.
 Nucleic Acids Res 2021;49:D134-D43.
- 43. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR.
 Single-nucleotide-resolution mapping of m6A and m6Am throughout the
 transcriptome. Nat Methods 2015;12:767-72.
- Li F, Yi Y, Miao Y, Long W, Long T, Chen S, et al. N(6)-Methyladenosine Modulates
 Nonsense-Mediated mRNA Decay in Human Glioblastoma. Cancer Res
 2019;79:5785-98.
- 45. Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V, et al. Essential
 role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance
 and radioresistance. Oncogene 2018;37:522-33.
- 46. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A Demethylase
 ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining
 FOXM1 Expression and Cell Proliferation Program. Cancer Cell 2017;31:591-606 e6.

- 47. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m(6)A RNA Methylation Regulates the
- 855 Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep856 2017;18:2622-34.
- 48. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO Plays an Oncogenic Role in
 Acute Myeloid Leukemia as a N(6)-Methyladenosine RNA Demethylase. Cancer Cell
 2017;31:127-41.
- 49. Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, Yu K, et al. m(6)A mRNA methylation
 regulates AKT activity to promote the proliferation and tumorigenicity of endometrial
 cancer. Nat Cell Biol 2018;20:1074-83.
- 50. Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, et al. The m6A reader YTHDF1 promotes
 ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res
 2020;48:3816-31.
- Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, et al. Targeting
 the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in
 Acute Myeloid Leukemia. Cell Stem Cell 2019;25:137-48 e6.
- Shih MC, Chen JY, Wu YC, Jan YH, Yang BM, Lu PJ, et al. TOPK/PBK promotes cell
 migration via modulation of the PI3K/PTEN/AKT pathway and is associated with
 poor prognosis in lung cancer. Oncogene 2012;31:2389-400.
- Ayllon V, O'Connor R. PBK/TOPK promotes tumour cell proliferation through p38
 MAPK activity and regulation of the DNA damage response. Oncogene
 2007;26:3451-61.
- Gao T, Hu Q, Hu X, Lei Q, Feng Z, Yu X, et al. Novel selective TOPK inhibitor
 SKLB-C05 inhibits colorectal carcinoma growth and metastasis. Cancer Lett
 2019;445:11-23.
- 55. Joel M, Mughal AA, Grieg Z, Murrell W, Palmero S, Mikkelsen B, et al. Targeting

- 879 PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and
 880 attenuates tumor growth in vivo. Mol Cancer 2015;14:121.
- 56. Yang QX, Zhong S, He L, Jia XJ, Tang H, Cheng ST, et al. PBK overexpression
 promotes metastasis of hepatocellular carcinoma via activating ETV4-uPAR signaling
 pathway. Cancer Lett 2019;452:90-102.
- Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible
 detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl
 Acad Sci U S A 2014;111:E5593-601.
- 58. Hwang JY, Jung S, Kook TL, Rouchka EC, Bok J, Park JW. rMAPS2: an update of the
 RNA map analysis and plotting server for alternative splicing regulation. Nucleic
 Acids Res 2020;48:W300-W6.
- Sia Z, Donehower LA, Cooper TA, Neilson JR, Wheeler DA, Wagner EJ, et al.
 Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-UTR
 landscape across seven tumour types. Nat Commun 2014;5:5274.
- kindtner S, Zolotukhin AS, Uranishi H, Bear J, Kulkarni V, Smulevitch S, et al.
 RNA-binding motif protein 15 binds to the RNA transport element RTE and provides
 a direct link to the NXF1 export pathway. J Biol Chem 2006;281:36915-28.
- Kiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. Nuclear m(6)A Reader
 YTHDC1 Regulates mRNA Splicing. Mol Cell 2016;61:507-19.
- Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, et al. Nuclear m6A
 reader YTHDC1 regulates alternative polyadenylation and splicing during mouse
 oocyte development. PLoS Genet 2018;14:e1007412.
- 63. Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, et al. A majority of m6A
 residues are in the last exons, allowing the potential for 3' UTR regulation. Genes Dev
 2015;29:2037-53.

- 904 64. Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, et al.
- 905 m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome.
 906 Nat Methods 2016;13:692-8.
- 907 65. Wang J. Integrative analyses of transcriptome data reveal the mechanisms of
 908 post-transcriptional regulation. Brief Funct Genomics 2021:(advance online
 909 publication).
- 66. Lian H, Wang QH, Zhu CB, Ma J, Jin WL. Deciphering the Epitranscriptome in
 Cancer. Trends Cancer 2018;4:207-21.
- 912 67. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008;359:492-507.
- 913 68. Zeng Y, Wang S, Gao S, Soares F, Ahmed M, Guo H, et al. Refined RIP-seq protocol
 914 for epitranscriptome analysis with low input materials. PLoS Biol 2018;16:e2006092.
- 915 69. Yao C, Weng L, Shi Y. Global protein-RNA interaction mapping at single nucleotide
 916 resolution by iCLIP-seq. Methods Mol Biol 2014;1126:399-410.
- 917 70. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment
 918 and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019;37:907-15.
- 919 71. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al.
 920 Integrative genomics viewer. Nat Biotechnol 2011;29:24-6.
- 921 72. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie
 922 enables improved reconstruction of a transcriptome from RNA-seq reads. Nat
 923 Biotechnol 2015;33:290-5.
- P24 73. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
 P25 RNA-seq data with DESeq2. Genome Biol 2014;15:550.
- 926 74. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with
 927 high-throughput sequencing data. Bioinformatics 2015;31:166-9.
- 928 75. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths

toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res

930 2009;37**:**1-13.

- 931 76. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.
- Gene set enrichment analysis: a knowledge-based approach for interpreting
 genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-50.
- 934 77. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations
- of lineage-determining transcription factors prime cis-regulatory elements required for
- macrophage and B cell identities. Mol Cell 2010;38:576-89.
- 937 78. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
 938 features. Bioinformatics 2010;26:841-2.

939

941 Figure legends

Figure 1 SRSF7 is a potential m⁶A regulator that interacts with m⁶A methyltransferase complex

944	A. The boxplot (upper panel) and heatmap representing the m^6A ratios of the m^6A peaks
945	within the co-methylation module M5 as well as the heatmap representing the gene
946	expressions of the RBPs that significantly correlated with the m ⁶ A indexes of M5 (lower
947	panel). The cell lines are sorted according to the m ⁶ A indexes of M5, glioblastoma cell lines
948	were colored red. B. GO enrichment analysis of corresponding genes in module M5. C. The
949	x-axis represents the logarithm transformed P values of the correlations between the
950	expression of RBPs and the m ⁶ A indexes of co-methylation module M5; the y-axis represents
951	the logarithm transformed P values of the overall survival (OS) of these 6 RBPs in GBM
952	patients. D. Scatter plots representing the correlation between the expression of SRSF7 and
953	$m^{6}A$ indexes of module M5 across 25 cell lines. The <i>P</i> value and correlation coefficient are
954	indicated at the bottom right corner. E. Kaplan-Meier analysis of overall survival (OS) based
955	on SRSF7 expression of GBM patients from CGGA dataset. F, G. Western blots showing
956	Flag-tagged SRSF7 interacts with endogenous METTL3, METTL14 and WTAP without (F)
957	and with (G) RNase treatment respectively in U87MG cells. H, I. Western blots showing
958	Flag-tagged METTL3 (H) and WTAP (I) interact with endogenous SRSF7 with RNase
959	treatment in U87MG cells. J. Western blots showing Flag-tagged full-length and truncated
960	SRSF7 interact with HA-tagged METTL3 and endogenous METTL14 and WTAP with RNase
961	treatment in U87MG cells. K. 3D-SIM imaging indicating SRSF7 is co-localized with
962	METTL3, METTL14, and WTAP in the nucleus, Scale Bar: 2 μ m.

963

964 Figure 2 SRSF7 specifically facilitates m⁶A methylation near its binding sites via

965 recruiting METTL3

966	A. Scatter plots showing the up-regulated (orange) and down-regulated (purple) m ⁶ A peaks in
967	si-SRSF7 as compared with si-NC in U87MG cells. The numbers of the up-regulated and
968	down-regulated peaks are indicated. B. The most significantly enriched motifs in the
969	iCLIP-seq identified SRSF7 binding peaks. C. Normalized distributions of m ⁶ A peaks and
970	SRSF7 iCLIP-seq peaks across 5'UTR, CDS, and 3'UTR of mRNA. D. Box plot comparing
971	the m ⁶ A ratios of the SRSF7 targeted m ⁶ A peaks in control and SRSF7-KD U87MG cells. E.
972	Plot of cumulative fraction of log2 fold change of m ⁶ A ratios upon SRSF7 knockdown using
973	si-SRSF7 for the m^6A peaks overlap or non-overlap with SRSF7 iCLIP-seq peaks. P value of
974	two-tailed Wilcoxon test is indicated. F. Plot of GSEA analysis displaying the distribution of
975	SRSF7 iCLIP-seq peaks (upper panel) across the m ⁶ A peaks ranked by log2 fold change of
976	m ⁶ A ratios upon <i>SRSF7</i> knockdown (si- <i>SRSF7</i>) (lower panel). The m ⁶ A peaks overlap SRSF7
977	iCLIP-seq peaks are indicated by vertical line in the upper panel. The P value and normalized
978	enrichment score (NES) of GSEA are indicated. G. Bar plot comparing the percentages of
979	m ⁶ A peaks overlapped with SRSF7 iCLIP-seq peaks for down-regulated, up-regulated, and
980	unchanged m^6A peaks upon SRSF7 knockdown respectively. The pairwise P values of
981	two-tailed Chi-square tests are indicated at the top. H. Bar plot comparing the percentages of
982	m ⁶ A modified genes for genes with down-regulated, up-regulated, and unchanged gene
983	expression upon SRSF7 knockdown respectively. The pairwise P values of two-tailed
984	Chi-square tests are indicated at the top. I. Plot of cumulative fraction of log2 fold change of
985	gene expression upon SRSF7 knockdown for unmethylated genes and genes with SRSF7
986	targeted m^6A peaks respectively. P value of two-tailed Wilcoxon test is indicated. J.
987	Schematic diagram displaying the construct of the SRSF7 tethering assay with GGACU $m^{6}A$
988	motif (upper) and disruptive GGAUU motif (lower). K. Bar plot comparing the SELECT

989 method measured relative ligation product, which anti-correlated with the m^6 A level, for the

- 990 m^6A site in F-luc-5BoxB without or with mutation in the m^6A motif in U87MG cells
- 991 transfected with Control- λ , SRSF7- λ , and METTL3- λ respectively. Data are presented as
- 992 mean \pm SEM, n=3. ** *P* <0.01, ns, no significant difference. One-way ANOVA with
- 993 Dunnett's post hoc test. L. Bar plot comparing the METTL3 RIP-qPCR enrichment of the
- 994 F-luc mRNA in U87MG cells transfected with SRSF7- λ and Control- λ respectively. Data are
- presented as mean \pm SEM, n=3. * *P* <0.05. Student's two-tailed *t* test.

996 Figure 3 SRSF7 specifically targets and facilitates the methylation of m⁶A on genes

- 997 involved in cell proliferation and migration
- **4.** Venn diagram showing the overlapping of down-regulated m^6A peaks upon *SRSF7*
- 999 knockdown and SRSF7 iCLIP-seq peaks. **B.** Normalized distribution of the overlapped $m^{6}A$
- 1000 peaks in (a) across 5'UTR, CDS, and 3'UTR of mRNA. C. GO enrichment of the
- 1001 corresponding genes with the overlapped m^6A peaks in (A). **D**, **E**. Tracks displaying the read
- 1002 coverage of IPs and inputs of m⁶A-seq as well as the SRSF7 iCLIP-seq on *PBK*, *MCM*4. The
- 1003 SRSF7 directly regulated m⁶A peaks are highlighted. The y-axes of NC and si-SRSF7 were
- 1004 differently used to intuitionally indicate the m^6A differences other than expression differences.
- 1005 **F-I.** Validation of m^6 A changes using SELECT method of single-nucleotide m^6 A sites on *PBK*
- 1006 at 1041 and 1071 (F-G), *MCM4* at 1515 (H), *ROBO1* at 672 (I) in U87MG cells transfected
- 1007 with scramble (si-NC) and 2 siRNAs of SRSF7 (si-SRSF7-1, si-SRSF-2), and 2 siRNAs of
- 1008 METTL3 (si-*METTL3*-1, si-*METTL3*-2) respectively. The tested m⁶A motifs are indicated on
- 1009 the schematic structures of mRNAs at the top panels. The green boxes represent
- 1010 protein-coding regions, the thin lines flanking the green boxes represent UTR regions. Arrows
- indicate the primers for SELECT. Data are presented as mean \pm SEM, n=3. * *P* <0.05, ** *P*
- 1012 <0.01, *** *P* <0.001. One-way ANOVA with Dunnett's post hoc test. **J-L.** Bar plot comparing
- 1013 the RIP-qPCR determined relative enrichment of METTL3 (J), METTL14 (K), and WTAP (L)

1014	binding to the mRNA of <i>PBK</i> , <i>MCM4</i> , and <i>ROBO1</i> in control and <i>SRSF7</i> -KD U87MG cells.
1015	Data are presented as mean \pm SEM, n=3. * <i>P</i> <0.05, ** <i>P</i> <0.01, *** <i>P</i> <0.001. Student's
1016	two-tailed t test.
1017	Figure 4 SRSF7 promotes proliferation and migration of glioblastoma cells
1018	A. Boxplot comparing the expression of SRSF7 during GBM patients of different stages from
1019	CGGA dataset. P values of two-tailed Student's t test are indicated. B. Left: IHC staining of
1020	SRSF7 in normal brain and glioma specimens, Scale Bar: 20 µM. C. Bar plot comparing the
1021	mRNA expression levels of SRSF7 in 11 GBM cell lines and Normal Human Astrocytes
1022	(NHA). Data are presented as mean \pm SEM (standard error of mean), n=2. * $P < 0.05$, ** $P < 0.05$
1023	0.01, *** $P < 0.001$, ns, no significant difference. One-way ANOVA with Dunnett's post hoc
1024	test. D. Western blot comparing the protein levels of SRSF7 in 11 GBM cell lines and NHA.
1025	E. Western blot showing efficiently overexpression of <i>SRSF7</i> in U87MG and LN229 cells. F.
1026	Representative images of transwell migration assay in U87MG and LN229 cells
1027	overexpressing SRSF7. Scar bars: 50 μ m. G, H. The cell viability of SRSF7 knockdown and
1028	control in U87MG (G) and LN229 (H) cells were measured by MTT assay at indicated time
1029	point. Data are presented as mean \pm SEM, n = 3. *** <i>P</i> < 0.001. Two-way ANOVA with
1030	Dunnett's post hoc test. I. Representative bioluminescence images of mice-bearing the
1031	intracranial glioma xenografts formed by U87MG cells transduced with control shRNA or
1032	SRSF7 shRNA respectively. J. Line graph showing the normalized luminescence of
1033	intracranial glioma xenografts tumors formed by U87MG cells transduced with control
1034	shRNA or <i>SRSF7</i> shRNA respectively. Data are presented as mean \pm SEM, n = 6. *** <i>P</i> <
1035	0.001. Student's two-tailed t test. K. Representative images of H&E staining of glioma tissue
1036	sections from indicated mice, Scale Bar: 2mm.

1037 Figure 5 SRSF7 promotes the proliferation and migration of glioblastoma cells

1038 partially dependent on METTL3

- 1039 A. Western blot showing the protein level of SRSF7 and METTL3 in SRSF7 overexpressed
- 1040 U87MG and LN229 cells transfected without or with si-*METTL3*-1 cell as indicated. **B**, **C**.
- 1041 Representative images (B) and bar plot (C) comparing the number of migrated cells in
- 1042 transwell migration assay in SRSF7 overexpressed U87MG and LN229 cells transfected
- 1043 without or with si-*METTL3*-1 cell as indicated. Data are presented as mean \pm SEM, n = 5. ***
- 1044 P < 0.001. ns, no significant difference. One-way ANOVA with Tukey's post hoc test. Scar
- 1045 bars: 50 μm. **D-E.** Representative images of EdU staining in SRSF7 overexpressed U87MG
- 1046 (D) and LN229 (E) cells transfected without or with si-METTL3-1 as indicated. Scar bars: 50
- 1047 µm. **F.** Bar plot comparing the EdU positive rate of EdU staining in SRSF7 overexpressed
- 1048 U87MG and LN229 cells transfected without or with si-*METTL3*-1 as indicated. Data are
- presented as mean \pm SEM, n = 5. * *P* < 0.05, *** *P* < 0.001. ns, no significant difference.
- 1050 One-way ANOVA with Tukey's post hoc test.

1051 Figure 6 SRSF7 promotes the proliferation and migration of GBM cells partially

1052 through the m⁶A on *PBK* mRNA

1053 A. Scatter plot showing the correlation between *SRSF7* and *PBK* gene expression across

- 1054 GBM patients from CGGA dataset, the *P* value and correlation coefficient are indicated. **B**, **C**.
- 1055 Representative images (B) and bar plot (C) comparing the number of migrated cells in
- transwell migration assay in U87MG and LN229 cells upon SRSF7 knockdown and rescue by
- 1057 co-transducing full-length WT *PBK* CDS regions. Data are presented as mean \pm SEM, n = 5.
- 1058 ** P < 0.01, *** P < 0.001. One-way ANOVA with Tukey's post hoc test. Scar bars: 50 μ m.
- 1059 **D.** Bar plot showing the relative mRNA level of SRSF7 and PBK in U87MG cells transfected
- 1060 with scramble (si-NC) and 3 different siRNAs of SRSF7 respectively. Data are presented as
- 1061 mean \pm SEM, n = 3. ** P < 0.01, *** P < 0.001. Student's two-tailed *t* test. **E.** Western bolt

1062	comparing the protein levels of SRSF7 and PBK in U87MG cells transfected with scramble
1063	(si-NC) and 3 different siRNAs of SRSF7 respectively. F. Bar plot showing the relative
1064	mRNA level of <i>PBK</i> in SRSF7 overexpressed U87MG cells transfected without or with
1065	si- <i>METTL3</i> -1 as indicated. Data are presented as mean \pm SEM, n = 3. *** P < 0.001, ns, no
1066	significant difference. One-way ANOVA with Tukey's post hoc test. G. Relative mRNA levels
1067	of PBK after actinomycin D treatment at indicated time points in U87MG cells transfected
1068	with scramble (si-NC) and siRNA of SRSF7 respectively. Data are presented as mean \pm SEM,
1069	n = 3. ** $P < 0.01$, *** $P < 0.001$. Two-way ANOVA with Bonferroni's post hoc test. H.
1070	Schematic diagram of mutation of the two m ⁶ A site in the <i>PBK</i> CDS region. I. Relative
1071	mRNA level of <i>PBK</i> in U87MG cells transfected with full-length WT or mutant (Mut) <i>PBK</i>
1072	CDS regions for 48 hours. Data are presented as mean \pm SEM, n = 3. ** <i>P</i> < 0.01. Student's
1073	two-tailed t test. J. Relative mRNA levels of PBK after actinomycin D treatment at indicated
1074	time points in U87MG cells transfected with full-length WT or mutant (Mut) PBK CDS
1075	regions respectively. Data are presented as mean \pm SEM, n = 3. ** <i>P</i> < 0.01, *** <i>P</i> < 0.001
1076	Two-way ANOVA with Bonferroni's post hoc test. K. Relative mRNA levels of <i>PBK</i> after
1077	actinomycin D treatment at indicated time points in U87MG cells transfected with scramble
1078	(si-NC) and siRNA of IGF2BP2 (si-IGF2BP2) respectively. Data are presented as mean \pm
1079	SEM, n = 3. ** $P < 0.01$, *** $P < 0.001$. Two-way ANOVA with Bonferroni's post hoc test. L.
1080	Relative mRNA levels of <i>PBK</i> after actinomycin D treatment at indicated time points in WT
1081	PBK or Mut PBK overexpressed U87MG cells transfected with scramble (si-NC) and siRNA
1082	of <i>IGF2BP2</i> respectively. Data are presented as mean \pm SEM, n = 3. *** <i>P</i> < 0.001. Two-way
1083	ANOVA with Dunnett's post hoc test.

1084 Figure 7 SRSF7 regulates m⁶A independent of alternative splicing and polyadenylation

1085 A. rMAPS2 generated metagene plot showing the enrichment of SRSF7 iCLIP-seq peaks at

1086 the regions around corresponding splice sites of the differentially spliced SE events upon

1087	SRSF7 knockdown.	B. GC	enrichment	of differenti	ally splice	ed genes	(all types)	upon SRSF7
------	------------------	--------------	------------	---------------	-------------	----------	-------------	------------

- 1088 knockdown. C. Venn diagram showing the overlap between differentially spliced genes (all
- types) and genes with SRSF7 directly regulated m^6A peaks. **D.** Scatter plot comparing the
- 1090 distal poly(A) site usage index (PDUI) between control and SRSF7 knockdown in U87MG
- 1091 cells.

1093 Supplementary figure legends

1094 Figure S1 Interaction between SRSF7 and methyltransferase complex

- 1095 A. Western blots showing Flag-tagged SRSF7 interacts with endogenous METTL3,
- 1096 METTL14 and WTAP with RNase treatment in 293T cells. **B.** Schematic diagram of the
- 1097 truncated regions of *SRSF7*. FL: Full length, RRM: RNA recognition motif, Zn: Zinc knuckle,
- 1098 RS: arginine/serine.

1099

1100 Figure S2 SRSF7 specifically facilitates m⁶A methylation near its binding sites

A. Enriched motifs in m⁶A peaks of control and SRSF7-KD U87MG cells. B. Normalized 1101 distributions of m⁶A peaks across 5'UTR, CDS, and 3'UTR of mRNA in U87MG cells 1102 transfected with scramble (si-NC) and siRNAs of SRSF7 (si-SRSF7) respectively. C. Box plot 1103 comparing the m⁶A ratios of the m⁶A peaks in control and SRSF7-KD U87MG cells. **D.** 1104 Heatmap representing the Z-score transformed m⁶A ratios in si-NC and si-SRSF7 in U87MG 1105 cells respectively. E, F. GO (E) and KEGG (F) enrichment analyses of genes with 1106 down-regulated m⁶A peaks upon SRSF7 knockdown. G. Pie chart showing the fractions of 1107 1108 SRSF7 iCLIP-seq peaks located in different regions of genes. H. Normalized distributions of SRSF7 iCLIP-seq peaks colocalized with m⁶A peaks across 5'UTR, CDS, and 3'UTR of 1109 mRNA in U87MG cells. **I.** Plot of cumulative fraction of log₂ fold change of m⁶A ratios upon 1110 SRSF7 knockdown using si-SRSF7 for the m⁶A peaks within the orange module and all other 1111 modules respectively. P value of two-tailed Wilcoxon test is indicated. 1112

1113

1114 Figure S3 SRSF7 regulates gene expression

1115	A. Heatmap representing the Z-score transformed gene expression of differentially expressed
1116	genes between control and SRSF7-KD U87MG cells. B, C. GO enrichment analyses of genes
1117	with down-regulated (B) and up-regulated (C) gene expression upon SRSF7 knockdown. D-F.
1118	GSEA plot for the gene expression changes due to SRSF7 knockdown in U87MG cells.

1119

Figure S4 SRSF7 directly targets and facilitates the methylation of m⁶A on genes involved in cell proliferation and migration

1122 A. KEGG enrichment of the corresponding genes with the overlapped m^6A peaks between

down-regulated m⁶A peaks upon SRSF7 knockdown and SRSF7 iCLIP-seq peaks. **B.** GO

1124 enrichment analysis of genes with SRSF7 iCLIP-seq peaks not colocalize with m⁶A peaks. C.

1125 Tracks displaying the read coverage of IPs and inputs of m⁶A-seq as well as the SRSF7

iCLIP-seq on *ROBO1*. The SRSF7 directly regulated m^6A peak is highlighted.

1127

1128 Figure S5 SRSF7 promotes the migration and proliferation of GBM cells

1129 A. Representative images of colony formation assay in U87MG and LN229 cells

1130 overexpressed SRSF7. B. Western blot showing efficiently knockdown of SRSF7 in U87MG

and LN229 cells transduced with control shRNA or SRSF7 shRNA respectively. C.

1132 Representative images of transwell migration assay in U87MG and LN229 cells transduced

1133 with control shRNA or *SRSF7* shRNA respectively, Scar bars: 50 μm. **D.** Representative

images of EdU staining assays and bar plot comparing the EdU positive rates in U87MG and

1135 LN229 cells transduced with control shRNA or SRSF7 shRNA respectively. Data are

presented as mean \pm SEM, n = 5. *** *P* < 0.001. One-way ANOVA with Dunnett's post hoc

test. Scar bars: 50 μm. E. Western blot showing the protein level of SRSF7 in U87MG and

1138 LN229 cells transduced with shSRSF7 together with empty vector and SRSF7 with

- 1139 synonymous mutations. **F.** Representative images of colony formation assay in U87MG and
- 1140 LN229 cells with control, SRSF7 knockdown, and SRSF7 knockdown rescued by SRSF7
- 1141 overexpression. G. Representative images of EdU staining assays and bar plot comparing the
- 1142 EdU positive rates in U87MG and LN229 cells with control, SRSF7 knockdown, and SRSF7
- 1143 knockdown rescued by SRSF7 overexpressed. Data are presented as mean \pm SEM, n = 5. * *P*
- 1144 < 0.05, ** P < 0.01, *** P < 0.001. One-way ANOVA with Tukey's post hoc test. Scar bars:
- 1145 50 μm. H. Sphere formation results in U87MG cells upon SRSF7 depletion and
- 1146 overexpressed. Scar bars: 100 μm.
- 1147

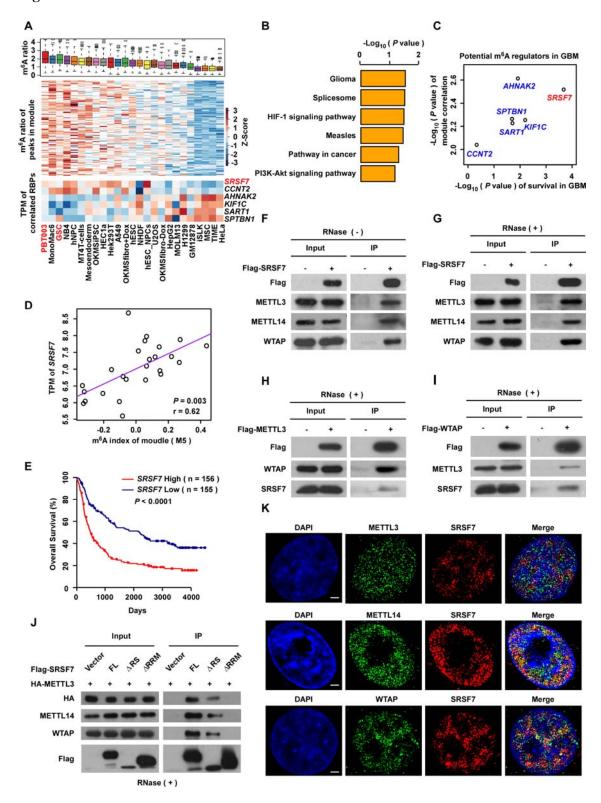
1148 Figure S6 SRSF7 promotes the proliferation and migration of glioblastoma cells

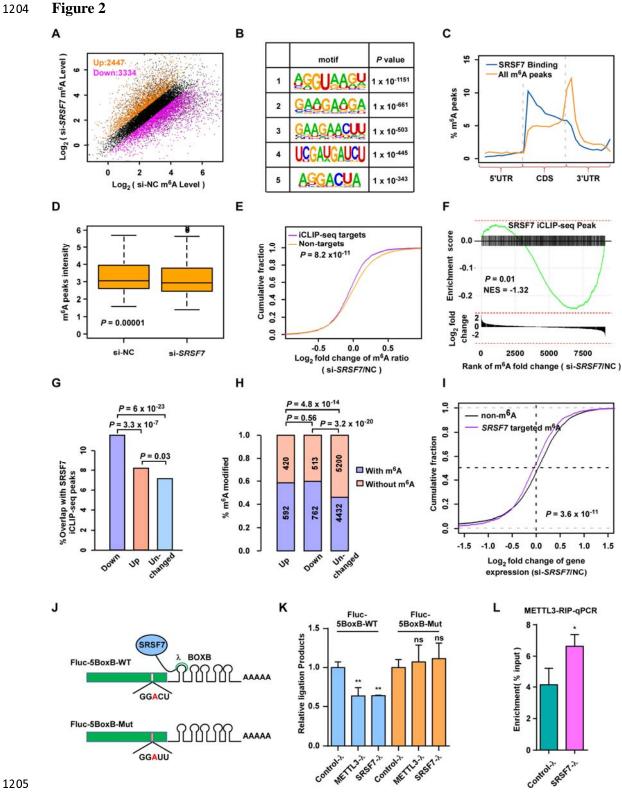
1149 partially dependent on METTL3

- 1150 **A, B.** Gene expression change of *METTL3*, *METTL14*, and *WTAP* in U87MG cells (A) and (B)
- 1151 transfected with scramble (si-NC) and siRNA of SRSF7 (si-SRSF7-1, si-SRSF7-2 and
- si-SRSF7-3) respectively. Data are presented as mean \pm SEM, n = 3. *** P < 0.001. ns: no
- 1153 significant difference. One-way ANOVA with Dunnett's post hoc test. C-E. Western blot
- showing the protein level of METTL3, METTL14, WTAP, and SRSF7 upon *SRSF7*
- 1155 knockdown (C-D) or *SRSF7* overexpression (E) in U87MG and LN229 cells. **F.** Western blot
- showing the protein level of METTL3 and SRSF7 in U87MG cells transfected with si-NC and
- si-METTL3. G. Western blot showing the protein level of WTAP and SRSF7 in U87MG cells
- 1158 transfected with si-NC and si-WTAP. H-J. 3D-SIM imaging of colocalization of METTL3
- (H), METTL14 (I), and WTAP (J) with the nuclear speckle marker SC35. Scale Bar: 2 μm.

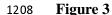
- 1161 Figure S7 SRSF7 promotes the proliferation and migration of GBM cells partially
- 1162 through increasing the stability of *PBK* mRNA

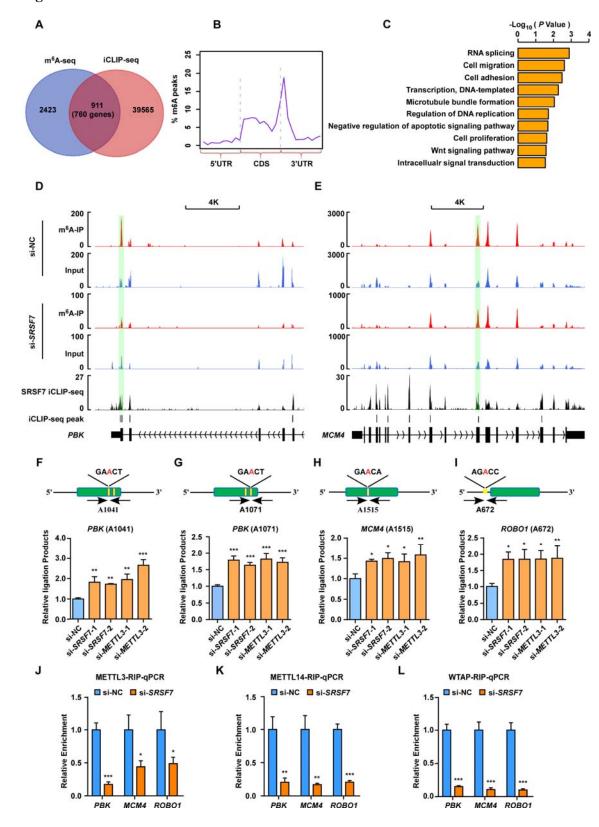
1163 A. Kaplan-Meier survival analysis based on *PBK* expression in GBM patients from CGGA dataset. B. Relative mRNA expression level of *PBK* in GBM patients from CGGA dataset. C. 1164 Scatter plot showing the correlation between *METTL3* and *PBK* gene expression across GBM 1165 patients from CGGA dataset, the P value and correlation coefficient are indicated. **D.** Western 1166 blot showing the protein level of PBK and SRSF7 in U87MG and LN229 cells upon SRSF7 1167 knockdown and rescued by co-transducing full-length WT PBK CDS regions. E. Colony 1168 formation results in U87MG and LN229 cells upon SRSF7 knockdown and rescued by 1169 co-transducing full-length WT PBK CDS regions. F, G. Bar plot showing the relative mRNA 1170 level of SRSF7 (F) and METTL3 (G) in SRSF7 overexpressed U87MG cells transfected 1171 without or with si-*METTL3*-1 as indicated. Data are presented as mean \pm SEM, n = 3. *** P < 1172 1173 0.001. One-way ANOVA with Tukey's post hoc test. H. Relative mRNA expression level of 1174 PBK in U87MG cells transfected with scramble (si-NC) and siRNA of IGF2BP2 (si-IGF2BP2-1, si-IGF2BP2-2) respectively. Data are presented as mean \pm SEM, n = 3. ** P 1175 < 0.01, *** P < 0.001. One-way ANOVA with Dunnett's post hoc test. **I.** Scatter plot showing 1176 the correlation between IGF2BP2 and PBK gene expression across GBM patients from 1177 CGGA dataset, the *P* value and correlation coefficient are indicated. 1178

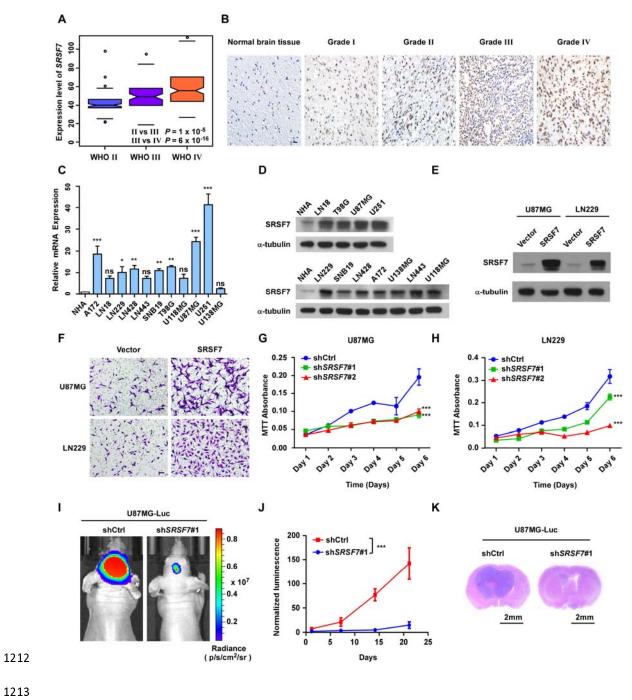

1179

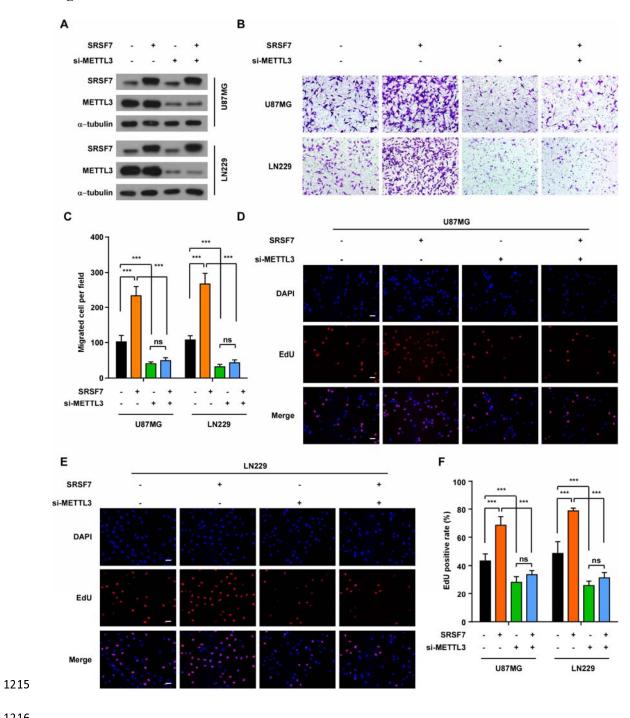

1180 Figure S8: Motif analyses of up-regulated m⁶A peaks and SRSF7 iCLIP-seq peaks that

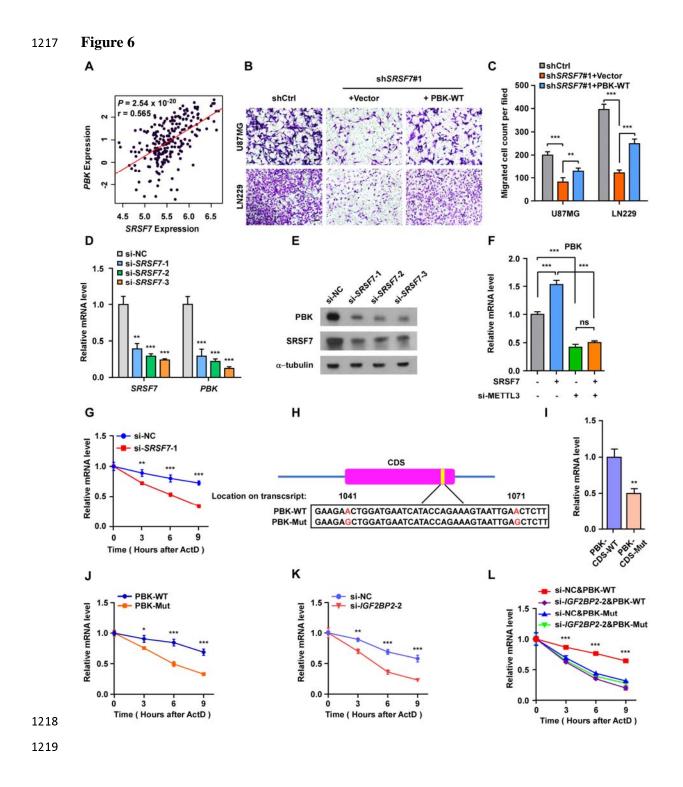
- 1181 affect m⁶A
- 1182 A. Motifs enriched in the up-regulated m^6A peaks using all m^6A peaks as background. B.
- Motifs enriched in the SRSF7 iCLIP-seq peaks that affect m⁶A using all iCLIP-seq peaks as
 background.
- 1185

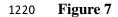

1186	Figure S9: Scatter plot showing the correlation coefficiences (r) and -log ₁₀ P value of the
1187	gene expression between SRSF7 and METTL3 in multiple cancers of TCGA dataset
1188	
1189	Figure S10: Boxplots comparing the gene expression of SRSF7 in cancer (red) and
1190	normal (grey) for multiple cancers of TCGA dataset. *: P < 0.01.
1191	
1192	Figure S11: Boxplots comparing the gene expression of <i>PBK</i> in cancer (red) and normal
1193	(grey) for multiple cancers of TCGA dataset. *: P < 0.01
1194	
1195	Table S1: Information of SRSF7 iCLIP-seq peaks in U87MG cells
1196	
1197	Table S2: Information of SRSF7 directly regulated m6A peaks
1198	
1199	Table S3: Sequences of primers, siRNAs and shRNA
1200	


1201 **Figure 1**


1206




1209


Figure 4 1211

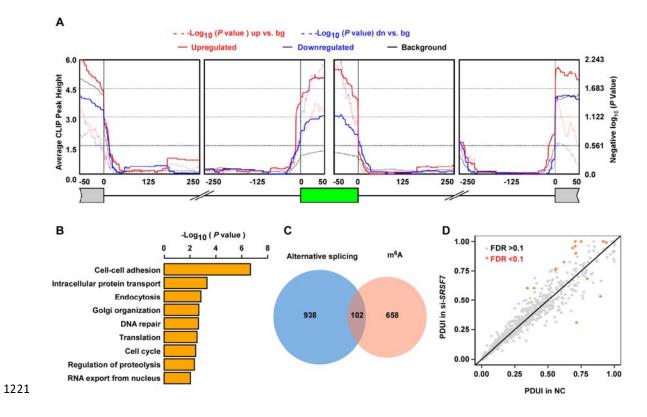


Figure 5 1214

