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Abstract  

How spontaneous brain activities emerge from the structural connectivity (SC) has puzzled 

researchers for a long time. The underlying mechanism still remains largely unknown. Previous 

studies on modeling the resting-state human brain functional connectivity (FC) are normally based 

on the relatively static structural connectome directly and very few of them concern about the 

dynamic spatiotemporal variability of FC. Here we establish an explicit wave equation to describe 

the spontaneous cortical neural activities based on the high-order hypergraph representation of SC. 

Theoretical solution shows that the dynamic couplings between brain regions fluctuates in the form 

of an exponential wave regulated by the spatiotemporal varying Laplacian of the hyper-structural 

connectome (hSC), which orchestrates the cortical activities propagating in both space and time. 

Ultimately, we present a possible mechanism of how negative correlations emerge during the 

fluctuation of the hypergraph Laplacian of SC, which helps to further understand the fundamental 

role of SC in shaping the entire pattern of FC with a new perspective. Comprehensive tests on four 

connectome datasets with different resolutions confirm our theory and findings.  

 

1.Introduction 

The human brain is highly active all the time, being at rest or task-evoked, with signals propagating 

between sets of brain areas along structural pathways (e.g., the cortical white matters). Diffusion 

magnetic resonance imaging (dMRI) techniques show that the brain regions are sparsely 

anatomically connected through white matter fibers, while studies on functional MRI (fMRI) 

estimated from the blood oxygenation level-dependent (BOLD) signals reveal that high correlations 

can also be observed between brain areas without directly anatomical linkage. Although mounting 
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evidence supports the view that FC is determined by the underlying SC [1-3], the mechanism behind 

the shaping of the entire pattern of FC especially the emergence of negative correlations is still 

poorly understood. To this end, a vast body of research has been conducted to disclose this riddle 

by modeling FC using SC since the last decade. For example, using complex network and graph 

modeling methods [4, 5], some studies indicate that a wide variety of structural network measures, 

such as shortest path length and steps [6, 7], search information and path transitivity [8, 9], as well 

as node degree product [10, 11], etc., are all related to the presence of FC, but to a limited extent. 

Whereas computational neural mass models (NMMs) [12-15] aim to uncover the inherent complex 

neural dynamics between neuronal populations in human brain, which entails a number of empirical 

parameters to be pre-specified or experimentally tuned, thus making the models highly intricate to 

handle. Meanwhile, some other methods that relate SC and FC using direct matrix mapping [7, 16, 

17] or spectral graph mapping [18-20] are intensively explored as well, in which the FC matrix is 

simply formulated as the weighted sum of the SC matrix and its higher order indirect dependency 

matrices, with the weights being trained for each group of SC and FC matrices. These models, albeit 

show high accuracy with the trained dataset, will fail to generalize to other connectome datasets.   

Recently, the graph Laplacian of the human connectome has been found to be able to capture the 

relationship between brain structure and function. The graph diffusion (GD) model [21, 22], which 

relies mainly on the graph Laplacian of the brain SC, has shown potential advantages in predicting 

FC with few model parameters. Nevertheless, the GD model lacks the ability to yield negative 

functional correlations and only a small part of FC between brain areas that anatomically 

unconnected can be predicted due to the sparseness of the graph Laplacian matrix of SC. To remedy 

the limitations of graph Laplacian, we extended the GD model in recent studies [23, 24] to two 

hypergraph based diffusion models, HGD and HpGD, based respectively on the hypergraph 

Laplacian and p-Laplacian [25-27] of human brain connectome and obtained much better results in 

modeling FC, which are even capable of modeling anti-correlations by embedding a matrix with 

each entry indicating the sign of the correlation between two brain areas.  

In this study, we aim at unraveling how spontaneous brain activities from different areas are 

coupled and propagate in space and time by establishing a wave equation using the hypergraph 

Laplacian of SC. We first define the hypergraph representation of human brain SC concisely and 

then present the notation of hyper-structural connectome (hSC), i.e, the adjacency matrix of the 
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hypergraph of SC, as well as the high-order representation of hSC (hmSC, with m being the number 

of order) derived from the incidence matrix of the hypergraph of SC to demonstrate how brain 

signals spread in a hyperpraph. We then elaborate the derivation of the wave equation to show how 

the brain FC are shaped including the emergence of negative correlations based on the time-varying 

hypergraph Laplacian of SC. Finally, we apply the wave equation to four extensively studied 

experimental connectome datasets with increasing resolutions to demonstrate its power in mapping 

human brain SC to FC during rest. 

 

2. Hypergraph representation of SC 

2.1 Hypergraph notation 

Different from the definition of hypergraph for dynamic functional connectivity analysis in a 

previous study [28] , in our approach, the hypergraph of SC is defined by Hg = (V, E, Wh) with a 

set of n vertices representing the brain areas,  1,2, ,iV v i n  , and a set of n hyperedges with 

each containing all edges linking to the corresponding brain area,  1,2, ,jE e j n   . The 

weight strength of each hyperedge is quantified by summing all the connecting edge weights 

contained in the hyperedge and denoted as  1,2, ,h hjW w j n   . The relationship 

between V and E can be expressed as a |V | × |E| matrix H , namely the incidence matrix of Hg, with 

entries h(v, e) = 1 if v e   and 0 otherwise. The degree of a vertex  v V   is defined as 

( ) ( ) ( , )h

e E

d v w e h v e


 , while the degree of a hyperedge e E is defined as ( ) ( , )
v V

e h v e


 .  

 

2.2 Hyper-structural connectome 

From the above hypergraph definition, it can be inferred that a hyperedge of Hg is capable of 

connecting more than two brain areas, and the incidence matrix of Hg , H, can associate each 

hyperedge with brain areas belonging to the hyperedge. Therefore, a link between two brain areas 

that are not structurally connected but in the same hyperedge can be established via one intermediate 

area in the same hyperedge. As illustrated in Fig.1, a 9-node simulated brain graph network in which 

node V1 is initially connected to node V2 only, with its structural connectome rendered as a matrix 
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shown below the graph (Fig.1 A). According to the definition of the hypergraph adopted in this 

study, 9 hyperedges can be defined initially in the hypergraph and, for visualizing clearly, only two 

hyperedges, e1 and e2, are labeled (Fig.1 B), where e1 contains nodes V1 and V2, e2 contains nodes 

V1, V2, and V3, i.e., in this case, V1, V2 and V3 belong to the same hyperedge. Then a link can be 

established between nodes V1 and V3 via V2, which in turn yields a new adjacency matrix of SC, 

termed hyper-structural connectome (hSC), as the matrix below the graph shown in Fig.1 C.  

Specifically, the hyper-structural connectome can be defined by a matrix mapping gH : SC hSC , 

i.e.,  
1 T

h v

DN
  

g
hSC H (SC) HW H D , where Dv denotes the diagonal matrix containing the 

vertex degrees, Wh represents the diagonal matrix comprising the weights of hyperedges, while 

D

v V

N


 vD  is a normalized factor that ensures the entries in hSC are less than one.  

  Similarly, the high order of hSC can be defined by a high-order matrix mapping, 

mm

gH : SC h SC , i.e., ( ( )) ( ) m m

g g gh SC H H SC H SC , with m being the number of orders, 1m  . As 

will be clearly explained, the major distinction between hmSC and SC is that hmSC is in a state of 

flux both in space and time whereas SC is usually regarded as relatively fixed. 

As shown in Fig. 1 C, the hypergraph will be redefined after V1 and V3 linked, in which 

hyperedge e1 contains nodes V1, V2, and V3, while e3 contains nodes V1, V2, V3, and V4. It should 

be noted that a link will be built between any two unconnected nodes connecting to a common node 

after the first-order mapping of hSC, for examples, node pairs between V2 and V4, V3 and V5, V3 

and V6, etc., which are not displayed. Here we just take the signal spreading from node V1 to other 

nodes as an example. Next we can obtain the second-order of hSC from the updated hypergraph in 

Fig.1 C, in which V1 is linked to V4 via V3 (or V2), to V5 and V6 via V3 (Fig.1 D) and then the third-

order of hSC (Fig.1 E), in which V1 will be linked to the remaining nodes V7, V8, and V9. If all 

nodes are taken together, the signals from each node will be coupled with each other and lead to the 

spread of signals across all the nodes very rapidly. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.464009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.464009
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 1. Illustration of the shaping of high-order of hSC from a simulated 9-node graph 

network. (A) A simulated 9-node brain graph and its adjacency matrix. (B) The hypergraph 

representation of the graph in (A) and its incidence matrix, in which, only two hyperedges, e1 and 

e2, are labeled. (C) The first-order of hSC of the hypergraph in (B), in which, node V1 is linked to 

V3. (D) The second-order of hSC (h2SC) yielded from the hypergraph in (C) together with its 

adjacency matrix, in which, node V1 is linked to V4, V5 and V6. (E) The third-order of hSC (h3SC) 

shaped from the hypergraph in (D) together with its adjacency matrix, in which, node V1 is linked 

to the remaining nodes V7, V8, and V9. Note that here we just take the signal spreading from node 

V1 to other nodes as an example. 

 

2.3 Hypergraph Laplacian of SC 

Let De denote the diagonal matrix containing the hyperedge degrees, similar to graph Laplacian, 

the normalized hypergraph Laplacian of SC can be defined as: 
1/2 1 1/2T

v e v

   hL I D HWD H D [25, 

26], where I indicates the identity matrix. Then the eigenvectors of Lh, representing the connectome 

harmonics of hSC, , { , , }j j 1 n    can be obtained by solving the eigen-decomposition 
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equation , { , , }h j j jL j 1 n    , with j  being the corresponding eigenvalues of Lh, 

representing the frequencies of hSC [29-31]. 

 

3. Brain wave equation 

Consider there are n brain areas and the dynamic cortical neural activities satisfy the following 

regular wave equation: 

2
2 2

2t



 



u
u                                  (1) 

where 
1 2[ , , , ]T

nu u uu , ( , )iu i t u  refers to the neural activity signal of the ith brain area at 

time t , T indicates transpose, 2 u is the Laplace operator of u, and   is the propagating factor. 

Let ,i jw  denote the connection strength between brain area i and j in hSC, with ,i jw satisfying: 

,0 1i jw  , , ,=i j j iw w , , 0i iw  .  

When the neurons in the ith brain area are firing, an influence of the ith area over the jth area 

occurs through signal propagating along the cortical pathways between the two areas, leading to 

a little fluctuation of the weight ,i jw   varying with time t, denoted by 
, ( )i jw t  . Note that 

, ( )i jw t   can be either positive or negative, representing the increase or decrease of the 

connection strength, respectively. Usually, the magnitude of 
, ( )i jw t  varies linearly within a 

short period of time t  and can be modeled as 

, ,( )=i j i jw t w t                               (2) 

Similarly, 
, ( )j kw t  can be expressed as 

( )j,k j,kw t w t                              (3) 

Then, the total first-order influence of area i over all the other areas amounts to 

, ( )( )i i j i j

j n

u w t u u


                             (4) 

Likewise, the total first-order influence of area j over all the other areas is 

, ( )( )j j k j k

k n

u w t u u


                            (5) 
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The above first-order process can be extended to the second order, i.e., the Laplace operator, of 

the ith area over the remaining areas, i.e., 

2

,( ) ( ) ( )i i, j i i, j j j j k j

j n j n k n

u w t u w t u u w t u
  

    
                 

   .      (6) 

Substituting Eqs. (4) and (5) into Eq. (6), we obtain, 

         

2

,

,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

i i, j i i, j j j j k j

j n j n k n

i, j i i, j j j j k j

j n j n k n

i, j i, j i i, j j i, j i, j

j n j n j n j n

u w t u w t u u w t u

w t u w t u u w t u

w t w t u w t u w t w t u

  

  

   

    
                 

 
        

 

 
        

 

  

  

   

,( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

j

j n

i, j j.k j j.k k i, j j k j

j n k n k n j n k n

i, j i, j i i, j i, j j i, j i, j j

j n j n j n j n j n j n

i, j

w t w t u w t u w t w t u

w t w t u w t w t u w t w t u

w t



    

     

 
 
 

   
          

   

     
             

     

 



    

     

,( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) ( )

j.k j i, j j.k k i, j j k j

j n k n j n k n j n k n

i, j i, j i i, j j.k j i, j j.k k

j n j n j n k n j n k n

w t u w t w t u w t w t u

w t w t u w t w t u w t w t u

     

     

     
           

     

     
             

    

     

     

                     

                                                                           (7) 

Substituting Eqs. (2) and (3) into Eq. (7), we obtain  

 2 2= 2i i, j i, j i i, j j.k j i, j j.k k

j n j n j n k n j n k n

u w w u w w u w w u t
     

      
              

             (8) 

Considering all the n brain areas, we arrive at 
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2
1,1 1,2 1,1 1 1 1 1

2
2,1 2,2 2,2 2 2 22 22

2
,1 ,2 ,

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0

n

n

n n n nn n n nn

w w wu d d u d

w w wd d u du
t

d d u dw w wu

         
        
                   
        

              

u

1

2 2

1,1 1,2 1, 1,1 1,2 1, 1

2,1 2,2 2, 2,1 2,2 2, 2 2

,1 ,2 , ,1 ,2 ,

2

1 1

2 2

0 0

0 0 0

0 0 0

n

n n

n n

nn n n n n n n n

n n

u

u
t

u

w w w w w w u

w w w w w w u
t

uw w w w w w

d u

d u

d u

 
 
 
 
 
 
 

   
   
       
   

   
   

  
  
  
  
 
 
  

2

1,1 1,2 1, 1,1 1,2 1,1 1 1

2,1 2,2 2, 2,1 2,2 2,2 2 2

,1 ,2 , ,1 ,2 ,

0 0

0 0 0
2

0 0 0

n n

n n

n n nn n n n n n n n

w w w w w wd u u

w w w w w wd u u

d u uw w w w w w

                  
                   
          
          

        

2

2

1,1 1,2 1,1 1

2,1 2,2 2,2 2 2

,1 ,2 ,

0 0

0 0 0

0 0 0

n

n

n nn n n n

t

w w wd u

w w wd u
t

d uw w w






 


     
     
           
     
          

 

(9) 

where 
,i i j

j

d w is the degree of area i. Define the degree matrix and adjacency matrix of hSC 

as ( )idiag dD and ,i jw   W , respectively, then we have 

 
22 2( ) ( )t t   u D W u L u                      (10) 

where L is the Laplacian of hSC, and the wave equation can be written as 

                           
2

2 2

2
( )t

t







u
L u                               (11) 

As mentioned above, since the connection strength between two brain areas might increase or 

decrease, causing the sign of 
, ( )i jw t  unknown. Here, we make the assumption according to 

Hebbian learning rule [32], if the increase of the weight strength lasts for a long time, then long 

term potentiation (LTP) occurs and the two regions show positive correlation, otherwise long term 

depression (LDP) appears and the two regions yield negative correlation. Thus we modify the 

Laplacian matrix L as 
s

L L S , where S is a matrix with each entry indicating the sign of the 

correlation between two brain areas, ‘ ’ denotes the Hadamard product. 

Then, the wave equation can be rewritten as 

2
2 2

2
( )t

t






s

u
L u                           (12)                 
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The solution of the above equation can be derived as (see SM Note 1) 

21

2
t

Ce



sL

u                                (13) 

Factorizing matrix sL  into its eigenvalues λ  and eigenvectors U, i.e., = T

sL UλU , the above 

equation becomes  

21

2
t

TC e


   
λ

u U U                          (14) 

Then the dynamic couplings between brain areas can be quantified as the instantaneous 

autocovariance of u, as follows,    

2 2

2 2

2

2

1 1

2 2

1 1

2 2

( )

=

=

=

t t
T T T

t t
T

t T

t

t C e e

C e e

C e

Ce

 

 





 

 





        

   

  

s

λ λ

λ λ

λ

L

f u u U U U U

U U

U U

               (15) 

where C is a constant, keeping the strength of f(t) within [0, 1]. 

4. Results 

4.1 Connectome datasets  

Four experimental datasets with 90, 246, 998, and 2514 ROIs (Regions of Interest) were exploited 

to evaluate the performance of the abovementioned wave equation and hypergraph model on SC-

FC mapping, respectively, in which the SC matrices were derived from dMRI and tractography and 

the FC matrices were estimated using the resting-state fMRI data collected on a total of 170 subjects.  

(1) 90-ROI dataset 

The 90-ROI dataset was first reported in [21] and further studied in [7, 22-24], in which the 

structural and functional connectome data were obtained from 8 healthy adults and partitioned into 

90 cerebral regions. The SC was obtained using probabilistic fiber tracts tracking and the connection 

weight between any two brain areas was estimated by the weighted sum of the fiber tracts going 

between them. The FC was measured by calculating the Pearson’s correlations between the BOLD 

time series recorded from each brain region. 

(2) 246-ROI dataset 
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The original 246-ROI dataset is a multimodal MRI data that includes structural MRI (S-MRI), 

diffusion MRI (D-MRI) and resting-state functional MRI (R-fMRI), which were derived from 147 

young healthy subjects at Beijing Normal University [33]. In our study, 145 subjects were chosen 

and the human Brainnetome atlases of 246 brain ROIs were employed (http://atlas.brainnetome.org) 

[34]. White matter tractography and probabilistic tracking method were performed to estimate the 

connection density between ROIs. The SC matrix of each subject was inferred through PANDA 

software (https://www.nitrc.org/projects/panda/), in which each entry represents the connection 

probabilities between ROIs. Those spurious weak connections whose probabilities are less than 

1.0e-5 were removed. Besides, similar to the 90-ROI dataset, the resting-state FC matrices were 

also estimated using the Pearson’s correlations between the BOLD time series.  

(3) 998-ROI dataset 

The high resolution connectome dataset consisting of 998 ROIs has been extensively explored 

in many studies over the past decade [2, 4, 7, 8, 17], in which the structural and functional 

connectome data were obtained from 5 healthy right-handed male human participants adults and 

partitioned into 66 cerebral regions first and then subdivided into 998 ROIs. The SC matrices were 

defined by the number of fibers per unit surface connecting two regions (connection density). The 

FC matrices were also estimated using the Pearson’s correlations between the BOLD time series. 

For specific experimental details, see [4]. 

(4) 2514-ROI dataset 

The very high resolution dataset with 2514 ROIs can be downloaded from the Brain Hierarchical 

Atlas NITRC page (http://www.nitrc.org/frs/?group_id=964), in which the SC matrix and resting-

state FC matrix were derived from 12 healthy human subjects using diffusion tensor imaging (DTI) 

and tractography based on a parcellation of 2514 gray matter cortical areas. The SC matrices were 

obtained by quantifying the number of fiber tracts connecting each pair of ROIs. The FC matrices 

were also estimated using the Pearson’s correlations between the BOLD time series. For more 

experimental details, see [35]. 

The matrices’ elements of all the datasets except the 2514 ROIs are arranged such that the right 

hemisphere is in the upper left quadrant, left hemisphere in the lower right quadrant, and 

interhemispheric connections in off-diagonal quadrants. For clear visualization, the FC matrix of 

2514 ROIs is modularized with hierarchical agglomerative clustering (HRC) and the SC matrix is 
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binarized in the same order as those in the rsFC [35]. The mean measured FC and SC matrices of 

the four datasets are shown in Fig. S1. Note that we didn’t perform any further processing to the 

connectomes data during mapping SC to FC, with all the negative connections reserved in FC and 

different connection measures adopted in SC.  

  

4.2 Parameters setting 

Unlike previous eigen-decomposition based approaches [20], in which a number of parameters 

need to be learned from the measured FC, no parameters need training in our approach. There are 

only two free factors in Eq.(15), the constant C, which keeps the magnitude of the f(t) within bounds, 

can be initially set to be 1, while the propagating factor  , controlling the time width of f(t), can be 

chosen according to the number of brain areas parcellated. These two parameters have no much 

influence on the Pearson correlations between the measured FC and f(t), allowing for determining 

the resting-brain FC from f(t) in terms of the Pearson correlation accurately. 

 

4.3 Structure-function mapping using Laplacian of hmSC 

Firstly, for each subject of the four datasets, we calculate the simulated instantaneous functional 

correlation f(t) between brain areas using Eq. (15), and the performances are assessed with the 

Pearson correlation between f(t) and the measured FC. For each dataset, we can obtain the minimum, 

maximum, as well as the mean highest correlation values over all the subjects of the dataset. Then 

we compare the results using Laplacians with different order, including Laplaican of SC (m=0), 

Laplacian of hSC (m=1), as well as the Laplacian of the high-order of hSC (hmSC, m>1) to examine 

the performance changes with the number of orders.  

For each dataset, the minimum, maximum, as well as the mean highest Pearson correlation values 

over all subjects using different Laplacians are summarized in Table S1. Results show that the mean 

highest Pearson correlations over the subjects for all the four datasets are increased by a big margin 

with the number of orders increasing when using Laplacian of hmSC and remain steady when the 

number of orders reaches 3 to 5 (R90= 0.8501 (m=3), R246= 0.8362 (m=3), R998=0.7769 (m=4), and 

R2514=0.7182 (m=5)), significantly exceeding the results of using the SC Laplacian (R90= 0.4112, 

R246= 0.3785, R998=0.3089, and R2514=0.2154; m=0) (Fig. 2), where all the P values of the Pearson 

correlations obtained in this paper satisfy 61  eP . Fig. 3 shows the Pearson correlations using 
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the Laplacian of hmSC with the largest order m for each subject of the four datasets varying with 

the parameter βt, respectively. It can be observed that the maximum Pearson correlation ranges 

from 0.7760 to 0.8861 for the 90-ROI dataset, 0.8012 to 0.8791 for the 246-ROI dataset, 0.7587 to 

0.7972 for the 998-ROI dataset, and 0.6814 to 0.7575 for the 2514-ROI dataset, and the mean 

maximum correlation values for the four datasets take values 0.8501, 0.8362, 0.7769, and 0.7182, 

respectively. Fig. S2 demonstrates the spreading of the colour maps of FC along hmSC for the 90-

ROI dataset using Brainnet viewer [36]. 

 

 

Fig.2. The maximum Pearson correlations distribution using Laplacian of hmSC (m = 0, referring 

to SC) for each subject of the four connectome datasets. 
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Fig.3. Pearson correlations using Laplacian of hmSC with the largest order m for each subject of the 

four datasets varying with the parameter βt 

 

4.4 Structure-function mapping using the combined Laplacian of hmSC with SC 

As described above, the brain cortical functions are constrained by the Laplacian of hSC varying 

linearly with time, leading to the varying of its eigenvectors representing harmonics and 

eigenvalues representing frequencies. Since the constantly varying hSC is rooted from the relatively 

fixed brain SC and, accordingly, we also apply the wave equation to characterize FC with the 

reconfigured Laplacian by combining the eigenvectors of hmSC Laplacian with the eigenvalues of 

SC Laplacian (denoted by hmSC+SC). For each dataset, the minimum, maximum, as well as the 

mean highest correlation values for all subjects using the combined Laplacian of hmSC and SC are 

summarized in Table S2. It can be clearly found that very high mean Pearson correlations are 

obtained across all the four datasets when binding the Laplacian eigenvectors of hmSC and the 

Laplacian eigenvalues of SC together after all the brain region are hyper-connected (R90= 0.8972 

(m=3), R246= 0.9281 (m=3), R998=0.9097 (m=4), and R2514=0.9346 (m=5)) (Table S2, Fig.4), 

approaching the ceiling on the performance of SC-FC mappings with the models using eigen-

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.464009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.464009
http://creativecommons.org/licenses/by-nc-nd/4.0/


decomposition [20]. Fig. 5 illustrates the Pearson correlations using the Laplacian of hmSC+SC with 

the largest order m for each subject of the four datasets varying with the parameter βt, respectively. 

It can be observed that the maximum Pearson correlation ranges from 0.8691 to 0.9146 for the 90-

ROI dataset, 0.9120 to 0.9411 for the 246-ROI dataset, 0.9010 to 0.9146 for the 998-ROI dataset, 

and 0.9162 to 0.9487 for the 2514-ROI dataset, and the mean maximum correlation values for the 

four datasets are 0.8972, 0.9281, 0.9097, and 0.9346, respectively, far outperforming the cases using 

the Laplacian of hmSC alone. 

 

 

Fig.4. The maximum Pearson correlations distribution using the Laplacian of hmSC+SC (m > 0) for 

each subject of the four connectome datasets.  
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Fig.5. Pearson correlations using the Laplacian of hmSC+SC with the largest order m for each 

subject of the four datasets varying with the parameter βt 

 

To demonstrate that the predicted FC (arising from f(t) at the time when the Pearson correlation 

value reaches the maximum) is not obtained by chance, for each dataset, we randomly permute the 

mean SC with 100 times, then for each scrambled SC, we extract the predicted FC and evaluate the 

performance through computing the histogram of the Pearson correlations between the mean 

predicted FC and the mean measured FC. For clear comparison, we also show the Pearson 

correlations between the mean measured FC and the mean predicted FC without permuting for the 

four datasets respectively (Fig. 6). 
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Fig. 6. The histogram of the Pearson correlations between the mean measured FC and the mean 

predicted FC (blue) after permuting the mean SC with 100 times as well as the mean predicted FC 

without permuting (orange) for the four datasets. 

 

5. Discussions  

As well known, the Laplace operator plays a core role in elucidating the nature of heat, light, sound, 

electricity, magnetism, gravitation, etc. [37]. In this study, we extended the Laplace operator to the 

connectome Laplacian of human brain and established a link between the two, upon which we 

derived a wave equation to describe the relationship between human brain structure and function. 

We tested the proposed wave equation on four extensively studied experimental connectome 

datasets with increasing resolutions and the results show that the proposed wave equation is able to 

accurately and fast capture the relationship between brain SC and FC during rest.  

Our major findings suggest that the dynamic couplings between brain regions at rest are largely 

regulated by the hypergraph Laplacian of SC varying in both time and space. The high-order 

hypergraph representation of SC may provide new insight into understanding the signal propagating 

in brain and help to shed light on the way of signals transmission between two distant brain regions 
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without directly anatomical links. Previous studies have confirmed that the number of short 

connection patterns of length-2 paths is related to the presence of FC between structurally 

unconnected brain regions [2, 7-9, 38] , including patterns of common efferents, common afferents, 

two-step serial relay, as well as the local detours along the shortest paths. Here we show that the 

high-order hypergraph representation of SC allows rapid signal transmission from one brain area 

to those anatomically unconnected brain areas via a third commonly connected area if these brain 

areas are contained in the same hyperedge (Fig. 1). As listed in Table S1, normally, only3-5 orders 

of mapping are required for the hypergraph to be fully connected for the four datasets including the 

one with 2514 ROIs, in which the SC of each subject is extremely sparse [35], being far less than 

the number of steps along the shortest paths [8].  

Our results also suggest that the dynamic brain functions may favor the time-varying Laplacian 

with the eigenvectors of the Laplacian of hmSC and the eigenvalues of the Laplacian of SC (Fig. 5, 

Table S2). To put it another way, the resting brain cortical activities are more likely to propagate 

with harmonics (eigenvectors) emerging from hmSC while being constrained by the inherent 

frequencies (eigenvalues) of SC. These results are different from previously reported findings [20-

22] in which the graph Laplacian of SC was regarded as time-invariant. It can be seen from Eq. (12) 

that, in our model, the hypergraph Laplacian of SC is linearly varied with time, thereby causing the 

cortical harmonics with higher frequencies (eigenvalues) attenuate rapidly during propagating until 

reach a steady state (Fig. 5). These results also imply that the human brain network works with 

critical frequencies when FC appears, after which the harmonic waves begin to taper off. This 

extends and supports the previously reported findings that the brain network operates at the edge 

of instability when FC emerges[39, 40]. Fig.7 demonstrates the fluctuation of the Pearson 

correlations between the f(t) and the measured FC (Fig. 7 A) together with the trace change of each 

f(t) (Fig. 7 B) over time. The trace changes are nearly the same for all subjects from the same dataset, 

with the initial value (t=0) being the number of brain regions and dropping down with time. When 

the correlation reaches a peak, the corresponding trace of f(t), being the same as the sum of its 

eigenvalues (relating to certain harmonic frequencies) will fall below a critical value 
s ( 5s   

for datasets 90, 246, and 998 ROIs,  and 10s  for 2514 ROIs) (Fig. 7 B). These critical values 

can be estimated by searching for the maximal curvature on the trace curve. Then we can determine 
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the critical time ts on f(t) based on these critical trace values, which favors the prediction of FC 

using Eq. (15) directly. The mean Pearson correlations between the directly predicted FC and 

measured FC when using Laplacians of hmSC+SC are R90= 0.8921(m=3), R246= 0.9240 (m=3), 

R998=0.9054 (m=4), and R2514=0.9281(m=5), respectively, which are computed by averaging the 

correlations emerging at the same time for all subjects (i.e., ts in Fig. 7) and a little lower than the 

highest mean correlations obtained by averaging the highest correlations arising at different time 

attributed to the inter-subject variability (Fig. 5, Table S2),  thereby causing small deviations from 

the highest mean correlations. However, it should be noted that the predicted full FC patterns at the 

critical frequencies closely resemble the corresponding measured FC for all the four datasets (Fig. 

8).   

 

 

Fig. 7. Illustration of the critical frequencies when FC appears for all the four datasets. (A) 

Pearson correlations between the instantaneous function (f(t)) and the measured FC over all subjects 

of the four datasets. (B) The corresponding trace changes of f(t). The highest correlations 

( corresponding to the stationary FC ) for each subject arise around the moment (ts) when the traces 

of f(t) (corresponding to frequencies) fall below a critical value ( 5s   for datasets 90, 246, and 

998 ROIs,  and 10s  for 2514 ROIs).  
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Fig. 8. Comparison between the predicted FC matrices at the critical frequencies and the 

corresponding measured FC matrices for all datasets. (A) Mean measured FC matrices of the 

four datasets. (B) The corresponding mean predicted FC (FCpre). Mean Pearson correlations 

between the two are R90= 0.8921, R246= 0.9240, R998=0.9054, and R2514=0.9281 for the four datasets, 

respectively. 

Another critical finding of our study is that the established brain wave equation is capable of 

modeling the anti-correlations between brain regions, which are generally neglected in previously 

reported models [6-9, 21]. These models usually exclude all the connections whose strength is 

smaller than a threshold including all the negative connections (functional anti-correlations) in FC. 

In our model, we argue that the negative correlations result from the long term depression (LDP) 

[32] occurring during signal transmission between brain regions. The lasting decrease of the 

connection strength between two brain regions may lead to the emergence of negative correlation 

between them. We observe that the predicted FC using the wave equation shows nearly the same 

signs as the measured FC by embedding the sign matrix extracted from the measured FC into the 

wave equation directly (Fig. S3). Very high mean Pearson correlations are obtained between the 

simulated negative FC and the true negative FC using Laplacians of hmSC+SC for all the four 

datasets (R90= 0.8606 (m=3), R246= 0.9825 (m=3), R998=0.9044 (m=4), and R2514=0.9378(m=5)).    

However, it should be noted that, although the proposed wave equation is capable of modeling 

the negative correlations between brain regions, in the present study, we obtain the sign matrix from 

the measured FC directly due to the inability of dMRI to measure directed interactions between 

brain regions. Alternative approaches such as using graph neural fields [41] and deep learning 

modeling [42] or developing optimal noninvasive in vivo imaging techniques with high spatial and 
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temporal resolution [43]. 

Taken together, it is worth highlighting that the established wave equation may bring to light how 

neural activities are coupled and propagate in brain. Although the current model lacks strong 

biological evidence, we have demonstrated its powerful performance on brain structure-function 

mapping using four extensively studied experimental connectome datasets and obtained compelling 

and exceptional results.  
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Fig. S1.  Mean measured FC and SC matrices of the four datasets. (A) 90 ROIs dataset, 

averaged across 8 individual participants. (B) 246 ROIs dataset, averaged across 145 individual 

participants. (C) 998 ROIs dataset, averaged across 5 individual participants. (D) 2514 ROIs dataset, 

averaged across 12 individual participants. The matrices’ elements of all the datasets except the 

2514 ROIs are arranged such that the right hemisphere is in the upper left quadrant, left hemisphere 

in the lower right quadrant, and interhemispheric connections in the upper right and lower left 

quadrants. For clear visualization, the FC matrix of 2514 ROIs is modularized with hierarchical 

agglomerative clustering (HRC) and the SC matrix is binarized in the same order as those in the 

rsFC [35].  
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Fig. S2. The spreading of the colour maps of FC along hmSC for the 90-ROI dataset. The color 

maps are obtained with seeding at right postcentral gyrus (PoCG.R) in the brain network. (A) the 

measured functional connectivity (FC) between the seed PoCG.R and the other regions. (B) the 

predicted FC between the seed PoCG.R and the other regions derived from the measured structural 

connectivity (SC). (C), (D), (E) and (F) show the predicted FCs between the seed PoCG.R and the 

other regions by the high-order of hSC (hmSC), with the number of order m = 1, 2, 3, and 4, 

respectively. Cold/warm colour indicates negative/positive functional connections. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.464009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.464009
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

Fig. S3. Comparison between the predicted negative FC matrices and the corresponding 

measured negative FC matrices for the four datasets. (A) Mean measured negative FC matrices 

of the four datasets. (B) The corresponding mean predicted negative FC (FCpre). Mean Pearson 

correlations are R90= 0.8606, R246= 0.9825, R998=0.9044, and R2514=0.9378, respectively. 
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Table S1 The maximum Pearson correlations distribution for the four datasets using Laplacians of hmSC 

 

 

 

 

 

Table S2 The maximum Pearson correlations distribution for the four datasets using Laplacians of 

hmSC+SC 

 

 

 

 

 

 

 

 

 

 

Datasets   

Laplacians     

90 ROIs 246 ROIs 998 ROIs 2514 ROIs 

Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

SC 0.3729 0.4425 0.4112 0.3156 0.4361 0.3785 0.2667 0.3441 0.3089 0.1893 0.2689 0.2154 

hSC 0.6966  0.7921  0.7544  0.7466 0.8343 0.7875 0.4841 0.5520 0.5188 0.2600 0.3080 0.2741 

h2SC 0.7703 0.8803 0.8473 0.7984 0.8798 0.8354 0.7334 0.7669 0.7537 0.3171 0.3987 0.3472 

h3SC 0.7760 0.8860 0.8501 0.8012 0.8791 0.8362 0.7590 0.7970 0.7779 0.4406 0.5472 0.5055 

h4SC 0.7760 0.8861 0.8501 0.8012 0.8791 0.8362 0.7587 0.7972 0.7769 0.6729 0.7320 0.7039 

h5SC -- -- -- -- -- -- 0.7587 0.7972 0.7769 0.6814 0.7575 0.7182 

h6SC -- -- -- -- -- -- -- -- -- 0.6814 0.7575 0.7182 

Datasets   

Laplacians     

90 ROIs 246 ROIs 998 ROIs 2514 ROIs 

Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

hSC+SC 0.6735 0.7872 0.7494 0.7944 0.8573 0.8274 0.4889 0.5394 0.5117 0.2512 0.2974 0.2656 

h2SC+SC 0.8652 0.9070 0.8926 0.9116 0.9399 0.9281 0.7486 0.8080 0.7840 0.3383 0.4146 0.3576 

h3SC+SC 0.8691 0.9146 0.8972 0.9120  0.9411  0.9281  0.9023 0.9146 0.9100 0.5803 0.6526 0.5997 

h4SC+SC 0.8691 0.9146 0.8972 0.9120  0.9411  0.9281  0.9010 0.9146 0.9097 0.8915 0.9213 0.9095 

h5SC+SC -- -- -- -- -- -- 0.9010 0.9146 0.9097 0.9162 0.9487 0.9346 

h6SC+SC -- -- -- -- -- -- -- -- -- 0.9162 0.9487 0.9346 
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Supplementary Note 1: The derivation of the solution to the wave equation 

As described in the main text, the wave equation can be expressed as 
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The solution is derived as follows.  
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i.e., 2 2 2t  sρ ρ L u u , integrating on both sides gives,   

2 2 2 2 21 1

2 2
t sρ L u  

Considering the damping effect during the propagating of neural activity signals, the 

solution ρ  can be expressed as 

t sρ L u                       (S3) 

 i.e.,   t
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L u , shifting u to the left side and t to the right side, we have  
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Integrating on both sides gives 
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Then we obtain 
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