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Abstract 

 

Group living animals can use social and asocial cues to predict the presence of a reward or 

a punishment in the environment through associative learning. The degree to which social 

and asocial learning share the same mechanisms is still a matter of debate, and, so far, 

studies investigating the neuronal basis of these two types of learning are scarce and have 

been restricted to primates, including humans, and rodents. Here we have used a Pavlovian 

fear conditioning paradigm in which a social (fish image) or an asocial (circle image) 

conditioned stimulus (CS) have been paired with an unconditioned stimulus (US=food), and 

we have used  

the expression of the immediate early gene c-fos to map the neural circuits associated with 

social and asocial learning. Our results show that the learning performance is similar with 

social (fish image) and asocial (circle image) CSs. However, the brain regions involved in 

each learning type are distinct. Social learning is associated with an increased expression of 

c-fos in olfactory bulbs, ventral zone of ventral telencephalic area, ventral habenula and 

ventromedial thalamus, whereas asocial learning is associated with a decreased expression 

of c-fos in dorsal habenula and anterior tubercular nucleus. Using egonetworks, we further 

show that each learning type has an associated pattern of functional connectivity across 

brain regions. Moreover, a community analysis of the network data reveals four segregated 

functional submodules, which seem to be associated with different cognitive functions 

involved in the learning tasks: a generalized attention module, a visual response module, a 

social stimulus integration module and a learning module. Together, these results suggest 

that, although there are localized differences in brain activity between social and asocial 

learning, the two learning types share a common learning module and social learning also 

recruits a specific social stimulus integration module. Therefore, our results support the 

occurrence of a common general-purpose learning module, that is differentially modulated 

by localized activation in social and asocial learning. 
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Introduction 

 

The social intelligence hypothesis (1,2) states that living in social groups creates a demand 

for enhanced cognitive abilities in order to handle the variability and unpredictability of social 

interactions, hence driving the evolution of more complex cognitive skills (aka intelligence), 

and consequently selecting for larger executive brains (i.e. social brain hypothesis) (3,4). 

However, two different scenarios have been proposed for how these evolved cognitive 

abilities implement adaptive behavior. According to a general-purpose brain scenario, 

mechanisms of information input, encoding, storage and retrieval are shared between 

functional domains (e.g. social, foraging, predator avoidance), hence, although evolved in a 

specific domain (e.g. social), enhanced cognitive abilities are advantageous in all domains. 

Alternatively, each functional domain relies on special-purpose cognitive modules, which are 

highly specialized with independent mechanisms of information processing. In this regard, 

there is an ongoing debate in the field of social cognition, on the extent to which social 

learning (i.e. learning from other individuals) is a general-domain or a domain-specific 

process (5–9). For example, comparative studies in birds and primates show correlations 

between the performance on social learning and individual learning (aka asocial learning) 

tasks or measures of behavioral flexibility, suggesting that these traits evolved together (10–

12). Furthermore, observational learning in bumblebees has been shown to emerge through 

the integration of two learned associations following Pavlovian conditioning rules (13). In 

contrast, there is also comparative evidence supporting the occurrence of domain-specific 

modules, such as the differences found in social learning, but not in individual learning, 

between two corvid species with differences in degree of sociality, or between human 

children and apes (14,15). Moreover, intra-specific studies in mice show that maternal 

deprivation early in life impairs social learning whereas spatial learning is unaffected, and 

that communally-reared mice, when compared to single-mother reared mice, have better 

social competence but do not differ in spatial learning and memory capacity tests (16,17). 

Finally, a third scenario has also been proposed that suggests that social learning operates 

on the same general learning mechanisms as asocial learning with adaptive specializations 

present only for the input systems (i.e. social information acquisition) (6–9).  

 The study of the proximate mechanisms (i.e. genetic basis, neural circuits) of social 

and asocial learning can, in principle, help to clarify the occurrence of shared processes. 

Unfortunately, there are few studies on such mechanisms with notable exceptions for the 

study of observational fear learning and for social learning of food preference. In both 

humans and rodents social (i.e. observational) and asocial fear conditioning share, at least 

partially, the same neural substrates, with the anterior cingulate cortex (ACC) processing the 

social information and conveying it to the amygdala, which plays then a major role in the CS-
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US pairing in both learning types (18–22). In rodents, a specialized olfactory subsystem has 

been described that is required for the acquisition of socially transmitted food preferences 

(23). Moreover, social fear learning and classic fear learning can prime each other (i.e. a 

prior observational fear learning will enhance fear conditioning and vice-versa). Together 

these results suggest an overlap of the neural mechanisms involved in social learning and in 

learning from direct experience, with specializations being mainly present at the level of 

social information acquisition. However, the above-mentioned studies address specific brain 

regions that are chosen a priori as candidates for the social learning tasks, and studies using 

a unbiased brain network approach are lacking in this field. This is particularly important 

because despite the overlap of brain circuits processing social and asocial learning, the 

candidate brain region approach does not rule out the occurrence of specialized circuits 

elsewhere in the brain. Furthermore, the analysis of localized neuronal activation, which is 

usually the parameter studied in relation to the behavioral output, does not provide per se 

information on the patterns of co-activation across a brain network that may reveal either 

specialized or conserved modules for the two learning types. Finally, the study of the neural 

mechanisms of social learning has focused on mammals, and comparative data in other 

vertebrate species that lack evolved cortical structures is also missing. 

 

 Here we have used a classic (Pavlovian) conditioning paradigm in zebrafish, in which 

a social (image of a zebrafish) or an asocial (image of a circle) conditioned stimulus (CS) 

was paired with an unconditioned stimulus (US = food), in order to investigate the neural 

basis of social and asocial learning. The choice of this classic conditioning paradigm where 

the social and asocial treatments are matched for everything except the visual shape of the 

CS rule out putative confounding variables, such as for example the involvement of different 

sensory modalities in the acquisition of the social information. We have used the expression 

of the immediate early gene c-fos as a molecular marker of neuronal activity (24,25). We 

have also developed a method to analyze brain network functional connectivity based on the 

brain regions’ co-activation matrices for each experimental treatment. In network 

neuroscience, such matrices are built for individual brains based on a similarity measure 

between the timeseries of brain parcels in fMRI, or the different channels in an EEG (26). In 

the case of a molecular marker of neuronal activity, such as c-fos, that only provides a single 

snapshot per brain, the correlations of activity between brain regions (i.e. the number of 

positive c-fos cells for each pair of brain nuclei), is obtained for a set of brains from different 

individuals. Therefore, the estimation of the actual correlation (or similarity) between regions 

relies on simulation statistics that extract a consensus network. Finally, we have used 

network community analysis to identify submodules related to the different cognitive tasks 

involved in social and asocial learning. 
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Results 

 

Social and asocial classic conditioning in zebrafish 

 

Pavlovian conditioning was assessed using a plus-maze paradigm divided into a training 

phase and a probe test. During the training phase, we spatially paired a social or an asocial 

conditioned stimulus (CS) with an unconditioned stimulus (US; food = bloodworms) in a 

specific location (Fig. 1a). The percentage of right choices per session (composed of 8 trials) 

was measured. In the probe test (24h after the last training session), individuals only had 

access to the CS, and the time spent in the region of interest (RoI) of the correct arm of the 

maze was quantified to measure learning. Unpaired treatments were used as controls, 

where the CS (either social or asocial) was spatially unmatched with the US. 

Animals learned both socially and asocially (learning main effect: X2
R(1)=28.44, 

p<0.0001) as shown by the comparison in the percentage of correct choices between paired 

CS-US [social learning (SL) and asocial learning (AL)] and unpaired CS-US [social control 

(SC) and asocial control (AC)) treatments for social and asocial CSs (SL vs SC:X2
R(1)=6.95, 

p=0.0089; AL vs AC:(X2
R(1)=28.44, p<0.0001) (Fig. 1b). Animals in the social and asocial 

learning treatments (SL and AL)) acquired information at the same rate, since no significant 

differences between social and asocial learning curves were found either in slope 

(X2
R(1)=1.53, p=0.22) or elevation (X2

R(1)=0.001, p=0.97) (Fig. 1b). It is worth mentioning that 

there were also no significant differences between the social and asocial control treatments 

either in slope (X2
R(1)=2.0, p=0.16) or elevation (X2

R(1)=0.14, p=0.70) (Fig. 1b). Moreover, in 

control treatments, animals did not present any biased-behavior towards one of the arms of 

the plus maze exhibiting a random proportion of choices over the trials (25% in social and 

asocial treatments across the training sessions). 

In the probe test, individuals from the learning treatments (SL and AL) spent more 

time in the target arm independently if they were trained using a social (X2
F(1)=12.89, 

p=0.001) or an asocial (X2
F(1)=11.53, p=0.001) CS, when compared to the control 

treatments (i.e. unpaired CS-US). We did not observe any significant difference in the time 

spent in the other arms of the plus-maze indicating an absence of any spatial biases in the 

spatial use of the maze by the fish during this phase of the experiment (opposite arm to the 

target arm: SL vs SC,, X2
F(1)=1.22, p=0.276, AL vs AC,, X2

F(1)=0.32, p=0.577; left of the 

target arm: SL vs SC, X2
F(1)=0.42, p=0.522, AL vs AC, X2

F(1)=0.06, p=0.801; right of the 

target arm: SL vs SC, X2
F(1)=0.25, p=0.617, AL vs AC, X2

F(1)=0.21, p=0.649) (Fig. 1c). 

This paradigm allowed the classification of individuals in the learning treatments (SL 

and AL) into three different categories: non-learners, learners and learners that forget the 
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learned information from the last learning session to the probe test (i.e. no-retention group: 

social non-retention (SNR) and asocial non-retention (ANR)).The learners were able to 

acquire the information and recall it (50% of individuals in both the social and asocial 

learning treatments); the “no-retention group” were animals that despite showing a learning 

curve during the training sessions did not recall the acquired information in the probe test 

(36.67% individuals in the social group (SNR) and 22.73% individuals in the asocial 

group(ANR)); and a small percentage of individuals that did not improve the performance 

over the training sessions (13.33% individuals in the social groups and 27.27% individuals in 

the asocial group) were classified as non-learners (Figs. 1d, e). The non-learners and no-

retention animals were identified using the interval of confidence in the training phase and 

duration in the ROI of the target arm during the probe test as criteria, respectively. The 

proportion of learners (X2(1)=0, p=1), non-learners (X2(1)=1.56, p=0.21) and non-retention 

(X2(1)=1.14, p=0.29) individuals did not differ between social and asocial learning treatments 

(Figs. 1d, e). 

Given the lack of difference in behavioral measures between social and asocial 

learning it was important to make sure that the individuals can discriminate the two CS 

stimuli used in this test. Thus, a visual discrimination task to asses if zebrafish can 

discriminate between the two stimuli (social and asocial CS) was used, where one stimulus 

was associated with a reward and the other with a punishment (e.g. social stimuli as a 

reward and asocial as a threat, and vice-versa). This test indicated that zebrafish could 

distinguish between the social and asocial stimuli used in this study and that the learning 

curve for the acquisition of these discrimination was similar when either the social or the 

asocial were paired with the reward (slope X2
R(1)=1.74, p=0.22; elevation (X2

R(1)=0.43, 

p=0.53; Fig. 1f). Given that social animals usually have an innate preference for social cues 

we have also tested the preference of zebrafish for the social stimuli used here to make sure 

that it had a positive valence. Preference was assessed using a choice test, where animals 

could choose between spending time near the social vs. the asocial stimuli used in our 

study. As predicted, a preference for the social stimulus was observed (t(15)=2.55, p=0.02; 

Fig. 1g). 

 In summary, in zebrafish both social and asocial cues are equally efficient as a CS in 

a classic conditioning paradigm, despite zebrafish having an innate preference for the social 

cue. 

 

Brain regions associated with social and asocial classic conditioning in zebrafish 

 

The brain regions (see Table 1 for list of regions studied and their abbreviations) associated 

with social and asocial learning were determined using the expression of the immediate 
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early gene c-fos, a marker of neuronal activation, by in situ hybridization. Because of 

possible laterality effects the expression of c-fos was measured on both brain hemispheres 

(noted below as left or right for each brain region). We identified as brain nuclei involved in 

social (SL) or asocial (AL) learning those that presented significant differences in c-fos 

positive cells between animals of the paired treatments (SL or AL) that were able to acquire 

and recall the CS and the respective unpaired control treatments (SC or AC, respectively). 

The following areas showed increased activation associated with social learning: olfactory 

bulb (OB) (left: X2
F(1)=8.87, p=0.022; right: X2

F(1)=7.35, p=0.022), ventral nucleus of ventral 

telencephalic area (vV) (left: X2
F(1)=6.42, p=0.048; right: X2

F(1)=5.72, p=0.048), ventral 

habenular nucleus (Hav) (left: X2
F(1)=6.06, p=0.04; right: X2

F(1)=10.28, p=0.012) and ventral 

medial thalamic nucleus (VM) (left: X2
F(1)=6.20, p=0.038; right: X2

F(1)=7.46, p=0.011) (Table 

2; Figs. 2a-h). On the other hand, the left dorsal habenular nucleus (Hadl) and the right 

anterior tubercular nucleus (ATNr) were differentially activated during asocial learning 

(X2
F(1)=6.86, p=0.05 and X2

F(1)=8.42, p=0.028, respectively; Table 2; Figs. 2i-l). 

In summary, despite the behavioral similarities between social and asocial learning in 

zebrafish described in the previous section, learning from a social CS is associated with the 

local activation of different brain regions when compared to learning from an asocial CS. 

 

Brain functional networks associated with social and asocial classic conditioning in 

zebrafish 

Using the correlation matrices of activity levels across the studied brain regions (i.e. matrices 

of co-activation), we constructed aggregated networks (see methods below for details) for 

each of the four combinations of experimental conditions: asocial learning (AL); social 

learning (SL); asocial control (AC); and social control (SC).  

 First, we studied the regional changes (i.e. within one step in the network from each 

focal node) induced by social (S) and asocial (A) learning. This was done by considering the 

difference matrices between the learning and the control treatments for the social and the 

asocial conditions (i.e. ∆S = AS,L − AS,C and ∆A = AA,L − AA,C). We found no overall significant 

correlation between the regional amplitudes under the two conditions (i.e. ∣∆S
i∣ and ∣∆A

i∣; 

Figure 3A). However, we identified a set of regions that display significant changes with 

respect to a random null model (Figure 3B). More in detail, a significantly (≥ 95%) large 

amplitude was found for V LIl, Dmr, Dcr, and Ppar in social learning and for Dcl, Al, ATNIl, Hdl, 

Hcl, and VMr in asocial learning, and a significantly small (< 5%) amplitude was found for 

OBl, ATNIl, PGZl, Vlr, PMr, PPpr, Havr, VMr, Hadr, Cilr, NLVr,  for social and for  Dl, Vsl, CPl, 

Dr, Vcr, Vsr, Ar, Hadr in asocial learning. The significance was constructed by repeatedly 
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sampling N values uniformly at random from the ∆ matrices to form a principled expectation 

for the amplitudes (Figure 3B). We consider then the changes in the directions of the region 

contexts by computing the corresponding similarity χ values between ∆S and ∆A matrices 

(Figure 3C). We find that the majority of regions do not display significant changes with 

respect to randomized version of the ego-network links (see Methods). However, a few 

regions do display statistically significant changes. In particular, we find that regions Vll and 

VLIl are significantly (p < 0.05, z < −1.5) dissimilar between social and asocial learning 

conditions. Another set of regions instead displays significant similarity between the two 

conditions (p < 0.05, z > 1.5): Vdl, Vvl, Ddl, Al, LHl, DTNl, GCl, Vdr, Dlr, ATNIr, TPpr, CPr, 

DTNr, GCr. 

 After having identified localized regional differences across treatments, we asked 

whether the network structure differs at intermediate scales (mesoscales) between 

treatments. This kind of deviation would signal that different information integration and 

elaboration strategies are used for different tasks. To this aim, we detected robust functional 

partitions for each treatment (see Figure 3D for the results of the community detection). The 

first observation that we can make is whether the integration across modules differs across 

treatments. For example, the two control (C) treatments are characterized by a slightly larger 

number of communities (5), with respect to the learning (L) treatments (4). It is more 

informative however to investigate to what degree the various modules are tightly linked 

within themselves with respect to with each other. To quantitatively characterize the 

differences among partitions, we measure the ratio r (see Methods) of the total edge weight 

within a module to the total weight the edges between communities. If r ≥ 1, it means that 

modules are denser than the inter-module medium, suggesting stronger segregation of 

activity, and vice versa. We find that the treatment asocial control (AC) has the highest r (r = 

2.45), followed by the social learning (SL) (r = 1.92), and the asocial learning (AL) (r=1.75) 

treatments, highlighting the presence of better defined communities and tighter segregation 

of the functional activity within modules in these treatments (Figure 3D). In contrast, the 

social control (SC) treatment displays a lower r value (r = 1.2), indicative of higher integration 

across the modules (Figure 3D). 

 In addition to the overall balance between integration and segregation, we can ask 

whether modules (or parts of them) are conserved across different treatments. We did this 

by comparing modules between partitions corresponding to different treatments and looking 

for intersections between them (see Methods). We first compared the two control treatments 

(AC and SC). We found two conserved submodules: one comprising Vdl, Dcl, Vvl, Dill, Al, 

Vcr, Dml, Vdr, Dmr (green module in Figure 3 E), and a second one containing Vlr, Hdl, PGZl, 
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VMr, PGZr, PMl, Hvr, Hvl, Hdr (purple module in Figure 3 E). Interestingly, this second 

submodule appears with some modifications also when comparing the social and the 

learning treatments (SC, SL and AL, SL). Thus, we considered it to represent a visual 

response module. Then, we compared the two social treatments (SC and SL) to detect 

conserved submodules involved in social information processing. In this case, we found a 

single large conserved submodule, containing the regions VLr, Vlr, ATNr, VLl, Hdl, PGZl, VMr, 

PGZr, Hvr, DTNr, Hvl, and Hdr. Note that this module contains a large part of the second 

module conserved between the control treatments (AC and SC), with the addition of regions 

VLr, ATNr, VLl and DTNr (i.e. social integration module = orange module in Figure 3E). 

Finally, we compared the two learning treatments (AL and SL) to detect conserved 

submodules involved in general learning and found a single large conserved submodule 

containing regions VLl, GCl, PGZl, LHl, Hdl, PGZr, CMl, Hvr, LHr, Hvl, and ATNl. Note again 

that this submodule contains a large fraction of the second module found in the comparison 

between controls (AC-SC), with the additional regions GCl, LHl, CMl, LHr, and ATNl (i.e. 

general learning module = blue module in Figure 3E). In all cases, we found that the 

conserved submodules include region VLl. 

Discussion 

 

In this study zebrafish learned equally well a CS-US pairing using either social or an asocial 

CS, as there were no significant differences between the social and asocial learning 

treatments nor in learning acquisition during training phase neither in recall during the probe 

test. Importantly, we confirmed that zebrafish were able to discriminate between the social 

and asocial cues (i.e. CSs) used in this study and, as previously described, that they have a 

preference for the social cue (27). Therefore, social and asocial classic associative learning 

seem to be equally efficient. 

 When we analysed the levels of brain activation, quantified by c-fos expression, we 

found that social learning is associated with increased activity in the olfactory bulbs (OB), the 

ventral zone of ventral telencephalic area (Vv), the ventral habenular nuclei (Hav) and the 

ventromedial thalamic nuclei (VM), whereas asocial learning is associated with a decrease 

in activity in the dorsal habenular nuclei (Had) and in the anterior tubercular nucleus (ATN). 

Interestingly, all the brain regions associated with social learning have been previously 

implicated in learning tasks. The OB has been described as an important brain region for 

social learning. The cryptic cells (a subtype of cells in olfactory bulbs) are recruited in kin 

recognition (28), and an increase of GABA and glutamate in mitral cells is observed after 

training in social transmission of food preference (29–32). In our learning paradigm the CS is 

a visual cue and the US can be perceived either by visual or chemical cues. Thus, the 
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increased activity of the OB cannot be explained as a direct response to the visual CS in the 

probe test phase, but rather as a conditioned response to it after successful pairing of the 

chemical US with the CS during the training phase. Thus, the expectation of food is 

apparently increasing the activity of the OB in anticipation of a feeding event, suggesting a 

modulation of olfactory perception by the social CS. The association of Vv with social 

learning in zebrafish is not surprising given that the lateral septum, which is its putative 

homologue in mammalian brains, has been implicated in several learning processes, such 

as auditory fear learning (33,34), contextual learning (33,35), and working memory (36). 

Other studies revealed the role of Vv in the processing of social information, such as social 

orientation (37), audience effects (38) and social exploration (39). Together, this evidence is 

congruent with our findings, where Vv is crucial to learning related from social cues. The 

lateral habenula (LHb), which is the mammalian putative homologue of the Hav (40), has 

also been implicated in learning and memory. For instance, inhibition of the LHb leds to 

deficits in spatial memory (41), object recognition (42), spatial working memory (43), 

aversive conditioning to cocaine  (44), and complex conditioning task (45). Moreover, social 

behavior is also regulated by the LHb as evidenced by the decrease of c-fos expression in 

the LHb in social isolation, by the reduction in c-fos expression during social play (46), and 

by the impair of social behaviors by the activation of LHb or pre-frontal cortex (PFC) neurons 

and PFC-LHb projections (47–50). Finally, the VM, which is considered as a thalamic nuclei 

in zebrafish (51), belongs to the cortico-basal ganglia-thalamic loop circuit in mammals, in 

which the basal ganglia receive inputs from the cortex and transfers them back to frontal and 

motor cortex via the VM (52). This circuitry is also connected with LHb allowing animals to 

adjust the salience and valence of stimuli.  

 In contrast, asocial learning in zebrafish is associated with other brain regions, 

namely the dorsal habenular nuclei (dHb) and the anterior tubercular nucleus (ATN). The 

dHb , which is homologous of the medial habenula in mammals (mHb), receive inputs mainly 

from the limbic system, and sends outputs to the interpeduncular nucleus, which in turn 

regulates activity dopamine (DA) and serotonin (5HT) neurons (53–55). Evidence in both 

mice and zebrafish supports our results that suggest dHb to be related to asocial learning. 

Ablation of mHb induces deficits in long-term spatial memory (54), complex learning 

paradigms (54) and fear learning (56,57). In contrast, our findings reveal a decreased 

expression of c-fos associated with asocial learning, probably due to a disinhibitory 

mechanism. The ATN is homologous of the ventromedial hypothalamus (VMH) in mammals, 

a brain region that has also been related to learning processes with strong c-fos expression 

after fear conditioning (58) and recall of conditioned fear (59). The role of VMH in learning 

processes in mammals can be explained by the afferents from the amygdala (BLA and 

MEA), a brain region clearly shown to be involved in learning processes (58). In summary, 
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social and asocial learning in zebrafish are associated with changes in activity in different 

sets of brain regions known to be involved in learning in other species. 

 We have also studied the structure of brain networks in relation to the two types of 

learning. The regional similarity data also reveals a lack of correlation between social and 

asocial learning, and a large amplitude (i.e. implying more marked local changes in network 

structure) for different regions in the two types of learning (i.e. social: VLIl, Dmr, Dcr, Ppar; 

asocial: Dcl, At, ATNIl, Hdl, Hcl, VMr). Furthermore, the community detection results reveled 

a robust modularity of the brain networks across all treatments, with the social learning 

treatment displaying a significantly higher integration than the asocial one. Finally, we looked 

into the composition of shared submodules in an attempt to frame and contextualize them. 

We offer a hypothesis on the basis of these results. The treatments AC-SC share the visual 

response to a stimulus but include no learning on the part of the individuals. We can imagine 

therefore that the shared submodules will encode the simple reaction of the animal to the 

appearance of a visual stimulus carrying no semantic meaning (as the animal has not 

learned to associate it with food). The two submodules should therefore code for the 

generalized attention (AM) and the visual response mechanisms (VRM) (Fig. 3 E). In the 

comparison SC-SL, the commonality lies in the presence of a social visual stimulus. We 

would expect therefore to see a recruitment of the VRM with a potential additional 

recruitment of other regions responsible for social recognition. From this perspective, the 

single conserved submodule that we found in the SC-SL supports this interpretation, being 

largely composed by the VRM regions and a few additional ones, that we now denote as 

social integration module (SIM) (Fig. 3 E). Along the same line, the AL-SL should highlight 

the submodule specific to learning and reacting to the food stimulus, independently from the 

type of visual stimulus. We find again a single large conserved submodule, that includes 

about 50% of the VRM regions plus a new set of regions with no overlap with the SIM. 

Arguably, these additional regions should be responsible for the learned response and 

association with the food stimulus, and we denote them as the learning module (LM) (Fig. 3 

E). Finally, the region VLl constitute a glaring exception, as it appears in all the submodules 

that we described so far. This general presence might suggest that it has a generic role in 

information integration across different areas. 

 In summary, here we show that social and asocial learning are associated with 

localized differences in brain activity that are paralleled by the segregation of brain modules 

that seem to serve subsets of cognitive functions, such as a visual response module, a 

social integration module and a learning module that is shared between the two types of 

learning. Together, our results provide the first experimental evidence for the occurrence of 

a general-purpose learning module that is apparently modulated by different patterns of 

localized activity in social and asocial learning. 
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Methods 

 

Animals 

Zebrafish (Danio rerio) were 5 months old wild-type (Tuebingen strain) males, bred and held 

at Instituto Gulbenkian de Ciência Fish Facility (Oeiras, Portugal). Fish were kept in mixed-

sex groups, at 28ºC, 750 μs, pH 7.0 pH in a 14L:10D photoperiod and fed twice a day 

(except on the day of the experiments) with freshly hatched Artemia salina and commercial 

food flakes.  

 

Ethics statement 

All experiments were performed in accordance with the relevant guidelines and regulations, 

reviewed by the Instituto Gulbenkian de Ciência Ethics committee, and approved by the 

competent Portuguese authority (Direção Geral de Alimentação e Veterinária, permit 

number 0421/000/000/2017). 

 

Behavioral paradigm 

One day before the experiment, fish were moved to the home tanks (1.5L, 12.5 cm x 12.5 

cm x 12.5 cm) where they only had visual and chemical access to a mix shoal of 4 animals 

(2 familiar males and 2 familiar females). 

The experiment was subdivided into three phases: acclimatization, training and 

probe test. In the acclimatization phase, after one minute in the start box, animals were 

allowed to swim freely in the tank for 9 min, during which, they were attracted to all arms of 

the plus-maze with bloodworms, so that they became familiar with the whole maze.  In the 

training phase, animals were trained in daily sessions of trials per session for 6 days. In the 

paired groups, animals had the CS and the US presented together in the same arm, and 

received a reward (bloodworm) when this arm was chosen (that changed on each trial in a 

pseudo-randomized way, within and between individuals); when another arm was chosen, 

animals stayed one minute in the chosen arm, and then they were conducted to the right 

arm, using a hand net where they receive the reward. In the unpaired groups, the animal 

spent 2 minutes in the chosen arm since the CS and US were never presented together. In 

both groups, when individuals reach the RoIof the chosen arm the start box was closed to 

avoid the animal change its decision. In the social treatments, the CS stimulus presented at 

the end of the arm was a static, 2D photography of a zebrafish. In the asocial treatments a 

digitally drawn circle with the same visual target area and the same mean color of the 
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zebrafish-stimulus was used. After each training session, individuals returned to their home 

tank.  

In the probe test (24h after the last training trial), animals were only exposed to the 

CS for 2 min. The CS was then removed and the animal remained in the tank for 30 min to 

achieve the peak of expression for c-fos (60). 

A preference test was performed to assess if individuals prefer social to asocial CS’s. 

For this purpose, we used a rectangular tank (5L, 30cm x 15 cm x 15 cm) with the stimuli 

presented on each side (e.g. social stimulus in the left and asocial stimulus in the right side, 

in a randomized way between individuals). Individuals were placed in a start box for 2 min 

with transparent partition, and the time spent in both RoI’s was compared.  

To demonstrate that individuals can discriminate between the two CS used (i.e. 

social and asocial CSs), we performed a discrimination task. In this case, we trained fish 

(one-minute trial, 8 trials/day for 5 days) to associated one CS to a reward (food) and the 

other to a punishment (netting) (e.g. social stimulus in half of the animals was associated 

with food and in the other half it was associated with threat). In the probe test, only the CSs 

were presented, and we measured the duration spent by the focal fish in each arm; if 

individuals were able to discriminate between the two stimuli, they should prefer the arm 

associated with reward independently of their initial preference for the social stimulus. 

In all experiments, the behavior was recorded with a digital camera for subsequent 

analysis using a commercial video tracking software (EthoVisionXT 8.0, Noldus Inc. the 

Netherlands). 

Brain collection 

Animals were sacrificed with an overdose of Tricaine solution (MS222, Pharmaq; 500–1000 

mg/L) and sectioning of the spinal cord. The brain was macrodissected under a stereoscope 

(Zeiss; Stemi 2000) and immediately collected to 4% PFA solution in 0.1M PB and kept 

overnight at 4º C. After cryopreservation (34% sucrose in 0.1M PB ON at 4ºC), the brains 

were embedded in mounting media (OCT, Tissue teck) and rapidly frozen on liquid nitrogen. 

The coronal sectioning was performed on a cryostat (Leica, CM 3050S) at 16 um, sections 

were collected onto SuperFrost glass slides and stored at -20ºC.  

In situ hybridization for the immediate early gene c-fos 

Chromogenic RNA in situ hybridization (CISH) was carried out according to a standard 

protocol available upon request from the lab of Professor Marysia Placzek, University of 

Sheffield, briefly described below. For the generation of c-fos probes, a pBK-CMV vector 
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containing the c-fos cDNA (Genebank: CF943701) was cut with the restriction enzyme 

BamHI (antisense) and EcoRI (sense) to generate templates for in vitro transcription. 

Digoxigenin-labeled c-fos sense and antisense probes (11277073910, Merk (Roche), UK) 

were then synthesized through in vitro transcription of 1 mg template with T7 polymerases 

(M0251, New England Biolabs). The sections were fixated in 4% PFA, washed in PBS, 

rinsed in 0.25% acetic anhydride in 0.1 M tri-ethanolamine for 10 min and washed 3 times in 

phosphate buffer saline (PBS). An incubation in pre-hybridization buffer (hybridization 

solution without yeast RNA, minimum 3 hours) was done in order to prepare the tissue for 

receiving the probe diluted in hybridization solution (probe dilution: 1:40 ~4 ng/ul final 

concentration). The hybridization buffer contained 50% formamide, 5 x SSC (pH 7.0), 2% 

blocking powder, 0.1% triton X-100, 0.5% CHAPS, 1 mg/ml yeast RNA, 5mM EDTA and 50 

ug/ml heparin. The hybridization incubation was performed at 68°C for 24 h. Following 

hybridization, the sections were treated with secondary antibody anti-dig-ap (1:1000, 

11093274910, Merk (Roche), UK), after a series of several washes decreasing 

concentrations of SSC, until 0.1× SSC. The tissue was then mounted onto GlicerolGel (GG1, 

Merk) coated slides and left to air dry.  

Cell Counting 

The slides were imaged using a tissue scanner (NanoZoomer Digital Pathology, 

Hamamatsu). A whole brain screening was performed to select the brain nuclei with higher 

c-fos activity to be counted (see list in Table1). The areas were manually drawn and the 

signal automatically quantified using the Icy software (created by the Quantitative image 

analysis unit at Institut Pasteur). The sum of the cross sections was used as an individual 

measure to each area side. 

Statistical Analysis 

A N-1 chi-square test for proportions was used to compare the proportions of learners, non-

learners and non-retention individuals, relative to the total amount of individuals in each 

treatment. Non-parametric linear regressions were performed to compare the learning 

curves across the 4 experimental treatments. To assess differences between the 

experimental treatments a non-parametric test with the location on the plus maze (target 

arm, front, left or right arms) as within factor and social (social, asocial) and learning 

(learners, non-learners) factors as between factors, was used. Planned comparisons 

followed by Benjamini and Hochberg’s method for p-value adjustment were also used to 

assess the brain regions associated with social learning (social learning vs social control) 

and asocial learning (asocial learning vs asocial control). 
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The effect of social learning on brain activity in the probe test was assessed by a 

non-parametric test with laterality (number of c-fos positive cells on each nuclei on the left 

and right side of each brain) as repeated measure and social and learning as between 

factors area-by-area (OB, D, Vd, Vc, Vv, Vl, Dc, Dl, Dm, Dp, Vs, Dd, PPa, Vp, PM, PPp, 

Had, Hav, A, VM, VL, Hv, ATN, LH, Hd, CP, TPp, PGZ, Hc, DIL, CIL, DTN, NLV GC, CM). 

Planned comparisons followed by Benjamini and Hochberg’s method for p-value adjustment 

were used to assess the brain areas associated with social learning (social learning vs social 

control) and asocial learning (asocial learning vs asocial control). 

Network analysis 

Construction of the correlation graph tower 

Functional networks for brain connectivity are usually built starting from vectorial information 

on the individual regions. In network neuroscience, this means computing a similarity 

measure (e.g. Pearson correlation) between the timeseries of brain parcels in fMRI, or 

channels in EEG. In the case of social learning experiments the correlations of number of 

positive cells for each pair of brain nuclei, for within each experimental treatment was 

computed, however we have access to a single measure per region for each specimen. In 

addition, the number of specimens is typically limited. In turn this makes the estimation of 

the actual correlation (or similarity) between regions more complicated. 

To account for this, we take inspiration from standard bootstrapping and, instead of 

defining a single network, we construct a set of possible networks leaving out some of the 

specimens information’s. 

More precisely, consider the case of � specimens, each with one sample reading ��  

for each of the � brain regions. Given a similarity metric �, typically one would consider the 

�-dimensional vectors �� , where � labels the regions, and then compute the similarities 

��� � ���� , ��	 for all pairs �
. The resulting weighted matrix � is then interpreted as the 

adjacency matrix of a functional network. 

For a given � 
 �, we will instead consider all the ���� combinations ��� of � 

specimens and compute the corresponding functional graph �� . We will refer to the 

collection of graphs obtained in this way as a graph tower ��, where each of the 

combinations can be considered as a graph layer. Similar constructions are used for 

multilayer and multiplex networks with the notable difference that graph towers do not have 

edges connecting the different layers. 
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The advantage of this construction is that each layer in the graph tower represents a 

different instance of the network bootstrapping. In this way, observables computable on a 

single layer can be bootstrapped across multiple ones. This construction has naturally one 

parameter, the sampling number m, which needs to be chosen on the basis of data-driven 

considerations or the robustness of the resulting networks.  

Selection of threshold  

Correlation networks are usually fully connected weighted networks. It is however common 

to sparsify them by retaining only edges that have a weight larger than a certain weight 

threshold. Another common practice is to choose a target density ρ for the graph and add 

edges to the network starting from the strongest ones until the density is reached. Given a 

graph (layer) Ωγ, we will denote the graph obtained using a threshold Ωγ at density ρ as Ωρ
γ. 

While the sparsification is often required to highlight the network properties of the system 

and to filter out weaker correlations, there is no commonly accepted method to choose such 

thresholds. Typically, the adopted methods depend strongly on the specific application and 

are developed ad-hoc. Overall, most existing methods rely either on considerations on the 

data used to construct the correlation matrix (e.g. the timeseries in neuroimaging), or on the 

local structure of the network (e.g. disparity filter).  

 Here, we take a different route and leverage the graph tower structure to choose the 

threshold value. We will work using the density as threshold, but the same argument can be 

replicated using weights in a straight-forward manner. For each edge ij, we can consider the 

set of edge weights {ωij}γ across all layers {γ}. Denoting respectively µ(ωij) and σ(ωij) as the 

mean and standard deviation of the ωij over the layers, we can associate to Ω a mean 

heterogeneity 

ζ(Ω) = ⟨σ(ωij )⟩(ij) 

and a mean coefficient of variation 

 

Denoting as Ωρ
Γ the graph tower thresholded at density ρ, the two quantities above can be 

computed as a function of the threshold density ρ. In Figures S1A-B we report the 

dependence of ζ and χ. We find a clear change in the heterogeneity patterns at around ρ0 = 

0.05. In particular, near ρ0 the mean heterogeneity ζ is still minimal, while the coefficient of 
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variation χ peaks before starting to decrease again. In Figure S1C we report for comparison 

a recent method for density thresholding proposed in (61). This method identifies ρ0 as the 

density that maximizes the quantity J �
�����

�
 , where Eg and El are respectively the global 

and local network efficiency (62). Interestingly, we find the threshold density identified by J is 

very close to the ρ0 identified by ζ and χ, suggesting that our construction based on the 

heterogeneity patterns of ΩΓ captures a critical point in network structure. In the rest of the 

paper, all the networks will be thresholded at this density ρ0. 

Comparison of region connectivity profiles  

We are interested in comparing how brain regions is linked to each other in the various 

conditions and tasks. During different tasks, the same brain region might be performing 

different functions by changing how it links to the other regions, its local context (also called 

egonetwork). Given two conditions A and B with associated matrices AA and AB, we can 

measure then the change in the local environment of a region i by computing the amplitude 

and direction of the change. The amplitude of the change can be quantified by considering 

the norm of the difference between the row vectors associated to i in the two conditions Ai
A = 

(Ai0, . . . AiN−1) and Ai
B = (A A

 i0, . . . A B
 iN−1). That is, we calculated the vector difference 

between the two rows ∆AB
i = ∣ AA

i − AB
i ∣ and then take its norm ∣∆

AB
i ∣. To quantify the 

direction of the change, we can instead the cosine similarity between AA
i and AB

i : 

 

Detection of robust functional modules 

Communities were computed using the Leiden community detection method (63) on the 

graph tower matrices, averaged over all the bootstrapping samples at fixed density p = 0.07. 

To increase the robustness of the detection, for each treatment, we repeated the community 

detection 100 times. From the 100 candidates partitions we extracted the central partition as 

described in (64) and associated the resulting partition to the treatment under analysis. 

To quantitatively characterize differences among partitions, we measure the ratio r of total 

edge weight within a community with that of the edges between communities. More 

specifically, for partition P with m communities we compute the (m x m ) matrix P, defined 

as: 
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Where α, β = 0, … m-1label the modules of P, and  is the edge weight between regions I 

and j. We then compute the ratio of average intra-community edge weights as follows: 

 =
���	


�
 

�
�

�|�|�	��
�
                                   

Which measures the ratio of the average weight on the diagonal of Pα, β to the average off-

diagonal weight. 

We would also like to identify modules, or parts of modules, that are shared across partitions 

corresponding to different treatments. One method to quantify this is to study the overlap 

between pairs of modules: consider partitions Px = {C0
x, C

1
x . . . C

m
x } and Py == {C0

y , C
1

y 

...Cl
y} for treatments x and y; for each pair of modules (Ci

x, C
j
y), we compute the intersection 

J
i,j

x,y = Ci
x ∩ Cj

y. To establish significance, we employ a permutation test based on a null 

distribution for the size of intersections p0(∣J∣): for each pair (Ci
x, C

j
y), we sample uniformly at 

random 10000 pairs of nodesets with cardinality respectively ∣Ci
x∣ and ∣Cj

y∣ and compute the 

size of their intersection ∣J∣. We then retain the submodule J
i,j

x,y iff ∣J
i,j

x,y
∣ ≥ μ(∣J∣) + 3σ(∣J∣), 

where μ(∣J∣) and σ(∣J∣) are the first two moments of p0(∣J∣). 
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Tables 

Table 1. Nomenclature of brain regions and their list of abbreviations used in the present 
work. The letters l and r were added as subscripts to identify the left and right hemispheres. 

Brain regions Abbreviations 
Olfactory bulbs OB 
Dorsal Telencephalic area D 
Dorsal nucleus of ventral telencephalic area Vd 
Central nucleus of ventral telencephalic area Vc 
Ventral nucleus of ventral telencephalic area Vv 
Lateral nucleus of ventral telencephalic area Vl 
Central zone of dorsal telencephalic area Dc 
Lateral zone of dorsal telencephalic area Dl 
Medial zone of dorsal telencephalic area Dm 
Posterior zone of dorsal telencephalic area Dp 
Supracommissural nucleus of ventral telencephalic area Vs 
Dorsal zone of dorsal telencephalic area Dd 
Anterior part of parvocellular preoptic nucleus Ppa 
Postcommissural nucleus of ventral telencephalic area Vp 
Magnocellular preoptic nucleus PM 
Posterior part of parvocellular preoptic nucleus PPp 
Dorsal habenular nucleus Had 
Ventral habenular nucleus Hav 
Anterior thalamic nucleus A 
Ventromedial thalamic nucleus VM 
Ventrolateral thalamic nucleus VL 
Ventral zone of periventricular hypothalamus Hv 
Anterior tuberal nucleus ATN 
Lateral hypothalamic nucleus LH 
Dorsal zone of periventricular hypothalamus Hd 
Central posterior thalamic nucleus CP 
Periventricular nucleus of posterior tuberculum TPp 
Periventricular gray zone of optic tectum PGZ 
Caudal zone of periventricular hypothalamus Hc 
Diffuse nucleus of the inferior lobe DIL 
Dorsal tegmental nucleus DTN 
Central nucleus of the inferior lobe CIL 
Nucleus lateralis valvulae NLV 
Griseum central GC 
Corpus mamillare CM 

Table 2.  Effect of social and asocial learning assessed by quantification of c-fos positive 
cells in different brain nuclei. Main effects, interactions and multiple comparisons were 
computed using non-parametric Friedman Test. SL, social learners (SL); SC, social controls; 
AL, asocial learners; AC, asocial controls. See list for abbreviations.  
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Figure Captions 

Figure 1. Social and asocial classic conditioning in zebrafish. (A) Schematic representation 
of the plus-maze paradigm: 4 groups observed a CS (social or asocial cue) paired  with a 
US (food: bloodworms) in the same arm (paired treatments: SL and AL) hence being able to 
establish the CS-US  association; or in different arms (unpaired treatments: SC and AC) the 
controls of the experiment. (B) During the training phase animals increased significantly the 
percentage of right choices both in the social learning (SL, in red circles) and asocial 
learning (AL, in light red circles) treatments in comparison with the respective unpaired 
treatments [in blue circles social unpaired control (SC) and in light blue circles the asocial 
unpaired control (AC)]. (C) In the probe test, the cumulative duration of time spent in the RoI 
indicates that learners (social and asocial) increased the time spent in the target arm. Pie 
graphs indicate the proportion of learners, non-learners and non-retention animals in social 
(D) and asocial conditions (E). The ability of the animals to distinguish between the social 
and asocial stimuli used in this experiment was tested by conditioning the animals to 
approach one stimulus and avoid other, independent of their initial preference (in yellow 
triangles animals conditioned to approach asocial, in light pink squares individuals 
conditioned to approach social and in black circles the average of all individuals) (F).The 
preference for the social and asocial stimuli [fish (yellow circle) or circle (grey square) static 
2D picture, respectively] was assessed using a preference test (G). Asterisks indicate 
statistical significance at p < 0.05 using planned comparisons. 
 

 
Figure 2. Neuronal activity associated with social (A – H) and asocial (I – J) classic 
conditioning in zebrafish assessed by in situ hybridization of the immediate early gene c-fos. 
Representative photomicrographs of c-fos in situ hybridization in areas that present 
significant differences associated with learning: OB (B), Vv (D), Hav (F), VM (H), Had (I) and 
ATN (K). Asterisks indicate statistical significance at p < 0.05 using planned comparisons 
followed by Benjamini and Hochberg’s method for multiple comparisons p-value adjustment. 
Scale bars represent 40 µm. See Table 1 for abbreviations of brain regions. 
 

Figure 3. Brain networks associated with social and asocial learning. (A) Similarity of region 
neighborhoods between social |ΔS

i| and asocial learning |ΔA
i|, where the color of each data 

point identifies X(ΔS
i, Δ

A
i). (B) |ΔS

i| and |ΔA
i| for all brain regions; the blue color band identifies 

the interval between the 5th and 95th percentiles of the randomized distribution; For details on 
the statistical significance see Tables S1 and S2. (C) Similarity X(ΔS

i, Δ
A

i) values for all brain 
regions. Error bars represent one standard deviation over and below the null mean value; 
regions marked with dots are those with ξ values significantly different from random; the 
color encodes the z-score of the region’s = ξ value with respect to the random null model; 
For details on the statistical significance see Table S3. (D) Detection of robust functional 
modules in the brain networks for each treatment; within each treatment, network nodes 
were ordered and colored according to the module they belong to, and the degree of 
integration (lower r) or segregation (higher r) of the networks is provided; in all cases the 
measured r values are significantly larger than expected (for statistical details see Fig. S2 
and Table S4), and there are differences in integration across treatments (for statistical 
details see Fig. S3 and Table S5). (E) Conserved brain network submodules between 
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treatments reveal a default mode network (green module), a visual response module (purple 
module) a social integration module (orange module) and a learning module (blue module); 
regions indicated in bold font are those highlighted by the analysis based on their 
egonetworks.  
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