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Abstract 24 

Background: Recurrent selection is a foundational breeding method for quantitative trait 25 

improvement. It typically features rapid breeding cycles that can lead to high rates of genetic gain. 26 

In recurrent phenotypic selection, generations do not overlap, which means that breeding candidates 27 

are evaluated and considered for selection for only one cycle.  With recurrent genomic selection, 28 

candidates can be evaluated based on genomic estimated breeding values indefinitely, therefore 29 

facilitating overlapping generations. Candidates with true high breeding values that were discarded 30 

in one cycle due to underestimation of breeding value could be identified and selected in subsequent 31 

cycles. The consequences of allowing generations to overlap in recurrent selection are unknown. 32 

We assessed whether maintaining overlapping and discrete generations led to differences in genetic 33 

gain for phenotypic, genomic truncation, and genomic optimum contribution recurrent selection by 34 

simulation of traits with various heritabilities and genetic architectures across fifty breeding cycles. 35 

We also assessed differences of overlapping and discrete generations in a conventional breeding 36 

scheme with multiple stages and cohorts. 37 

Results: With phenotypic selection, overlapping generations led to decreased genetic gain 38 

compared to discrete generations due to increased selection error bias. Selected individuals, which 39 

were in the upper tail of the distribution of phenotypic values, tended to also have high absolute 40 

error relative to their true breeding value compared to the overall population. Without repeated 41 

phenotyping, these individuals erroneously believed to have high value were repeatedly selected 42 

across cycles, leading to decreased genetic gain. With genomic truncation selection, overlapping 43 

and discrete generations performed similarly as updating breeding values precluded repeatedly 44 

selecting individuals with inaccurately high estimates of breeding values in subsequent cycles. 45 

Overlapping generations did not outperform discrete generations in the presence of a positive 46 

genetic trend with genomic truncation selection, as past generations had lower mean genetic values 47 
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than the current generation of selection candidates. With genomic optimum contribution selection, 48 

overlapping and discrete generations performed similarly, but overlapping generations slightly 49 

outperformed discrete generations in the long term if the targeted inbreeding rate was extremely 50 

low. 51 

Conclusions: Maintaining discrete generations in recurrent phenotypic selection leads to increased 52 

genetic gain, especially at low heritabilities, by preventing selection error bias. With genomic 53 

truncation selection and genomic optimum contribution selection, genetic gain does not differ 54 

between discrete and overlapping generations assuming non-genetic effects are not present. 55 

Overlapping generations may increase genetic gain in the long term with very low targeted rates of 56 

inbreeding in genomic optimum contribution selection. 57 

Background 58 

 Quantitative trait improvement is achieved by cyclically increasing mean genetic 59 

value of breeding populations via recurrent selection. Recurrent phenotypic selection, reviewed by 60 

Hallauer & Darrah (1985), is a breeding strategy in which top-performing individuals are selected 61 

from a population and crossed to generate a new population for selection in the subsequent breeding 62 

cycle [1-3]. Recurrent phenotypic selection likely began with the invention of agriculture and is 63 

used to this day for quantitative trait improvement [3]. The advantage of this breeding strategy is 64 

that the breeding cycle length is short, as individuals can be selected as parents soon after they are 65 

born. Shorter cycle length leads to faster genetic gain, which is the rate of increase in mean genetic 66 

value due to selection in a population over time [4].  67 

 The main disadvantage of phenotypic selection is that selection accuracy tends to be 68 

low, because individuals are selected based on a single phenotypic observation, and selection 69 

accuracy directly impacts the rate of genetic gain [3]. This disadvantage is exacerbated at low trait 70 

heritabilities, as phenotypes are less indicative of true breeding values [5]. Different breeding 71 
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schemes to improve the accuracy of phenotypic selection have been developed which involve 72 

testing families of progeny of selection candidates (e.g. half-sibs, full-sibs, or inbred lines) across 73 

multiple replicates or environments [3]. Most applied breeding programs of cereal crops are 74 

currently practicing some form of recurrent selection among families, especially inbred families. 75 

While selection by family improves accuracy, it also increases the breeding cycle length, which 76 

limits the rate of genetic gain that can be realized. 77 

 With the availability of genomic selection, recurrent selection schemes are being 78 

modified to use genomic estimated breeding values (GEBVs) rather than single phenotypic 79 

observations for parent selection [7-10]. This is often referred to as “rapid-cycle genomic selection” 80 

[11]. This approach can improve selection accuracy without increasing the breeding cycle length, 81 

thus increasing the rate of genetic gain. Recurrent phenotypic and genomic selection fundamentally 82 

differ in that estimates of breeding value based on phenotype are defined at the individual level, 83 

whereas GEBVs are defined at the marker or population level [7]. In recurrent phenotypic selection, 84 

individuals are phenotyped once prior to selection, and this comprises the only assessment of the 85 

individuals’ breeding values. In genomic selection, observations of marker effects or genetic 86 

relationships increase in number as new relatives are phenotyped. Thus, the accuracy of estimates of 87 

individual breeding values increases with genomic prediction even in absence of additional 88 

phenotypic data for evaluated individuals [7]. For example, an individual with a high true breeding 89 

value may have a low estimated breeding value in a given genomic selection cycle due to error, but 90 

in a subsequent cycle its breeding value estimate may be higher—in better agreement with its true 91 

breeding value—as the prediction model is updated with information from relatives.  92 

 This raises the question: if possible, should individuals from previous selection cycles 93 

be considered again as selection candidates in subsequent cycles? Or, in other words, should 94 

generations be allowed to overlap in phenotypic and genomic recurrent selection programs? 95 
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Conventionally, individuals are only considered as candidates for selection during the cycle when 96 

they are evaluated. However, in clonally propagated or perennial species, individuals could be 97 

selected directly as parents for multiple seasons. In self-compatible species with multiple 98 

inflorescences, selected individuals could be self-pollinated and the resultant seed could be used for 99 

crossing in multiple selection cycles, even though the selfed progeny would not be identical to the 100 

parent genotype. In practice, it is common for plant breeders to recycle favored parents across 101 

cycles of selection, leading to overlap, even if the parent has not been phenotyped and statistically 102 

evaluated alongside the current selection candidates. The effect on genetic gain of maintaining 103 

discrete or overlapping selection generations has not been formally evaluated or reported. Given 104 

that selection accuracy may vary with cycle in breeding individuals from previous generations in 105 

genomic but not phenotypic selection, we hypothesized that allowing overlapping generations may 106 

be more favorable for rapid recurrent genomic selection compared to rapid recurrent phenotypic 107 

selection. Unexpectedly, we found that overlapping generations decreased the rate of genetic gain 108 

under phenotypic selection compared to discrete generations. 109 

 This study had two primary objectives: 1) to determine if generations should be 110 

overlapping or discrete in phenotypic and genomic recurrent selection programs, and 2) to 111 

determine in what selection scenarios overlapping and discrete generations can be recommended for 112 

recurrent selection. The effects of overlapping and discrete generations on the inbreeding rate, 113 

average parental age, and the selection accuracy were also examined. 114 

Methods 115 

 Stochastic simulations in the R package AlphaSimR were conducted to examine 116 

various recurrent selection scenarios [12]. All simulations were run on the Biocluster High 117 

Performance Computing system housed in the Carl R. Woese Institute for Genomic Biology at the 118 

University of Illinois at Urbana-Champaign and maintained by the Computer Network Resource 119 
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Group. Two main trait and pipeline architectures were considered: 1) recurrent selection on a purely 120 

additive trait in a single cohort per breeding cycle (RS-A), and 2) recurrent selection on a trait with 121 

additive, year, and additive x year effects with multiple cohorts per breeding cycle (RS-AY). For 122 

both architectures, an outbred, diploid, hermaphroditic founder population was generated with the 123 

runMacs function. Individuals had ten chromosomes with 1,000 segregating sites per chromosome. 124 

 For the RS-A scenarios, with the purely additive trait, 100 sites per chromosome were 125 

assigned additive effects and 50 sites per chromosome were genotyped by a simulated SNP-chip. 126 

Additional File 1 contains the script used to generate the base founder population. To start each 127 

simulation replicate, 100 individuals were drawn from the founder population. Starting mean 128 

genetic value was 0, genetic variance was 1, error variance was 4, and narrow-sense heritability was 129 

either 0.1, 0.5, or 0.9. In the first year, 20 parents were selected phenotypically. See Additional File 130 

2 for the script used to start each simulation. After the first year, a breeding cycle consisted of 131 

crossing the selected parents, phenotypic evaluation and parent selection before flowering, then 132 

restarting the cycle by making 100 random crosses of the selected parents which produced 1 133 

progeny per cross (Fig. 1).  134 

 Several factors were considered in the RS-A scenario (Fig. 2). Parents were selected 135 

from either discrete or overlapping generations. For discrete generations, parents were only selected 136 

from the current breeding cycle. For overlapping generations, parents were selected from any 137 

breeding cycle. Then, the selection on either phenotypic value, true genetic value, or GEBV as 138 

estimated by ridge regressed best linear unbiased prediction (RR-BLUP) was used. In phenotypic 139 

selection only, selection on either unreplicated phenotypes or thrice-replicated phenotypes was 140 

considered; in all other cases, phenotypes were unreplicated. In the case of genomic selection only, 141 

truncation vs. optimum contribution selection (OCS), as well as training the model on all 142 

generations (allGen) vs. training on the most recent previous five generations (fiveGen) to mimic 143 
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what may occur in practical situations were also considered (Fig. 2). If selection occurred on 144 

phenotype or true genetic value, truncation selection of the top 20 individuals was always used. In 145 

the genomic selection scenarios, either truncation selection of the top 20 individuals was used or 146 

OCS was used with minimum effective population sizes (Ne) of 10, 45, and 90. Higher minimum 147 

effective population size implied stricter control of inbreeding. OCS was implemented with the R 148 

package optiSel [13]. All RS-A scenarios were run for 50 breeding cycles and replicated across 10 149 

simulations. See Additional File 1 for custom optiSel functions used in the study, and see 150 

Additional File 3 for the core script used to run the RS-A simulations. 151 

 For the RS-AY scenario, with selection on an additive, year, and additive x year trait 152 

and multiple cohorts per cycle, a modification of the general breeding scheme of the Conventional 153 

Program described in Gaynor et al., 2017, was used [14]. As in the RS-A scenarios, 100 segregating 154 

sites per chromosome were assigned additive effects, and 50 sites per chromosome were genotyped 155 

by a simulated SNP-chip. To start each simulation replicate, 100 individuals were drawn from the 156 

founder population. Starting mean genetic value was 0, and genetic variance was 1. Additional File 157 

4 contains the script used to start the RS-AY scenarios, and Additional File 5 contains a script to 158 

store the year effects. Phenotypes in subsequent stages were simulated using a custom R script 159 

according to the assumptions of a compound symmetry model. Phenotypes were not simulated with 160 

the Finlay-Wilkinson model, which is the default in AlphaSimR for traits with genotype x 161 

environment interactions. Year effects were drawn from a normal distribution with mean 0 and 162 

variance 0.2. Additive x year effects for each site were drawn from a normal distribution with mean 163 

0 and variance scaled to achieve the targeted total additive x year variance of 0.2. As such, the 164 

variance of the distribution from which the additive x year effects were drawn was the variance of 165 

the additive marker effects times the targeted additive x year variance of 0.2 divided by the genetic 166 

variance of 1 in the base population. Plot error effects were drawn from a normal distribution with 167 
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mean 0 and variance scaled to achieve variable broad-sense heritabilities at each stage in the 168 

breeding cycle, with heritability increasing at later stages compared to earlier stages. The 169 

heritabilities used differed from those in Gaynor et al., 2017 [14]. Phenotypes were the sum of the 170 

additive, year, additive x year, and plot error effects. 171 

 For the RS-AY scenario, 30 selected parents entered the breeding pipeline at stage 1 172 

and were crossed randomly into 100 biparental crosses with 97 progeny each. In stage 2, doubled 173 

haploid lines were produced from each of the year 1 progeny. In stage 3, the doubled haploid lines 174 

were phenotyped in headrows from which 500 individuals are advanced. In stage 4, the 500 175 

individuals advanced from stage 3 were then phenotyped in a preliminary yield trial, and 50 176 

individuals were advanced. In stage 5, the 50 individuals advanced from stage 4 entered an 177 

advanced yield trial, from which 10 individuals were advanced. In stage 6, the 10 individuals 178 

advanced from stage 5 were phenotyped in an elite yield trial, and all individuals were advanced. In 179 

stage 7, all individuals from stage 6 were reevaluated in the second year of the elite yield trial. In 180 

stage 8, a single variety was chosen from the elite yield trials. In RS-AY scenarios with discrete 181 

generations, the 20 top-ranked individuals from stage 4 and all individuals from stage 5 of the most 182 

recent cycle were selected as parents (modified from Gaynor et al., 2017, in which the crossing 183 

block was composed of the 20 top-ranked individuals from stage 4, the 10 top-ranked individuals 184 

from stage 5, and also the 20 best individuals from the crossing block of the previous cycle, which 185 

implicitly allowed overlapping generations) [14]. In scenarios with overlapping generations, the 20 186 

top-ranked individuals from stage 4 and the 10 top-ranked individuals from stage 5 were selected as 187 

parents from all cycles conducted in the breeding program. In the genomic selection scenarios, all 188 

records from stages 4-7 from all cycles conducted in the breeding program comprised the training 189 

set, regardless of whether generations were overlapping or discrete. Each stage was assumed to take 190 

one year. The breeding program was run for 40 years. The scripts to run each RS-AY scenario are 191 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.12.464059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464059
http://creativecommons.org/licenses/by-nc/4.0/


9 

 

located in Additional Files 6—9. 192 

 For each parent selection scenario in RS-A, mean genetic value was always recorded 193 

in the current generation of individuals in a given cycle to examine the genetic trend due to 194 

selection. For RS-AY, mean genetic value was recorded in the current generation of parents in a 195 

given year. For both situations, selection error bias, mean genomic inbreeding, selection accuracy, 196 

and average parental age were also recorded in the selected parents of the current generation only. 197 

Selection error bias per cycle was the ratio of absolute error in the selected parents to absolute error 198 

in all selection candidates, where error was the deviation of the phenotype or GEBV from the true 199 

genetic value. For RS-AY, selection error bias was decomposed into component error due to year, 200 

additive x year, and plot error. The ratio of each absolute component error in the selected parents to 201 

absolute component error in all selection candidates was the selection error bias for the component. 202 

Mean genomic inbreeding per cycle was the average probability of allelic identity-by-descent 203 

between pairs of individuals, where identity-by-descent was tracked directly via the setTrackRec() 204 

option rather than estimated. Selection accuracy was Pearson’s correlation of GEBV or phenotype 205 

and the simulated true breeding value (TBV). By definition, selection accuracy was one for 206 

scenarios with selection on TBV. See Additional File 10 for the raw response variables from each 207 

simulation replicate and cycle (for RS-A) or year (for RS-AY). 208 

 To test for differences in responses by scenario for RS-A, time points representing the 209 

short-term, medium-term, and long-term were chosen as cycle 5, cycle 25, and cycle 45 210 

respectively. For RS-AY, differences in responses were only interrogated at the terminal year 40. 211 

The RS-A and RS-AY scenarios were considered separate experiments. The RS-AY experiment 212 

was conceived subsequently to RS-A in order to explore additional sources of selection error bias 213 

(i.e. year and genotype x year effects). 214 
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 For each time point, and for all responses studied except mean parental age and year 215 

error bias, the following linear model was constructed with the R package nlme: 216 

Yij = µ + Si + Rj(i) + εij 217 

Yij was the response of interest for the ith scenario and the jth simulation replicate, µ was the grand 218 

mean, Si was the fixed effect of the ith scenario, Rj(i) was the random effect of the jth simulation 219 

nested in the ith scenario with N(0, σj(i)
2), and εij was the random residual error with N(0, Rσε

2) 220 

where σε

2 was the error variance, and R was a matrix whose diagonal was a weighting factor used to 221 

model unique error variances for each scenario [15]. Differences in means by scenario were tested 222 

by the anova.lme function in nlme [15]. Pre-planned contrasts of differences in responses by 223 

scenario were made at α = 0.05 with the pairs function in the R packages emmeans for the discrete 224 

vs. overlapping variations of otherwise identical scenarios [16, 17]. Contrasts for OCS at Ne = 10 225 

were not possible in the long term because the optimization of GEBV and mean genomic 226 

inbreeding ceased to solve around cycle 35.  227 

 Because mean parental age in the selected individuals was uniformly one with no 228 

variance in the RS-A discrete scenarios, Student's t test was conducted with the t.test function in R 229 

to test whether mean parental age at each timepoint significantly differed from μ = 1 for each 230 

overlapping scenario at α = 0.05 subject to Bonferroni correction given the number of tests in the 231 

family. Because mean parental age for the RS-AY discrete scenarios was uniformly 3.67, Student’s 232 

t test was conducted as above to test whether mean parental age significantly differed from μ = 233 

3.67. Similarly, because year error bias was uniformly one with no variance in the RS-AY discrete 234 

scenarios, Student’s t test was used to examine whether mean year error bias significantly differed 235 

from μ = 1 for the RS-AY overlapping scenarios at α = 0.05 subject to Bonferroni correction given 236 
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the number of tests in the family. (Year error bias was 1 in the discrete scenarios because all 237 

candidates were evaluated in the same year and therefore had the same year value.) 238 

Results 239 

Genetic trends 240 

 In the RS-A case, significant differences in mean genetic value by scenario were 241 

observed (Additional File 11). In terms of mean genetic value, unreplicated discrete phenotypic 242 

selection outperformed unreplicated overlapping phenotypic selection in the long term for all 243 

heritabilities, and in the medium term if h2 = 0.1 or 0.5 (Fig. 3; Additional File 12). Performance of 244 

unreplicated discrete and overlapping phenotypic selection did not significantly differ in the short 245 

term (Fig. 3; Additional File 12). If phenotyping was replicated three times, then discrete 246 

phenotypic selection outperformed overlapping in the long and medium term if h2 = 0.1 or 0.5, and 247 

in the short term if h2 = 0.1 only (Fig. 3; Additional File 12). In contrast, if true genetic value was 248 

used for selection, then mean genetic value of discrete vs. overlapped selection did not differ 249 

significantly at any timepoint. 250 

  Discrete and overlapping generations appeared to perform similarly with genomic 251 

selection in the RS-A scenarios (Fig. 3; Additional File 12—13). The exceptions were that 252 

overlapping generations always outperformed discrete generations with OCS at Ne = 100 and h2 = 253 

0.5 or 0.9 regardless of training set used, and in the long term discrete generations outperformed 254 

overlapping with OCS at Ne = 45 and h2 = 0.9 with training on the previous five generations 255 

(Additional File 12—13). Also, in the short term, overlapping generations outperformed discrete 256 

with OCS at Ne = 100 at h2 = 0.5 or 0.9 with training on the previous five generations as well as 257 

training on all generations (Additional File 12—13). 258 
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 In the RS-AY case, significant differences in mean genetic value by scenario were 259 

observed at year 40 (Additional File 11). Discrete genomic selection outperformed overlapping 260 

genomic selection, and discrete phenotypic selection outperformed overlapping phenotypic 261 

selection (Fig. 4; Additional File 12).  262 

Selection error bias 263 

 For the RS-A cases, significant differences in mean selection error bias by scenario 264 

were observed (Additional File 11). For unreplicated phenotypic selection, selection error bias was 265 

always higher in overlapping selection scenarios, except in the short- and medium-term for h2 = 0.9 266 

(Fig. 5; Additional File 12). Notably, this pattern mirrors the observed trend in mean genetic value. 267 

If phenotyping was replicated three times, selection error bias remained higher in overlapping 268 

generations in the same scenarios as unreplicated phenotypic selection (Fig. 5; Additional File 12). 269 

With selection on true genetic value, by definition selection error bias did not differ between 270 

overlapping and discrete generations, as error for all candidates was zero (Fig. 5). For genomic 271 

truncation selection, selection error bias also did not differ between overlapping and discrete 272 

scenarios at any point if the training set was composed of all generations (Fig. 5; Additional File 273 

12). However, if the training set was composed of the previous five generations, then selection error 274 

bias in overlapping scenarios was significantly higher than discrete in the long-term with genomic 275 

truncation selection (Additional File 12, 14). 276 

 For genomic OCS with the training set composed of all generations, discrete and 277 

overlapping selection error bias did not significantly differ except in the short and medium term if 278 

Ne = 100 and h2 = 0.5 or 0.9, in which case overlapping selection error bias was significantly higher 279 

(Additional File 12, 14). If the training set was composed of the previous five generations, then in 280 

the short term selection error bias did not significantly differ except at Ne = 100 for h2 = 0.5 or 0.9, 281 

in which case overlapping selection had a higher selection error bias (Additional File 12, 14). In the 282 
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medium and long term with training on the previous five generations, discrete always had higher 283 

selection error bias than overlapping (Additional File 12, 14). 284 

 For the RS-AY cases, significant differences in mean selection error bias by scenario 285 

were observed (Additional File 11). Discrete phenotypic selection had significantly lower selection 286 

error bias than overlapping phenotypic selection, but no significant difference was observed for 287 

discrete vs. overlapping genomic selection (Fig. 6; Additional File 12). Significant differences in 288 

additive x year error bias and plot error bias were also observed (Fig. 6; Additional File 11). 289 

Discrete phenotypic selection had significantly lower additive x year error bias than overlapping 290 

phenotypic selection, but no significant difference was observed for discrete vs. overlapping 291 

genomic selection (Fig. 6; Additional File 12). On the other hand, plot error bias was significantly 292 

lower for discrete vs. overlapping phenotypic selection and discrete vs. overlapping genomic 293 

selection (Fig. 6; Additional File 12). Year error bias significantly differed from 1 with overlapping 294 

phenotypic selection, but did not significantly differ from 1 with overlapping genomic selection 295 

(Fig. 6; Additional File 13). 296 

Mean genomic inbreeding  297 

 Significant differences in mean genomic inbreeding by scenario were observed in the 298 

RS-A cases (Additional File 11). For unreplicated and thrice-replicated phenotypic selection, mean 299 

genomic inbreeding was significantly higher with discrete selection at h2 = 0.1 at all time points but 300 

did not significantly differ for other heritabilites (Additional File 12, 15, 16). Mean genomic 301 

inbreeding did not significantly differ with selection on true genetic value (Additional File 12, 17). 302 

For genomic truncation selection with training on all generations, no significant differences in mean 303 

inbreeding were observed between discrete and overlapping scenarios except in the long term at h2 304 

= 0.9, for which overlapping generations led to higher inbreeding than discrete  (Additional File 12, 305 

18). With training on the previous five generations, overlapping truncation genomic selection led to 306 
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higher inbreeding in the short term at h2 = 0.1 and in the medium term at h2  = 0.5 and 0.9, but with 307 

no significant diffferences in the long term (Additional File 12, 19). 308 

 With genomic OCS, discrete selection sometimes led to higher inbreeding than 309 

overlapping selection despite optimization of the inbreeding rate. With training on all generations, 310 

this occurred for h2 = 0.1 in the medium term for Ne = 10 and the short and medium terms for Ne = 311 

45, but did not occur for Ne = 100 (Additional File 12, 20—22). For h2 = 0.5, this occurred in the 312 

medium term for Ne = 10, and the medium and long term for Ne = 45 (Additional File 12, 20—21). 313 

However, in the short and medium term at h2 = 0.5 with training on all generations, overlapping led 314 

to higher inbreeding than discrete at Ne  = 100 (Additional File 12, 22). For h2 = 0.9, discrete 315 

selection led to higher inbreeding in the short and medium term at Ne = 10, the medium term at Ne = 316 

45, and the short term only at Ne = 100 (Additional File 12, 20—22). 317 

 With genomic OCS and training on the previous five generations, discrete selection 318 

led to higher rates of inbreeding in the medium and long term at h2  = 0.1 for all levels of Ne, and 319 

additionally in the short term for Ne  = 45 (Additional File 12, 23—25). At h2 = 0.5, discrete 320 

selection again led to higher inbreeding in the short term if Ne  = 45 and the medium term for Ne = 321 

45 and 100 only (Additional File 12, 24—25). At h2 = 0.9, discrete selection led to higher 322 

inbreeding rates in the short term for Ne = 10, lower inbreeding rates in the short term if Ne = 100, 323 

higher inbreeding rates in the medium and long term for Ne = 45, and higher inbreeding rates in the 324 

short and long term for Ne = 100 (Additional File 12, 23—25). 325 

 With RS-AY, significant differences in mean genomic inbreeding by scenario were 326 

also present at year 40 (Additional File 11). Discrete phenotypic selection led to significantly higher 327 

inbreeding than overlapping phenotypic selection, and discrete genomic selection also led to 328 

significantly higher inbreeding than overlapping genomic selection (Additional File 12, 26).   329 
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Genetic variance 330 

 Significant differences in mean genetic variance by scenario were observed in RS-A 331 

(Additional File 11). For unreplicated phenotypic selection, significant differences in genetic 332 

variance in the current generation were only observed at h2 = 0.1 in the medium and long term, with 333 

overlapping selection maintaining higher genetic variance (Additional File 12, 15). For replicated 334 

phenotypic selection, genetic variance was significantly lower with overlapped selection only in the 335 

long term at h2
 = 0.1 (Additional File 12, 16). No significant differences in genetic variance were 336 

observed for selection on true genetic value (Additional File 12, 17). For genomic truncation 337 

selection, no significant differences in genetic variance were observed regardless of training set or 338 

heritability (Additional File 12, 18—19). 339 

 For genomic OCS, no significant differences in genetic variance were observed if all 340 

generations were used in the training set (Additional File 12, 20—22). If the previous five 341 

generations were used in the training set, then at all heritabilities overlapping selection maintained 342 

greater genetic variance than discrete in the medium term if Ne = 100 only, while if Ne  = 45 343 

overlapping had higher genetic variance only if h2 = 0.5 or 0.9 (Additional File 12, 23—25). In the 344 

long term, overlapping selection maintained greater genetic variance if Ne = 45 at h2 = 0.1 or 0.9, 345 

and if Ne = 100 at all heritabilities (Additional File 12, 23—25). 346 

 For the RS-AY scenarios, significant differences in genetic variance were observed 347 

among scenarios (Additional File 11). Discrete genomic selection had significantly higher genetic 348 

variance than overlapping genomic selection, whereas discrete phenotypic selection led to 349 

significantly lower genetic variance than overlapping phenotypic selection (Additional File 12, 26).  350 

Selection accuracy 351 

 Significant differences in mean selection accuracy by scenario were observed in the 352 

RS-A cases (Additional File 11). Selection accuracy, as measured in the selected parents of the 353 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.12.464059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464059
http://creativecommons.org/licenses/by-nc/4.0/


16 

 

current generation per cycle, did not significantly differ between overlapping and discrete 354 

generations with replicated or unreplicated phenotypic selection (Additional File 12, 15—16). For 355 

selection on true genetic value, selection accuracy was by definition 1 for both discrete and 356 

overlapping generations. For genomic truncation selection, no differences in accuracy among 357 

overlapping and discrete generations were observed regardless of training set (Additional File 12, 358 

18—19). 359 

 In genomic OCS, with the training set composed of all generations, selection accuracy 360 

was higher for overlapping generations in the short term if Ne = 100 and h2 = 0.5 (Additional File 361 

12, 22). Overlapping generations also had higher accuracies in the medium term if h2 = 0.5 and Ne = 362 

45.  (Additional File 12, 21). No significant differences were observed in the long term for OCS 363 

with training on all generations (Additional File 20—22). In genomic OCS with training on the 364 

previous five generations only, overlapping selection had higher selection accuracy in the short term 365 

only if h2 = 0.5 or 0.9 and Ne = 100 (Additional File 12, 25). In the medium term, overlapping 366 

selection had higher accuracies at all levels of Ne for h2 = 0.1, but only at Ne = 45 or 100 for h2 = 0.5 367 

or 0.9 (Additional File 12, 23—25). In the long term, overlapping selection had higher accuracies at 368 

all levels of h2 and Ne observed with OCS and training on the previous five generations (Additional 369 

File 12, 23—25). 370 

 In the RS-AY cases, significant differences in mean selection accuracy were observed 371 

by scenario (Additional File 11). Discrete phenotypic selection produced higher selection accuracy 372 

than overlapping phenotypic selection, and discrete genomic selection produced higher selection 373 

accuracy than overlapping genomic selection (Additional File 12, 26).  374 

Mean parental age 375 

 By definition, the age of the selected parents under discrete generations was always 376 

one in the RS-A scenarios. Both thrice-replicated and unreplicated overlapping phenotypic 377 
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truncation selection always resulted in mean parental age significantly greater than 1 for 378 

overlapping relative to discrete generations (Additional File 15—16, 28). Interestingly, selection on 379 

true genetic value always resulted in mean parental age significantly greater than 1 with overlapping 380 

generations in the long term, and in the medium term with h2 = 0.5 (Additional File 17, 28). With 381 

genomic truncation selection and training on all generations, mean parental age was always higher 382 

with overlapping generations (Additional File 18, 28). With truncation selection and training on the 383 

previous five generations, overlapping generations had significantly higher mean parental age 384 

except in the medium term at h2 = 0.1 (Additional File 19, 28). With genomic OCS and training on 385 

all generations, mean parental age in overlapping scenarios was not significantly different from 386 

discrete at Ne = 10 in the medium term only, but was significantly higher in the short and long terms 387 

(Additional File 20—22, 28). Mean parental age was always signficantly higher than discrete for Ne 388 

= 45 and 100 with genomic OCS and training on all generations (Additional File 21—22, 28). With 389 

genomic OCS and training on the previous five generations, mean parental age did not significantly 390 

differ between overlapping and discrete generations if Ne  = 10 in the short term (Additional File 23, 391 

28). However, at all other timepoints and levels of Ne overlapping selection led to significantly 392 

higher mean parental age than discrete (Additional File 23—25, 28). 393 

 In the RS-AY scenarios, mean parental age was 3.67 years under discrete selection. 394 

For the overlapping scenarios, mean parental age was significantly greater than 3.67 years with both 395 

phenotypic and genomic selection (Additional File 26—27). 396 

Discussion 397 

 The possibility of allowing generations to overlap in recurrent selection is not often 398 

considered. Although recycling a preferred parent across generations is common in applied 399 

breeding programs, nonpreferred individuals are generally discarded permanently. Here, the 400 
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underlying theoretical basis for practicing discrete as opposed to overlapping recurrent phenotypic 401 

selection is demonstrated. Mean magnitude of error in selected individuals is larger than mean 402 

magnitude of error in the overall population, creating selection error bias. Over breeding cycles, 403 

selection error bias causes the magnitude of selection error to increase in phenotypically selected 404 

populations with overlapping generations. This propagation of selection error results in decreased 405 

genetic gain, whereas with discrete phenotypic selection the population recovers each cycle because 406 

the magnitude of the deviation of observed phenotypic value from true genetic value remains 407 

random in the selected individuals. Maintaining discrete generations in phenotypic selection 408 

prevents making the “same old mistakes” of selecting individuals erroneously believed to be 409 

exceptional repeatedly across cycles.  410 

 Notably, at higher heritabilities, the propagation of error takes more cycles to affect 411 

gain because the phenotypes of selected individuals deviate less from their true breeding value 412 

compared to at lower heritabilities. Discrete generations still outperformed overlapping generations 413 

if phenotypic observations were replicated three times, though the relative outperformance was 414 

slightly less than without replication as phenotypic value deviated less from true genetic value. 415 

However, with selection on true genetic value, no differences in mean genetic value were observed 416 

between discrete and overlapping generations, as is expected in absence of selection error.  417 

 The propagation of error under overlapping phenotypic selection can be thought of as 418 

failure to observe regression to a mean when individuals are not adequately evaluated; phenotypes 419 

at the tails of a distribution, far from the mean, are on average more likely to have larger 420 

magnitudes of error (Fig. 7). In breeding for population improvement, individuals in the upper tail 421 

of the phenotypic distribution—and outliers beyond the upper tail of the distribution— are 422 

inherently of interest. Many phenotypes are in the tails of the distribution due to error. In selection 423 

from discrete generations the total number of outliers is small, whereas in selection from 424 
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overlapping generations the total number of outliers grows as breeding cycles are completed and 425 

total number of selection candidates grows. Thus, the number of highly erroneous phenotypes 426 

selected as parents is limited under discrete selection, and this restriction causes discrete phenotypic 427 

selection to outperform overlapping phenotypic selection. Though only three-fold replication of 428 

phenotypes is tested here, using additional replicates of phenotypic value should further restrict 429 

propagation of error in overlapping generations. 430 

 The effect of overlapping vs. discrete generations in genomic truncation selection has 431 

not been previously evaluated to the authors’ knowledge. Mean genetic value does not significantly 432 

differ in discrete and overlapping genomic truncation selection, in contrast to phenotypic selection. 433 

Addition of new data to the model with each generation of genomic selection eliminates the 434 

problem of error propagation observed in phenotypic selection, as estimates of breeding value are 435 

improved by replicated observations of allele-phenotype combinations (which is synonymous with 436 

observations of more relatives). Though we hypothesized that overlapping generations might lead to 437 

more genetic gain than discrete as accuracy of GEBVs increased in older individuals with 438 

phenotyping of progeny, this was not the case due to the positive genetic trend from selection [18]. 439 

In other words, older individuals tended to have lower true genetic values than younger individuals 440 

in the presence of effective selection, so any increase in accuracy did not result in increased gain. 441 

Generally, the mean parental age did not substantially increase in overlapping genomic truncation 442 

selection compared to discrete (although the small increase observed was significant), indicating 443 

that parents with the best GEBVs were usually from the most recent generation or most recent past 444 

generations.  445 

 Because we observed in previous simulations that overlapping truncation selection 446 

underperformed discrete selection at high heritabilities in the long term due to inbreeding, we tested 447 

whether controlling genomic inbreeding by OCS led to greater mean genetic values in overlapping 448 
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than discrete OCS scenarios. It is also well-established that genomic selection requires genomic 449 

control of inbreeding for maximal long-term gain, and at times genomic control of inbreeding can 450 

increase short-term gain relative to truncation selection [19-22]. However, we did not generally 451 

observe that overlapping selection outperformed discrete selection in OCS scenarios except at 452 

relatively high effective population size and high heritability. Interestingly, there is an explicit 453 

penalty to use of individuals from past generations in OCS due not to their genetic values but rather 454 

their addition to the rate of inbreeding [21]. If overlapping generations are allowed, control of 455 

inbreeding generally results from increasing the number of parents selected and not from increasing 456 

the generation interval in canonical OCS [18]. Thus, in contrast to genomic truncation selection, the 457 

relatively similar performance of overlapping and discrete OCS is likely due to the control of 458 

inbreeding as well as balance of gain per cycle and increased selection accuracy per cycle. With 459 

OCS at high Ne and h2 = 0.5 or 0.9, overlapping generations always had higher mean genetic values 460 

than discrete. This may indicate that overlapping generations allow more flexibility than discrete in 461 

balancing increases in inbreeding and genetic gain when inbreeding was more strictly constrained, 462 

as more individuals with more combinations of genetic value and relatedness were available to meet 463 

the constraints imposed. This is in agreement with the observation of Villanueva et al. (2000) that 464 

the optimal generation interval was higher with more stringent restrictions on inbreeding, as well as 465 

use of fewer parents [22]. 466 

 As demonstrated in the RS-AY scenarios, error can propagate from any source with 467 

overlapping phenotypic selection— year error, genotype x year interaction error, or random plot 468 

error. Because we simulated greater plot error variance than year or genotype x year variance in 469 

stages from which parents were selected, we observed relatively more selection error bias due to 470 

plot error than other sources with overlapping phenotypic selection. Increasing the variance of the 471 

year or genotype x year values would likely increase their relative contributions to overall selection 472 
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error; in applied breeding programs, the relative contribution of each source of error depends on the 473 

program. Additionally, we expect that selection error bias is not specific to plant breeding and can 474 

occur in other cyclical systems in which repeated selection occurs in the presence of random 475 

observational error.  476 

 The propagation of error was not restricted by movement of cohorts through 477 

advancement stages alone in the RS-AY scenario; restriction of propagation of error was 478 

accomplished by use of a statistical method to estimate breeding value. In the RS-AY scenarios, we 479 

only tested use of RR-BLUP to estimate breeding value. We expect that other estimation methods 480 

without a relationship matrix (e.g. best linear unbiased prediction) should restrict propagation of 481 

error if multi-year observations are available, as in the RS-AY scenario. However, if multiple 482 

observations are not available (as in the RS-A scenario), then estimation methods without 483 

relationship matrices would not restrict propagation of error. 484 

 To build on the conclusions of this study, it would be useful to test relative 485 

performance of overlapping and discrete generations under different genomic selection schemes, 486 

such as the modified reciprocal recurrent selection practiced in commercial hybrid breeding 487 

programs. Testing non-additive genetic architectures may also be relevant. Though speculative, it 488 

would also be interesting to test discrete and overlapping generations with multi-trait genomic 489 

selection. We hypothesize that in cases where multiple objectives are to be optimized (e.g. multiple 490 

phenotypic traits with different trait architectures), overlapping generations may provide more 491 

combinations of traits within genomic selection candidates and increase multi-trait gain.   492 

Conclusions 493 

 Based on the trends observed, generations should be kept discrete under recurrent 494 

mass phenotypic selection to avoid decreased genetic gain due to selection error bias. With genomic 495 
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truncation selection, we observed no advantage to allowing overlapping generations under the 496 

assumptions used, though with genomic OCS it appeared the overlapping generations allowed more 497 

effective control of inbreeding than discrete generations at high effective population sizes with low 498 

targeted inbreeding rates. 499 
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Figures 576 

Figure 1 Overview of recurrent mass selection scheme for RS-A scenarios 577 

For the RS-A scenarios, only the parental selection units varied in this study. For an overview of the 578 

RS-AY scenarios, see the Conventional scenario in Gaynor et al., 2017 [14]. 579 

Figure 2 Overview of the RS-A scenario factors 580 

Shaded boxes indicate factors and unshaded boxes indicate levels of factors. Solid lines connecting 581 

shaded boxes indicate that all combinations of factor levels were tested, while solid lines connecting 582 

unshaded factor levels to shaded factors indicate the subsequent shaded factors only apply to the 583 

connected factor level. 584 

Figure 3 Mean genetic value for selected RS-A scenarios 585 

Mean genetic value per cycle for the RS-A scenarios of phenotypic selection, thrice-replicated 586 

phenotypic selection, genomic truncation selection with all generations used in the training set 587 

(allGen truncation), and selection on true genetic value. Values are surrounded by the 95% 588 

confidence interval of the cycle mean. 589 

Figure 4 Mean genetic value for RS-AY scenarios 590 
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Mean genetic value per cycle for the RS-AY scenarios of phenotypic selection and genomic 591 

selection surrounded by the 95% confidence interval of the cycle mean. 592 

Figure 5 Selection error bias for selected RS-A scenarios 593 

Selection error bias per cycle for the RS-A scenarios of phenotypic selection, thrice-replicated 594 

phenotypic selection, genomic truncation selection with all generations used in the training set 595 

(allGen truncation), and selection on true genetic value. Values are surrounded by the 95% 596 

confidence interval of the cycle mean. 597 

Figure 6 Selection error bias for RS-AY scenarios 598 

Selection error bias per cycle for the RS-AY scenarios of phenotypic selection and genomic 599 

selection surrounded by the 95% confidence interval of the cycle mean. Overall selection error bias 600 

is show as well as error bias due to year, additive x year, and plot error. 601 

Figure 7 Selection error bias illustration 602 

Phenotypic values, true genetic values, and errors of selected and unselected individual candidates 603 

at h2 = 0.1 in the first cycle of overlapping phenotypic selection for the RS-A pipeline. The 604 

magnitude of error is greater at the tails of the phenotypic values, including the upper tail from 605 

which individuals are selected.  606 

Additional files 607 

Additional file 1  608 

Format: R programming language (.R) 609 

Title: Script to generate base population 610 

Description: R script used to generate the base population used in the study with the AlphaSimR 611 

package. Also contains custom optiSel functions used in the study. 612 

Additional file 2 613 

Format: R programming language (.R) 614 
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Title: Script to start RS-A simulations 615 

Description: R script to initiate the RS-A simulations 616 

Additional file 3 617 

Format: R programming language (.R) 618 

Title: Script to run RS-A simulations 619 

Description: R script to run the RS-A simulations 620 

Additional file 4 621 

Format: R programming language (.R) 622 

Title: Script to start RS-AY simulations 623 

Description: R script to initiate the RS-AY simulations 624 

Additional file 5 625 

Format: R programming language (.R) 626 

Title: Script to draw RS-AY year effects 627 

Description: R script to save year effects for the RS-AY simulations 628 

Additional file 6 629 

Format: R programming language (.R) 630 

Title: R script for RS-AY overlapping phenotypic selection scenario 631 

Description: R script to run the simulation for the RS-AY phenotypic selection with overlapping 632 

generations scenario 633 

Additional file 7 634 

Format: R programming language (.R) 635 

Title: R script for RS-AY discrete phenotypic selection scenario 636 

Description: R script to run the simulation for the RS-AY phenotypic selection with discrete 637 

generations scenario 638 
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Additional file 8 639 

Format: R programming language (.R) 640 

Title: R script for RS-AY overlapping genomic selection scenario 641 

Description: R script to run the simulation for the RS-AY genomic selection with overlapping 642 

generations scenario 643 

Additional file 9 644 

Format: R programming language (.R) 645 

Title: R script for RS-AY discrete genomic selection scenario 646 

Description: R script to run the simulation for the RS-AY genomic selection with discrete 647 

generations scenario 648 

Additional file 10 649 

Format: Microsoft Excel Workbook (.xlsx) 650 

Title: Raw Simulation Results 651 

Description: Excel file containing response values for all variable, cycles or years, and simulation 652 

replicates for the RS-A and RS-AY scenarios. See metadata tab for additional information. 653 

Additional file 11 654 

Format: Microsoft Word Document (.docx) 655 

Title: Analyses of variance 656 

Description: Results for all analyses of variance described in the study. 657 

Additional file 12 658 

Format: Microsoft Excel Workbook (.xlsx) 659 

Title: Contrasts 660 

Description: Results for all contrasts described in the study. 661 

Additional file 13 662 
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Format: Microsoft Word Document (.docx) 663 

Title: RS-A Mean Genetic Values, Supplementary 664 

Description: Plots of mean genetic value by cycle surrounded by 95% confidence intervals for the 665 

RS-A scenarios with genomic truncation selection and training on the previous five generations 666 

(fiveGen Trunc) as well as all RS-A OCS scenarios. 667 

Additional file 14 668 

Format: Microsoft Word Document (.docx) 669 

Title: RS-A Selection Error Bias, Supplementary 670 

Description: Plots of selection error bias by cycle surrounded by 95% confidence intervals for the 671 

RS-A scenarios with genomic truncation selection and training on the previous five generations 672 

(fiveGen Trunc) as well as all RS-A OCS scenarios.  673 

Additional file 15 674 

Format: Microsoft Word Document (.docx) 675 

Title: RS-A Phenotypic Selection: All Responses 676 

Description: Plots of all responses recorded for the RS-A phenotypic selection scenario. 677 

Additional file 16 678 

Format: Microsoft Word Document (.docx) 679 

Title: RS-A Phenotypic 3rep Selection: All Responses 680 

Description: Plots of all responses recorded for the RS-A phenotypic 3rep selection scenario. 681 

Additional file 17 682 

Format: Microsoft Word Document (.docx) 683 

Title: RS-A True Genetic Value: All Responses 684 

Description: Plots of all responses recorded for the RS-A true genetic value selection scenario. 685 

Additional file 18 686 
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Format: Microsoft Word Document (.docx) 687 

Title: RS-A allGen Trunc: All Responses 688 

Description: Plots of all responses recorded for the RS-A genomic truncation selection with training 689 

on all previous generations scenario (allGen Trunc). 690 

Additional file 19 691 

Format: Microsoft Word Document (.docx) 692 

Title: RS-A fiveGen Trunc: All Responses 693 

Description: Plots of all responses recorded for the RS-A genomic truncation selection with training 694 

on the previous five generations scenario (fiveGen Trunc). 695 

Additional file 20 696 

Format: Microsoft Word Document (.docx) 697 

Title: RS-A allGen OCS Ne = 10: All Responses 698 

Description: Plots of all responses recorded for the RS-A genomic optimum contribution selection 699 

with training on all previous generations scenario at Ne = 10 (allGen OCS Ne = 10) 700 

Additional file 21 701 

Format: Microsoft Word Document (.docx) 702 

Title: RS-A allGen OCS Ne = 45: All Responses 703 

Description: Plots of all responses recorded for the RS-A genomic optimum contribution selection 704 

with training on all previous generations scenario at Ne = 45 (allGen OCS Ne = 45) 705 

Additional file 22 706 

Format: Microsoft Word Document (.docx) 707 

Title: RS-A allGen OCS Ne = 100: All Responses 708 

Description: Plots of all responses recorded for the RS-A genomic optimum contribution selection 709 

with training on all previous generations scenario at Ne = 100 (allGen OCS Ne = 100) 710 
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Additional file 23 711 

Format: Microsoft Word Document (.docx) 712 

Title: RS-A fiveGen OCS Ne = 10: All Responses 713 

Description: Plots of all responses recorded for the RS-A genomic optimum contribution selection 714 

with training on the previous five generations scenario at Ne = 10 (fiveGen OCS Ne = 10) 715 

Additional file 24  716 

Format: Microsoft Word Document (.docx) 717 

Title: RS-A fiveGen OCS Ne = 45: All Responses 718 

Description: Plots of all responses recorded for the RS-A genomic optimum contribution selection 719 

with training on the previous five generations scenario at Ne = 45 (fiveGen OCS Ne = 45) 720 

Additional file 25 721 

Format: Microsoft Word Document (.docx) 722 

Title: RS-A fiveGen OCS Ne = 100: All Responses 723 

Description: Plots of all responses recorded for the RS-A genomic optimum contribution selection 724 

with training on the previous five generations scenario at Ne = 100 (fiveGen OCS Ne = 100) 725 

Additional file 26 726 

Format: Microsoft Word Document (.docx) 727 

Title: RS-AY: All Responses 728 

Description: Plots of all responses recorded for the RS-AY scenarios, including both phenotypic 729 

and genomic selection. 730 

Additional file 27 731 

Format: Microsoft Word Document (.docx) 732 

Title: RS-AY Student’s t-tests 733 
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Description: Results of Student’s t-tests conducted for the RS-AY year error bias and mean parental 734 

age responses. 735 

Additional file 28 736 

Format: Microsoft Word Document (.docx) 737 

Title: RS-A Student’s t-tests 738 

Description: Results of Student’s t-tests conducted for the RS-A mean parental age responses. 739 
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