Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Long-range migration of centrioles to the apical surface of the olfactory epithelium

View ORCID ProfileKaitlin Ching, View ORCID ProfileJennifer T. Wang, View ORCID ProfileTim Stearns
doi: https://doi.org/10.1101/2021.10.12.464082
Kaitlin Ching
1Department of Biology, Stanford University, Stanford, CA 94305, USA
2Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kaitlin Ching
Jennifer T. Wang
1Department of Biology, Stanford University, Stanford, CA 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jennifer T. Wang
Tim Stearns
1Department of Biology, Stanford University, Stanford, CA 94305, USA
3Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Tim Stearns
  • For correspondence: stearns@stanford.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Olfactory sensory neurons (OSNs) in vertebrates detect odorants using multiple cilia, which protrude from the end of the dendrite and require centrioles for their formation. In mouse olfactory epithelium, the centrioles originate in progenitor cells near the basal lamina, often 50 to 100 μm from the apical surface. It is unknown how centrioles traverse this distance or mature to form cilia. Using high-resolution expansion microscopy, we found that centrioles migrate together, with multiple centrioles per group and multiple groups per OSN, during dendrite outgrowth. Centrioles were found by live imaging to migrate slowly, with a maximum rate of 0.18 μm/min. Centrioles in migrating groups were associated with microtubule nucleation factors, but acquired rootletin and appendages only in mature OSNs. The parental centriole had preexisting appendages, formed a single cilium prior to other centrioles, and retained its unique appendage configuration in the mature OSN. We developed an air-liquid interface explant culture system for OSNs and used it to show that centriole migration can be perturbed ex vivo by stabilizing microtubules. We consider these results in the context of a comprehensive model for centriole formation, migration, and maturation in this important sensory cell type.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted October 13, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Long-range migration of centrioles to the apical surface of the olfactory epithelium
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Long-range migration of centrioles to the apical surface of the olfactory epithelium
Kaitlin Ching, Jennifer T. Wang, Tim Stearns
bioRxiv 2021.10.12.464082; doi: https://doi.org/10.1101/2021.10.12.464082
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Long-range migration of centrioles to the apical surface of the olfactory epithelium
Kaitlin Ching, Jennifer T. Wang, Tim Stearns
bioRxiv 2021.10.12.464082; doi: https://doi.org/10.1101/2021.10.12.464082

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cell Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4224)
  • Biochemistry (9101)
  • Bioengineering (6749)
  • Bioinformatics (23935)
  • Biophysics (12086)
  • Cancer Biology (9490)
  • Cell Biology (13728)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11656)
  • Epidemiology (2066)
  • Evolutionary Biology (15476)
  • Genetics (10615)
  • Genomics (14292)
  • Immunology (9456)
  • Microbiology (22773)
  • Molecular Biology (9069)
  • Neuroscience (48839)
  • Paleontology (354)
  • Pathology (1479)
  • Pharmacology and Toxicology (2562)
  • Physiology (3822)
  • Plant Biology (8307)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2289)
  • Systems Biology (6169)
  • Zoology (1297)