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Abstract

Large-scale datasets present unique opportunities to perform scienti�c investigationswith un-
precedented breadth. However, they also pose considerable challenges for the �ndability, acces-
sibility, interoperability, and reusability (FAIR) of research outcomes due to infrastructure limita-
tions, data usage constraints, or software license restrictions. Herewe introduce aDataLad-based,
domain-agnostic framework suitable for reproducible data processing in compliance with open
sciencemandates. The framework attempts tominimize platform idiosyncrasies andperformance-
related complexities. It a�ords the capture of machine-actionable computational provenance
records that can be used to retrace and verify the origins of research outcomes, as well as be
re-executed independent of the original computing infrastructure. We demonstrate the frame-
work’s performance using two showcases: one highlighting data sharing and transparency (using
the studyforrest.org dataset) and another highlighting scalability (using the largest public brain
imaging dataset available: the UK Biobank dataset).
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The amount of data available to researchers has steadily grown, but over the past decade, a fo-
cus on diverse, representative samples has resulted in datasets of unprecedented size. The Wind
Integration National Dataset (WIND) Toolkit1, CERN data (opendata.cern.ch), or NASA Earth data
(earthdata.nasa.gov) are only some of the prominent examples of large, openly shared datasets across
scienti�c disciplines. This development is accompanied by a growing awareness of the importance to
make the data more �ndable, accessible, interoperable, and reusable (FAIR)2, and increasing avail-
ability of research standards and tools that facilitate data sharing and management3.

Though large-scale datasets present unique research opportunities, they also constitute immense
challenges. Storage and computational demands strain the capabilities of even well-endowed re-
search institutions’ high-performance compute (HPC) infrastructure — rendering the analysis of
these datasets una�ordable using methods common in �elds accustomed to smaller datasets (e.g.
multiple copies of the data, computationally ine�cient processing). With the growing complexity
of handling large scale datasets, the trustworthiness of derivative data can be at stake as large-scale
computations are more di�cult to reproduce, comprehend, and verify. Yet especially in the case of
large scale datasets, sharing and reusing data derivatives emerges as the most — or sometimes the
only — viable way to extend previous work4. It minimizes duplicate e�orts to perform resource-
heavy, costly computations that also have considerable environmental impact5, and it can open up
research on large data to scholars who do not have access to adequate computational resources. In
such contexts, data should thus not only be as FAIR as possible, but also handled in a sustainable
manner that places data sharing and reuse as a priority.
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Figure 1: Schematic overview of the processing framework. a) The user-facing representation of the results on
a �le system after completed processing: A lean DataLad dataset that tracks the computed results, links input
data and pipeline, and contains actionable process provenance and location information, allowing on-demand
�le retrieval or recomputation. Depicted �les are from the UK Biobank showcase. b) Process-�owchart:
First, a DataLad dataset links required processing components (e.g., input data, processing pipeline, addi-
tional scripts). Next, compute jobs are executed, if possible in parallel. Afterwards, results and provenance
are aggregated (merged). c) An ephemeral (short-lived) compute workspace: Each compute job creates a
temporary, lean clone, which retrieves only relevant subsets of data, and captures the processing execution as
provenance. After completion, results and provenance are pushed into permanent storage (see d), and the
ephemeral workspace is purged. d) The internal dataset representation in a RIA store: The store receives
results and can contain input data, optionally using compressed archives (for reduced disk space/inode con-
sumption) or encryption during storage and transport. It is the only place where results take up permanent
disk space. If inputs are available from other infrastructure (external, web-accessible servers, cloud infrastruc-
ture), jobs can obtain them from registered sources, removing the need for duplicate storage of input data.
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The challenges of big data are particularly relevant to the life sciences, such as neuroscience or
genetics, where datasets scale to millions of �les, hundreds of terabytes6,7, acquired from tens of
thousands of participants. Well known examples, such as the Human Connectome Project8, the
Adolescent Brain Cognitive Development Study (ABCD)9, or the UK Biobank (UKB) project10, con-
tain diverse data ranging from brain imaging to genetics to clinical and non-clinical measures.

In addition, computational processing of biomedical datasets is rarely fully transparent. Often,
datasets contain personal data, which imposes usage constraints and prohibits the open distribu-
tion of data. Thus, handling these datasets can only be as open as the responsible use of sensitive
data permits. Moreover, common processing pipelines possess considerable analytical �exibility, and
many tools commonly used in biomedical research rely on proprietary software11, which cannot be
easily shared or accessed by others. This threatens the reproducibility of results12, and their digi-
tal provenance — information about how tools, data, and actors were involved in the generation of
a �le — is often incomplete. As data processing results often multiply storage demands, the just-
keep-everything data management approach is rendered increasingly prohibitive. This fact further
impedes the possibility to retrace and verify the origin and provenance of research outcomes fully
and transparently13, and hence limits the trustworthiness of the research process and its outcomes2.

Here, we present a portable, free and open source framework — built on DataLad14 and con-
tainerization software15 — to reproducibly process large-scale datasets. It empowers independent
consumers to verify or reproduce the results based onmachine-actionable (i.e., machine-readable, au-
tomatically re-executable) records of computational provenance, in an infrastructure-agnostic fash-
ion. The framework capitalizes on established technology, used in conjunction with work�ows from
software development and workload management. Two use cases demonstrate di�erent framework
features and its scalability: 1) an application of a MATLAB-based, containerized, neuroimaging pro-
cessing pipeline on big data from the UKB project16 (comprising 76 TB in 43million �les under strict
usage constraints), and 2) a showcase implementation with openly available processing pipeline
and data that illustrates the framework’s potential for transparent sharing and reuse of reproducible
derivatives. While one can apply the framework by following the description in this work, a boot-
strapping script for each use case is provided that — given input dataset and processing pipeline —
performs the necessary setup from scratch.

Results

The proposed framework employs a range of software tools for data, code, and computation man-
agement to apply work�ows from software engineering — in particular distributed development —
to computational research. Speci�cally, it orchestrates arbitrary data processing via a lean network
of interconnected, but self-su�cient workspaces while optimizing for portability, scalability, and au-
tomatic computational reproducibility.

To achieve this, our framework combines a range of open source software tools — distributed
version control systems, containerization software, job scheduling tools, and storage solutions with
optional encryption and compression— into a sequential work�ow. A complete, schematic overview
is depicted in Figure 1 and basic DataLad concepts are summarized in Box 1. Three key features of
this data management solution are central to the framework:

• Comprehensive data structure to track all elements of digital processing
• Computation in automatically bootstrapped ephemeral workspaces
• Process provenance capture in machine-actionable records
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DataLad concepts

DataLad dataset DataLad’s core data structure is the dataset. On a technical level, it is a joint Git/git-annex 17

repository. Conceptually, it is an overlay data structure that is particularly suited to address data integra-
tion challenges. It enables users to version control �les of any size or type, track and transport �les in a
distributed network of dataset clones, as well as record and re-execute actionable process provenance on
the genesis of �le content. DataLad datasets have the ability to retrieve or drop registered, remote �le con-
tent on demand with single �le granularity. This is possible based on a lean record of �le identity and �le
availability (checksum and URLs) irrespective of the true �le size. A user does not need to be aware of
the actual download source of a �le’s content, as precise �le identity is automatically veri�ed regardless
of a particular retrieval method, and the speci�cation of redundant sources is supported. These technical
features enable the implementation of infrastructure-agnostic data retrieval and deposition logic in user
code.

A clone (Git concept) is a copy of a DataLad dataset that is linked to its origin dataset and its history. The clones
are lightweight and can typically be obtained within seconds, as they are primarily comprised of �le iden-
tity and availability records. DataLad enables synchronization of content between clones and, hence, the
propagation of updates.

A branch (Git concept) is an independent segment of a DataLad dataset’s history. It enables the separation of
parallel developments based on a common starting point. Branches can encompass arbitrarily di�erent
modi�cations of a dataset. In a typical collaborative development or parallel processing routine, changes
are initially introduced in branches and are later consolidated by merging them into a mainline branch.

Nesting A DataLad dataset can also contain other DataLad datasets. Analog to �le content, this linkage is im-
plemented using a lightweight dataset identity and availability record (based on Git’s submodules). This
nesting enables �exible (re-)use of datasets in a di�erent context. For example, it allows for the composi-
tion of a project directory from precisely versioned, modular units that unambiguously link all inputs of
a project to its outcomes. Nesting o�ers actionable dataset linkage at virtually no disk space cost, while
providing the same on-demand retrieval and deposition convenience as for �le content operations because
DataLad can work with a hierarchy of nested datasets as if they are a single monolithic repository. When a
DataLad dataset B is nested inside DataLad dataset A, we also refer to A as the superdataset and to B as a
subdataset. A superdataset can link any number of subdatasets, and datasets can simultaneously be both
super- and subdataset.

RIA store A �le-system based store for DataLad datasets with minimal server-side software requirements (in
particular no DataLad, no git-annex, and Git only for speci�c optional features) 18. These stores o�er inode
minimization (using indexed 7-zip archives). A dataset of arbitrary size and number of �les can be hosted
while consuming fewer than 25 inodes, while nevertheless o�ering random read access to individual �les
at a low and constant latency independent of the actual archive size. Combined with optional �le content
encryption and compression, RIA stores are particularly suited for staging large-scale, sensitive data to
process on HPC resources.

DataLad extension The core DataLad software is extensible via independently developed Python packages.
We developed a custom extension, datalad-ukbiobank 19 (docs.datalad.org/projects/ukbiobank),
to use the UK Biobank (UKB) as a data source for reproducible research. This extension equips Data-
Lad with a set of commands to obtain, monitor, and restructure the UKB imaging data release. UKB
data are tracked in DataLad datasets that can be updated whenever the UKB updates or adjusts its of-
ferings. Using a multi-branch approach, the DataLad datasets provide a BIDS-structured representation
in addition to the UKB-native data organization, without storage duplication and with full provenance
capture of the BIDS transformation. We also employed the datalad-container 20 extension, which inte-
grates container-based command execution with DataLad’s process provenance capture capabilities (see
docs.datalad.org/projects/container for more information).

Box 1: Crucial concepts about the design and function of the framework, DataLad, and its underlying tech-
nical components. DataLad, integral to the processing framework, is a domain agnostic data management
solution based on Git (git-scm.com) and git-annex17. It provides standard interfaces for arbitrary data trans-
port methods, comprehensive process provenance capture for computational reproducibility, and the means
to apply proven work�ows from collaborative software development to the domain of data processing. More
information on DataLad is available at datalad.org and handbook.datalad.org21.
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Comprehensive data structure to track all elements of digital processing

All �les involved in processing are contained in DataLad datasets, a Git-repository-based data repre-
sentation that streamlines data management, sharing, and reuse22. In our framework, such datasets
have a common representation (a regular directory tree) familiar to users, and also have a storage
representation (a RIA store) that facilitates programmatic data management and reduces storage de-
mands (Figure 1a, d).

DataLad datasets can version control �les regardless of �le size, and can link other DataLad
datasets at precise versions in modular superdataset-subdataset relationships. Based on this fea-
ture, all processing components, such as data, code, and computational environments in the form
of software container images, can be uniquely and transparently identi�ed with single �le granular-
ity across a hierarchy of linked DataLad datasets. Unlike purely Git-based tracking, version control
and �le identi�cation are based on a cryptographic hash of the �le content, a feature provided by
the software git-annex17. More precisely, each �le’s content is translated into a checksum, and this
checksum is saved (committed) as a �le content identi�er into the revision history—a detailed record
of all changes in a DataLad dataset, including their date, time, and author. Exemplary shortened
identi�ers can be found in Figure 1. This checksum is irreversible, i.e., one cannot infer the �le
content based on the identi�er, but one can verify the content of �les that are present on disk. Be-
cause �le content is not stored in the revision history, the potential to leak sensitive information is
signi�cantly reduced, while the data representation still allows for thorough tracking and content
veri�cation.

Computation in automatically bootstrapped ephemeral workspaces

DataLaddatasets can be distributed across local or remote infrastructure as lightweight, linked clones.
They share their origin dataset’s revision history and can extend it. File content transport across this
network is possible via versatile transport logistics that allow for local or remote data hosting. This
can enable data transports on systemswith too little available disk space formultiple copies, allow re-
dundant storage to be con�gured, interoperatewith hosting services to publish results, or recon�gure
data access when remote hosting locations change—without needing to alter the data representation
in the dataset.

With these technical features, how and where data are stored (e.g., local, encrypted storage; re-
mote, cloud-based hosting) becomes orthogonal to how andwhere computations are performed (e.g.,
on-site compute cluster; remote cloud-computing service). This allows our framework to bootstrap
ephemeral (short-lived) workspaces for individual computational jobs, retrieve only relevant process-
ing elements (e.g., subsets of input data), and extend the DataLad datasets’ revision history with their
results and process provenance (Figure 1c). This, in turn, opens the possibility for parallel and ver-
sion controlled analysis progression, using a distributed network of temporary clones. Results and
revision histories can be merged to form a full processing history, in a similar way to how code is
collaboratively developed with distributed version control tools23.

Process provenance capture in machine-actionable records

Process provenance—how code and commands created results from input data in a particular com-
putational environment—of any processing routine can be captured and stored inmachine-readable,
automatically re-executable records (Figure 2). These records are created by a datalad run com-
mand for the execution of a shell command, or a container invocation by datalad containers-run.
Users need to supply the command, a software environment, input data, and optionally which re-
sults should be saved as parameters. DataLad’s execution wrappers retrieve inputs, initiate com-
mand execution, and save results together with a provenance record. Through the use of ephemeral
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workspaces during provenance capture, the validity and completeness of provenance records is au-
tomatically tested: only declared inputs are retrieved, only declared outputs are saved and deposited
on permanent storage.

A resulting process provenance record is identi�ed with one unique, hash-based identi�er in the
revision history, and can subsequently be used by authorized actors to automatically retrieve required
components and re-execute the processing, irrespective of whether the original compute infrastruc-
ture is available24. This potential for full computational reproducibility of arbitrary processing steps
not only increases the trustworthiness of the research process per se, but permits structured investi-
gations of result variability, and furthermore provides the means to rerun any analysis on new data
or a updated analysis components.

Basic commit metadata
Author, Agent, Date, Time, 
and Commit Message 

Transformations
Command call/
Container parametrization
 

Software container image 
Origin: http://containers.ds.inm7.de/..
Version: dfa6d975ea8888ed33bf714c67

Input data
Origin: http://ukb.ds.inm7.de/.../bids  
Version: 0c7f0b45140dde1d7291b1572

Captured output data
Path, Content hash

Expected output data/folder 

a)
# perform and capture a computational execution
$ datalad containers-run \
    -m "Compute subject ${subid}" \
    -n cat \
    --input "inputs/${subid}/*T1w.nii.gz" \
    --output "${subid}" \
    "<arguments for container invocation>"

    

commit e035f896s45c9fac70cn7cc4dbd0dad43907755p
Author:     Jane Doe <j.doe@fz-juelich.de>
AuthorDate: Wed Feb 10 18:05:30 2021 +0100
Commit:     Jane Doe <j.doe@fz-juelich.de>
CommitDate: Wed Feb 10 18:05:30 2021 +0100

[DATALAD RUNCMD] Compute sub-6025043/ses-2

    === Do not change lines below ===
    {
     "chain": [],
     "cmd": "singularity exec -B {pwd} --cleanenv code/pipeline/.datalad/

environments/cat/image sh -e -u -x -c [...]'
     "dsid": "8938de76-0302-45b5-9825-3c6ce3f3fffe",
     "exit": 0,
     "extra_inputs": [
      "code/pipeline/.datalad/environments/cat/image"
     ],
     "inputs": [
      "inputs/ukb/sub-6025043/ses-2/anat/sub-6025043_ses-2_T1w.nii.gz",
      "code/cat_standalone_batch.txt",
      "code/finalize_job_outputs.sh"
     ],
     "outputs": [
      "sub-6025043/ses-2"
     ],
     "pwd": "."
    }
    ^^^ Do not change lines above ^^^
---
 sub-6025043/ses-2/inforoi.tar.gz | 1 +
 sub-6025043/ses-2/native.tar.gz  | 1 +
 sub-6025043/ses-2/surface.tar.gz | 1 +
 sub-6025043/ses-2/vbm.tar.gz     | 1 +
 4 files changed, 4 insertions(+)

d)

c)

b)

InputsPipeline

Results

sub-100123

A datalad containers-run 
call in each compute job 
performs file retrieval, 
computation, and 
provenance capture. 
A datalad rerun call
can reproduce it exactly.

# recompute a previous computation
$ datalad rerun e035f896s45c9

Figure 2: Process provenance of an individual job, its generation, and re-execution. a) Actionable process
provenance is generated with a datalad containers-run command. This example contains a container
name speci�cation (cat), a container parametrization or command, a commit message, and an input and out-
put data speci�cation. b) To re-execute a process, the datalad rerun <shasum> command only needs the
“commit shasum” of its provenance record (e035f896s45c9fa[...]). c) The datalad containers-run call
is at the center of each individual job. As the core execution command (see Listing 1, line 33-39), it performs
data retrieval, container execution, and result capture, and generates the actionable provenance that a subse-
quent datalad rerun command (b) can re-execute. With complete provenance, a re-execution is supported
on the original hardware, or on di�erent infrastructure. d) The machine-readable, re-executable provenance
record stored alongside computed results in the revision history. A legend (right) highlights the most im-
portant pieces of recorded provenance. While automatic re-execution requires the tool DataLad, su�cient
information to repeat a computation using other means can also be inferred from the structured JSON records
by other software or even humans. This information forms the basis for standardized provenance reporting,
for example using the PROV data model25.

Showcases

TheseDataLad features o�er great �exibility for transparently conducting reproducible, high-performance
data processing in awide variety of computational environments. In two concrete showcases we next
highlight 1) the scalability of this approach, and 2) complete transparency and reproducibility of this
data processing method, when combined with open data and open source tools.
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Figure 3: Overview of DataLad dataset linkage through processing and reuse. Any DataLad dataset may com-
prise other DataLad datasets as subdatasets via lightweight but actionable and versioned links. This connects
a dataset to the content and provenance of a di�erent modular unit of data, such as the outcomes of a the
preceding processing step. The genesis of an analysis output (Analysis A/B) based on intermediate processing
outcomes (Tailored results A/B) can thus be traced back all the way to the original raw data. Access control
and storage choices are independent across individual components in this network of linked data modules.
Aggregated data and analysis results can be shared with larger audiences or publicly on a variety of platforms,
while raw and derived data may underlie particular access restrictions, or require particular hosting solutions
due to their size.

Use case: large-scale medical imaging data processing

Todemonstrate the framework’s scalability, we conducted containerized analyses on one of the largest
brain imaging datasets, the UKB imaging data. The strain that this dataset places on computational
hardware is considerable both in terms of disk space usage (i.e., the amount of data that a hard drive
can store) and inode usage (i.e., the number of �les that a �le system can index). To show how the
framework can mitigate hardware limitations, we processed the dataset on two di�erent infrastruc-
tures, an HPC system with inode constraints that preclude storage of the full number of �les, and a
high throughput computing (HTC) systemwith disk space limitations that preclude data duplication.
In doing so, we assessed if the framework can be used across di�erent infrastructures, investigated
result variability between two recomputations of the pipeline, and probed the framework’s features
under distribution restrictions of both the data and theMATLAB-based software component. Finally,
in order to demonstrate that the framework can capture and re-execute complete process provenance,
we also recomputed individual results on a personal laptop.

As a �rst step, we prepared input data and computational pipeline. We created a Singularity
container with a pipeline to perform voxel-based morphometry (VBM)26 on individual T1-weighted
MRI images based on the Computational AnatomyToolbox (CAT)27. We storedUKBdata in archives
in aDataLad RIA store18 (Figure 1d) tomitigate disk-space and inode limitations on the two di�erent
systems. The store comprised 42,715 BIDS-structured28 DataLad datasets, one per study participant,
that were jointly tracked by a single additional superdataset (UKB-BIDS; "Data" in Figure 3). In total,
the domain-agnostic data representation in the store hosted 76 TB of version-controlled data with 43
million individually accessible �les while consuming less than 940k inodes.

Next, we assembled a single DataLad dataset to capture all processing inputs and outputs ("Re-
sults" in Figure 3). It initially tracked: 1) the UKB-BIDS DataLad dataset; 2) a DataLad dataset pro-
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viding the containerized CAT pipeline; 3) the compute job implementation responsible for boot-
strapping a temporary workspace, performing a parameterized execution of the pipeline, capturing
its outputs, and depositing results in the RIA store (see Listing 1 for a simpli�ed version); and 4) the
job scheduling speci�cations for SLURM29 (used on the HPC system) and HTCondor30 (used on the
HTC system). Despite the total size of all tracked components, the pre-execution state of this dataset
was extremely lean, as only availability (a URL) and joint identity (single checksum) information on
the linked datasets is stored, and all other information is contained in the linked datasets themselves.
This also implies that the DataLad dataset tracking the computational outputs is not automatically
encumbered with sensitive information, even though it precisely identi�es the medical imaging in-
put data.

The compute job implementation minimized the number of output �les using tar archives to
reduce the strain on the technical infrastructure, and removed undesired sources of result variability
(time stamps, �le order di�erences in archives, etc.) to allow comparisons between recomputations.
Later, these archives were partially extracted into tailored result datasets for easy consumption (see
Methods, "(Re)use"). To maximize practical reproducibility of computational outcomes, a compute
job implementation does not reference any system-speci�cs, such as absolute paths, or programs
and services not tracked and provided by the DataLad dataset itself. This means that any system
with DataLad installed, the ability to execute Singularity container images, and a basic UNIX shell
environment is capable of recomputing captured outputs. Any performance-related adaptations to
the particular systems used for our computations were strictly limited to the job scheduling layer,
which is clearly separated from the processing pipeline. Computation and recomputation on systems
with di�erent batch scheduling software is then possible by providing alternative job speci�cations,
without changes to the pipeline implementation.

Weperformedprocessing on theHPCandHTC infrastructure starting from the exact samedataset
version state, but with job orchestration tuned to the respective job scheduling system1. Provenance
for each execution of the CAT pipeline on an individual image was captured in a dedicated com-
mit, and recorded on a participant-speci�c Git branch. Recorded outputs and provenance records
were pushed to the RIA store on job completion, yielding a total of 995.6GB of computed derivatives
in 163,212 �les. The second computation added matching commits and branches to the DataLad
dataset that enabled straightforward comparison and visualization of results using standard Git tools
and work�ows. To con�rm the practicality of computational reproducibility solely based on the cap-
tured computational provenance information, we performed automatic recomputation of individual
results on a consumer-grade, personal laptop without job scheduling. This type of spot-checking re-
sults resembles the scenario of an interested reader or reviewer of a scienti�c publication with access
to (parts of) the data, but no access to adequate large-scale computing resources.

The complete implementation of this showcase cannot be shared due to imposed data usage and
software license restrictions. However, we provide a bootstrapping script that implements all re-
quired setup steps at github.com/psychoinformatics-de/fairly-big-processing-workflow,
and share a detailed description and full recipe of the container together with instructions on how
to build and use it at github.com/m-wierzba/cat-container.

Use case: Open tutorial

As strict software license restrictions and data usage agreements prevent fully open sharing of com-
puted results and a public demonstration of their process provenance records, we set up an open
tutorial analysis using free and open source fmriprep software31 and open data from the studyfor-
rest.org project32. We con�rmed that process provenance was su�cient to enable automatic recom-
putations on an HTC system, a personal work station running Debian, and aMac, and published the

1A visualization of the di�erent processing speeds can be found at https://www.youtube.com/watch?v=UsW6xN2f2jc.
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resulting DataLad dataset to public GitHub (github.com/psychoinformatics-de/fairly-big-
processing-workflow-tutorial) andGin (gin.g-node.org/adswa/processing-workflow-tutorial)
repositories. This demonstrator allows for in-depth inspection, retrieval (datalad get) of any and
all data processing inputs and outputs, as well as automatic recomputation (datalad rerun) of all
captured results.

Discussion

The proposed framework aims to make the results of any processing as open and reusable as the
given limits of individual components allow. It streamlines computation, re-computation, and shar-
ing with appropriate audiences for datasets and on compute infrastructure of any size. To this end,
proven procedures from software development and a set of open source software tools are assem-
bled into a scalable and portable framework with a variety of features: The basis for transparency
is laid with version control for all involved �les, including software environments. Distributed data
transport and storage logistics o�er �exibility to adapt to particular computing infrastructure. Re-
producible results are enabled via comprehensive capture ofmachine-actionable process provenance
records, capitalizing on portable containerized environments. Combining distributed computing
with ephemeralworkspaces that resemblework�ows fromcollaborative software development yields
e�cient processing, and ensures the validity of provenance information.

Unlike related solutions this framework is not targeting a particular type of data processing, like
machine-learning model �tting with DVC33, or a particular type of data, such as N-dimensional
arrays processed with Dask34, or a particular processing aspect like analysis work�ow management
with snakemake35, nor does it require the deployment of dedicated services on an infrastructure, like
Apache Spark36, or the proposed, cloud-based Pan-Neuro37. Instead, the framework is a general-
purpose solution that is compatible with any data that can be represented as �les of any size, and any
computation that can be performed via a command line call. It is built on a collection of portable, free
and open-source tools that can be deployed without special privileges or administrative coordination
on standard HTC/HPC infrastructure, or personal computing equipment.

While it is an explicit aim for the framework to yield FAIR outputs, this aspirational goal is not
reached. Metadata used and produced by the framework does not conforms to explicit annotation
standards. Instead, it encodes essential metadata, such as author, date, time, and description in
locations that are provided by the version control system Git. Other metadata are put into plain-
text, key-value data structures that conform to no particular formal ontology or vocabulary. This
shortcoming limits the �ndability and accessibility of its outputs severely. Questions like "which
outcomes were computed with a speci�c version of a particular software?" cannot be reasonably
answered without additional standardization and annotation e�ort.

That being said, what the framework provides today is a technical system that, despite or be-
cause of its ignorance regarding formal metadata standards a�ords practical, automatic recomputa-
tion of arbitrary data processing results. This ability dramatically elevates the starting point for future
FAIRi�cation e�orts of computational outcomes. Reproducibility can be programmatically veri�ed,
thereby providing a con�rmation of the comprehensiveness of data and essential process metadata
encoded in a DataLad dataset. Subsequent annotations of precisely versioned data, or tracked com-
putational environments can retroactivily boost �ndability and accessibility of outcomes. For exam-
ple, an added annotation of the composition of an employed containerized pipeline can help answer
the question posed above. Neither metadata format nor terminology are constrained by the pro-
posed framework. Importantly, the ability to recompute outcomes provides a strong incentive for
researchers to produce computational outcomes with veri�ably complete (meta)data. This is an im-
portant half-step towards a FAIRer future that boosts the availability of research outputs that can
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receive continuous updates to co-evolve with further developments of metadata standards and re-
quirements of future metadata-driven applications.

The use of containerized software environments plays a key role in the proposed framework.
They represent the most practical solution to portable computational environments today. However,
their long-term, universal accessibility is all but guaranteed. Even today the singularity software
does not support all major operating systems. Ten years ago, the popular docker software did not
yet exist, and it is unclear whether its container images will be executable in ten years from now.
Providing the build instructions for a container image, rather than (or in addition to) the readily
executable image, may improve the longevity of their accessibility, and also mitigate the problem
of license-imposed sharing restriction. However, it is not guaranteed that executing a recipe twice
results in identical software containers. Reproducible builds, the practice of creating identical con-
tainer images from a recipe38, for example, require the speci�cation and availability of software and
system libraries at precise versions. For the same reason of long-term accessibility, it will also be nec-
essary to incorporate DataLad’s own idiosyncratic provenance metadata into such a comprehensive
provenance report — then matching a format and standardization desirable for a particular scope or
application.

The presented showcases provide two concrete examples for the adoption of the proposed frame-
work that deal with typical obstacles for transparent, reproducible science. The UKB’s data size
exceeds the capacity of most infrastructure. We demonstrated the scalability of our framework by
processing these data on systems with hardware limitations that would typically render even storage
of inputs and outputs di�cult or impossible. As the proposed framework enables selective recompu-
tation even on commodity hardware, consumers can investigate results without having to rely on the
original authors, and without access to the original computational infrastructure. Even though the
raw data may be too large to allow users a complete recomputation, the process provenance entails a
trail of processing steps that permits automatic recomputation of individual results. A one-time com-
putation on larger infrastructure can thus build a veri�able, trustworthy foundation for numerous
subsequent analyses by other researchers.

Over and above everything else, the framework makes research as open as desired. For exam-
ple, the medical imaging showcase featured a processing pipeline based on proprietary software and
pseudonomized personal data under usage constraints. Data and computational environment are
not publicly sharable. But if data usage agreements and software licensing permit, as it is the case
in the second showcase, processing results can be shared publicly that are independently and auto-
matically reproducible by any interested party. This level of transparency dramatically improves the
accessibility of scienti�c outcomes.

Based on process provenance and version control, structured analyses of variability between
(re)computations on the same or di�erent infrastructure are facilitated13,39. Bit-identical recompu-
tation of a result are trivially veri�able. The comprehensive capture of input data version, computa-
tional environments and process parameterization enable deep inspection of other sources of result
variability. Building on this foundation, more standardized process descriptions40 and reproducible
computational environments38 can further enhance these types of analyses.

Methods

The proposed framework aids the reproducible execution of a containerized pipeline on input data,
by associating computational outcomes with machine-actionable provenance records in a version
control system. We illustrate the technical details of this process with two use cases that di�er in
scale as well as data access and processing requirements, but follow a common pattern in general
setup and composition.
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Framework setup

The technical nature of the framework components, in particular its foundation, the version control
software Git, enables distributed computational work�ows that utilize and extend established proce-
dures from collaborative software development to data processing. The framework is bootstrapped
in two steps that could be performed by a tailored shell script for a particular application.

Self-contained processing speci�cation as a DataLad dataset

The �rst step is the creation of a new DataLad dataset that will eventually track the processing re-
sults (dataset labeled "Results" in Figure 3). Input data, images of containerized pipelines, or custom
code are added to this dataset. While the use of software containers to provide processing pipelines
is not strictly required, they are a practical method to provide stable and portable computational
environments. Because such containers can be stored in image �les, they can be tracked and pre-
cisely versioned like any other component of a DataLad dataset. The datalad-container extension
provides a convenience interface for registering containers and for executing commands in such en-
vironments.

All processing components, such as processing-speci�c, customized scripts and applications or
data, can be added directly to the dataset as individual �les. More typically, however, individual pro-
cessing components, for example input data or containerized pipelines, are placed in separate Data-
Lad datasets and linked as subdatasets (Figure 3). This more modular structure enables (re)use of
independently maintained components, while strictly separating access modalities to each of them.
In this way, access-restricted input data does not impair sharing of less sensitive outcomes and the
versioned link between superdataset and subdatasets guarantees precise identi�cation of processing
components, regardless of whether a particular dataset consumer has access to a given component.

The resulting dataset is the entry point to a self-contained directory structure, potentially com-
prising other nested DataLad datasets, that jointly de�ne identity and location of all data processing
inputs in the exact form needed for a particular computation.

Environment and performance optimized orchestration

The second step is the preparation of the computational environment and processing orchestration.
This relates to what is computed as well as how it is computed. The compute job orchestration, the
how-to-compute, could be as simple as direct, sequential executions of required processing steps in a
shell script for-loop. However, large-scale computations typically require some form of paralleliza-
tion. The compute job orchestration is thus likely to be implemented using the job scheduling system
of a given compute infrastructure. As such, how-to-compute is highly infrastructure-speci�c, and
must determine an optimum balance of resource demands, such as run time, memory and storage
requirements, in order to achieve optimal throughput.

The what-to-compute, the computational instructions, pipelines, or scripts, need to be indepen-
dent computational units that can be executed in parallel. A common example is the parallelized
execution of a processing pipeline on di�erent, independent parts of input data. As parallelization
often corresponds to the granularity at which a recomputation will be possible in our framework,
relevant considerations are, for example: "What is the smallest unit for which a recomputation is
desirable?", or "For which unit size is a recomputation still feasible on commodity hardware?". To
ensure reproducibility for an audience that does not have access to the original infrastructure, what-
to-compute needs to be infrastructure-agnostic, without references to system-speci�cs such as abso-
lute paths, or programs and services not tracked and provided by the DataLad dataset itself. Then,
computation and recomputation of what-to-compute are possible on di�erent systems, with any po-
tential adjustments only relating to the job orchestration layer in how-to-compute.
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Execution and result consolidation work�ow

After the two preparatory steps are completed the actual data processing can be executed by submit-
ting the compute jobs to the job scheduling system. Each compute job will clone the DataLad dataset
with the processing speci�cation to a temporary location, bootstrap an ephemeral workspace that is
populated with all inputs required for the given job with a job-speci�c parameterization, execute
the desired computing pipeline, and capture a precise provenance record of this execution, compris-
ing all inputs, parameters and generated outcomes. Lastly, it pushes this provenance metadata and
result �le content to permanent storage. This work�ow resembles a standard distributed develop-
ment work�ow in software projects (obtain a development snapshot, implement a new feature, and
integrate the contribution with the mainline development and other simultaneously executed devel-
opments) but applies it to processing of data of any size. Speci�c details of this work�ow are outlined
in sequential order in the following paragraphs. Where applicable, they annotate and rationalize the
generic compute job implementation in Listing 1.

Dataset clone source and update push target can be separated in an initial setup step to im-
prove performance. When all compute jobs deposit their outcomes at the same DataLad dataset
location that later compute jobs also clone from, version history in this dataset accumulates and pro-
gressively slows the bootstrapping of work environments of compute jobs, becausemore information
needs to be transferred. Moreover, result deposition in a DataLad dataset is a write operation that
must be protected against concurrent read and write access for technical reasons, and hence intro-
duces a throughput bottleneck. Both problems are addressed by placing an additional clone of the
pre-computation state of the processing speci�cation dataset in a RIA store before job submission
(Figure 1d). This clone is used for result deposition only (Listing 1, lines 17 and 49). Dataset clones
performed by jobs are done from the original location that is never updated, hence also never grows.
In order to avoid unintentional modi�cations during long computations, the dataset clone source
for jobs may not be the dataset location used for preparation (Figure 1a), but yet another, separate
clone in a di�erent RIA store. The clone source and push target locations are provided as parame-
ters to compute jobs (Listing 1, lines 5-6). All dataset locations are not con�ned to exist on the same
hardware as long as they are accessible via supported data transport mechanisms over the network.

Job-speci�c ephemeral workspaces are the centerpiece of the computation, and the location
where the actual data processing takes place (Figure 1c). Critically, these workspaces are boot-
strapped using information from the speci�cation DataLad dataset only. This is achieved by cloning
this dataset into theworkspace �rst (Listing 1, line 11), and subsequently performing all operations in
the context of the clone. After computation and result deposition the clone and the entire workspace
are purged. This ensures that all information required to perform a computation is encoded in this
portable speci�cation, that it is actionable enough to create a suitable computing environment, and
that all desired outcomes are properly registered with the DataLad dataset to achieve deposition on
permanent storage.

Containerized execution and provenance capture happens within the ephemeral workspace
on a uniquely identi�ed branch per job (Figure 1b, “work�ow execution”; Listing 1, line 21). Prior
computation, the state of this branch is identical for all jobs. It comprehensively and precisely iden-
ti�es all processing inputs, and links them to author identities, time stamps, and human readable
descriptions encoded in the Git revision history of the dataset (Figure 2d, top).

Based on this initial state, a computational pipeline is then executed, and all relevant computa-
tional outcomes are saved to the DataLad dataset to form an updated state (Listing 1, line 33-39). For
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this execution, all required input �les are speci�ed by their relative path in the DataLad dataset (po-
tentially pointing into linked subdatasets). Importantly, only these job-speci�c inputs will be trans-
ferred to the compute job’s environment. Likewise to be saved outcomes are selected by providing
path speci�cations. Given the execution of the computation in an isolated, ephemeral workspace
that is unique for each individual job, two guarantees can be derived regarding the provenance of
the computational outcomes: 1) All dataset modi�cations can be causally attributed to the initiated
computation; 2) only declared inputs were required to produce the outcomes.

DataLad commands like run (for command line execution) or containers-run (for execution
in containerized environments) yield machine-readable provenance records that express what com-
mand was executed, with which exact parameters, based on which inputs, to generate a set of output
�les (Figure 2d). Such a record is embedded in the Git commit message of the newly saved dataset
state as structured data. The record itself is lean and free o� explicit version information for indi-
vidual inputs, because the dataset state as a whole jointly identi�es all versions of all dataset compo-
nents, such that individual versions are readily retrievable on a (later) inspection of this state.

The captured provenance record ismachine-actionable. Using the dataset and information in the
provenance record in a dataset state’s commit message, the DataLad command rerun can reobtain
necessary inputs and run the exact same command again, given availability of data and environ-
ments. Importantly, this re-execution does not strictly depend on the original compute infrastruc-
ture, but bene�ts from DataLad’s ability to retrieve �le content from multiple redundant locations.

Result deposition takes place after successful completion of each job. The �le content of compu-
tational outcomes, along with their provenance, are pushed to permanent storage (Figure 1b, blue
arrow). Two di�erent components of result deposition have to be distinguished.

Transfer of �le content (Listing 1, line 44) is an operation that is independent across compute jobs,
and can be performed concurrently. This enables simultaneous transfer of (large) �les. Importantly,
only �le content blobs (i.e., git-annex keys) are transferred at this point.

Additionally, critical metadata must be deposited too. All essential metadata is encoded in the
new dataset state commit, recorded on the job-speci�c Git branch. Consequently, it is deposited
using a git push call (Listing 1, line 49). This push operation is not concurrency-safe, hence must
be protected by a global lock that ensures only one push is performed at a time across all compute
jobs (using the tool flock). Therefore this step represents a central bottleneck that can in�uence
computational throughput. However, when �le-content is only tracked by checksumwith git-annex,
the changes encoded in the Git branch are metadata only, and a transfer is typically fast.

After successful completion of all computations, theDataLad dataset on permanent storage holds
the provenance records of all results in separate job-speci�c branches, and the content of all output
�les in a single git-annex object tree.

Result consolidation is the �nal work�ow step. After processing, the result DataLad dataset con-
tains as many branches as successfully completed jobs. These branches must be consolidated into a
new state of the mainline branch that jointly represents the outcomes of a individual computations
(Figure 1b, “result consolidation/merge”).

How exactly this merging operationmust be conducted depends on the nature of the changes. In
the simplest case, all compute jobs produced non-intersecting outputs, i.e., no single �le was written
to by more than one compute job. In this case, all branches can be merged at once using a so-called
octopus-merge:
# octopus -merge all "job" branches at once

git merge -m "Merge results" $(git branch -al | grep 'job -')
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1 #!/bin/bash

2 # fail on any issue , show commands

3 set -e -u -x

4 # name arguments for readability

5 dssource="$1"

6 pushgitremote="$2"

7 subid="$3"

8

9 # obtain the analysis dataset , which

10 # also tracks the required inputs

11 datalad clone "${dssource}" ds

12 cd ds

13

14 # register location for result

15 # deposition , separate from the input

16 # source for performance reasons only

17 git remote add outputstore

→ "$pushgitremote"

18

19 # all job results will be put into

20 # a job -specific , dedicated branch

21 git checkout -b "job -$JOBID"

22

23 # START OF APPLICATION -SPECIFIC CODE

24 # pull down input data manually ,

25 # only needed for wildcard -based file

26 # selection in the next command

27 datalad get -n "inputs/ukb/${subid}"

28 # datalad containers -run executes

29 # the "cat" computational pipeline.

30 # specified inputs are auto -obtained ,

31 # specified outputs are saved with

32 # provenance record

33 datalad containers -run \

34 -m "Compute subject ${subid}" \

35 -n cat \

36 --explicit \

37 --output "${subid}" \

38 --input

→ "inputs/ukb/${subid }/*T1w.nii.gz"

39 "<container invokation arguments >"

40 # END OF APPLICATION -SPECIFIC CODE

41

42 # push result file content to the

43 # configured "storage -remote"

44 datalad push --to storage -remote

45

46 # push branch with provenance records

47 # needs a global lock to prevent

48 # write conflicts

49 flock "$DSLOCKFILE" git push

→ outputstore

50

51 # log entry to mark non -error exit

52 echo SUCCESS

Listing 1: Complete compute job implementation as a bash script. A batch system invokes the job-
script in a temporary working directory with three parameters: a URL of a DataLad dataset tracking all
code and input data, a URL to deposit job-results at, and an identi�er to select a sample for processing.
Apart from performance-related optimizations, the job implementation conducts three main steps: 1) clone
a DataLad dataset with all information to bootstrap an ephemeral computing environment for each job;
2) containers-run a containerized pipeline with a comprehensive speci�cation of to-be-retrieved inputs and
to-be-captured outputs; 3) push captured outputs and process provenance records to a permanent storage loca-
tion. Preparation, computation, provenance record creation, and �le content deposition on permanent storage
are fully independent across jobs, and are executed in parallel. Only the git push of the provenance record
to a central repository must be protected against concurrent write-access for technical reasons. Additional job
parametrization (DSLOCKFILE and JOBID environment variables) are de�ned at job-submission using batch
system speci�c means. The job script can be adjusted to a di�erent processing pipeline by replacing the con-
tainer invocation (see APPLICATION-SPECIFIC CODEmarkers).
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Depending on the number of result branches, it may be necessary tomerge branches in batches to
circumvent operating system or shell limits regarding a maximum command line length. If compu-
tational outcomes are not independent across jobs (i.e., order of computation/modi�cation matters),
a merge strategy has to be employed that appropriately acknowledges such dependencies. If the de-
position dataset is hosted in a RIA store (as suggested above for performance reasons) this operation
is performed in a temporary clone.

As a �nal step, valid metadata on output �le content availability must be generated. File content
resides in the result dataset at the deposition site already, but the required metadata was not pushed
to its internal git-annex branch from all compute jobs, in order to avoid a consolidation bottleneck.
Instead, these metadata are generated only now, by probing the availability of the required �le con-
tent blobs for all �les present in the mainline branch after merging all compute job branches.
# discover/confirm result file availability

git annex fsck --fast -f output -storage

# push consolidated provenance records and file availability

# metadata to permanent storage

datalad push --data nothing

The git-annex fsck commandprobes the con�gured output-storage sitewhether it possesses
a given annex key (i.e., a �le content blob corresponding to a particular checksum), and generates
an appropriate availability metadata record. The �nal datalad push command (Listing 1, line 44)
transferred these veri�ed metadata records to permanent storage.

The outcomeof this consolidation process is a self-containedDataLaddataset, with valid,machine-
actionable provenance information for every single result �le of the performed data processing. As
such, it is a modular unit of data, suitable as input for further processing and analysis. It translates
the advantages of comprehensive and precise linkage of all its components across any number of
other data modules to any consumer.

Balance of reproducibility and performance

Taken together the described approach to reproducible, large-scale computation implements a three
layer strategy. From bottom to top, these layers feature di�erent trade-o�s regarding portability/re-
producibility vs. �exibility for performance adaptations to particular computational environments:
The lowest layer is the (containers-)run command, comprising an environment speci�cation and
instructions to compute the desired outcomes from inputs in this environment. Using suitable tech-
nologies, such as computational containers, this layer o�ers a maximum of portability, but also a
minimum of �exibility, as this exact environment must be provided in order to reproduce results.
Consequently, the proposed framework captures process provenance at this layer (Figure 2). The
middle layer describes how a self-contained, ephemeral workspace can be generated that is suitable
for executing the speci�cation of the previous layer (Listing 1). Here, general infrastructural choices
can be made. For example, a limitation to a POSIX-compatible environment that is common for
HPC/HTC systems, or the granularity with which provenance records are captured (and therefore
the granularity at which reproducibility is supported). This layer plays a key role in ensuring that
process provenance records are valid and complete. The topmost layer is concerned with maximiz-
ing performance on a particular infrastructure via tailored job orchestration, and composition. This
layer is poorly portable as it references infrastructure-speci�c elements, such as job scheduling sys-
tems, absolute paths, user names or resource identi�ers. While the implementation of all three layers
should be provided within the DataLad dataset for a computational project, only the lowest layer is
strictly required for reproducing results.
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Software requirements

The software and their minimum version requirements for executing the framework are datalad

v0.14.2, Git v2.24, git-annex v8.202003, and datalad-container v1.1.2 (not required for recom-
putation). Optional requirements are job scheduling systems as well as containerization software
(e.g., Singularity v2.6.).

In principle, the framework could also be used without a software container. But despite their
problems, containers represent the contemporary optimum for encapsulating computational envi-
ronments that can be shared and reused across di�erent systems. Here we have used Singularity15,
one of the most widely used container solutions for both single- and multi-user environments, suit-
able forHPC/HTC architectures. This choice limits the target platform onwhich a provenance-based
recomputation can be attempted, and for example rules out theWindows operating system for which
this software is not available. Other technologies, such as Docker, o�er a di�erent set of supported
environments.

UK Biobank computing use case

To demonstrate the framework’s scalability and its ability to create reusable derivatives for subse-
quent analyses, we applied it to data from the brain imaging component of the UKB project16. We
performed a containerized analysis for voxel-based morphometry (VBM)26 based on the Computa-
tional Anatomy Toolbox27, a commonmethod for anatomical brain imaging data. This choice of data
and processing pipeline posed particular challenges for openness, transparency, and reproducibility.
The UKB imaging project is one of the largest studies of this kind. The data underlie strict usage
constraints to ensure the responsible use of participants’ personal data. Moreover, the chosen pro-
cessing pipeline is based onMATLAB, at present still the most prevalent programming environment
in biomedical research11, enforcing rigid redistribution limits due to its proprietary, closed-source
license. The setup steps were implemented in a bootstrap script available at https://github.com/
psychoinformatics-de/fairly-big-processing-workflow/blob/main/bootstrap_ukb_cat.sh.

Self-contained processing speci�cation as a DataLad dataset

The UKB provides imaging data in ZIP archives, with one archive containing all �les for a single
modality of a single participant in one format. Direct downloads via versioned perma-URLs are not
possible, but ukbfetch, a custom binary-only downloader application, must be used.

We implemented datalad-ukbiobank19, a DataLad extension (see Box 1) that aids retrieval, in-
dexing, and versioning of UKB data o�erings in the form of DataLad datasets. Such a dataset repre-
sents data in three variants (using dedicated Git branches): the downloaded ZIP �les, extracted ZIP
�le context using UKB-native �lenames, and an alternative data organization following the BIDS
standard.

Using datalad-ukbiobank, we retrieved MRI bulk data for all participants in NIFTI format.
Each participant’s data were represented as an individual DataLad dataset, yielding 42,715 datasets
in total. The BIDS-structured branches of all these datasets were jointly tracked by a single UKB
superdataset ("Data" in Figure 3). This UKB superdataset is installable within seconds. On a �lesys-
tem, it takes up about 40MB of space, but can retrieve any of the registered �le content in the entire
DataLad dataset hierarchy, comprising 76 TB across 43 million �les, on demand.

As processing pipeline, we chose CAT’s default segmentation of structural T1-weighted images
using geodesic shooting41, including calculation of total gray matter (GM), white matter (WM), and
intracranial volume (TIV), as well as extraction of regional GM estimates from several brain parcella-
tions. To this end, we built a Singularity container for the MATLAB-based Computational Anatomy
Toolbox (CAT; version: CAT12.7-RC2, r1720)27, which is an extension to the Statistical Parametric
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Mapping software (SPM; version: SPM12, r7771; www.�l.ion.ucl.ac.uk/spm/software). AsMATLAB
requires a commercial, non-transferable license, we used a compiled version of the CAT toolbox pro-
vided by the authors, which does not require the availability of a MATLAB license at runtime. Due
to software license restrictions (the MATLAB Compiler Runtime in the container is subject to the
MATLAB Runtime license), we cannot redistribute the container image, but we share a detailed de-
scription and full recipe of the container together with instructions on how to build and use it at
github.com/m-wierzba/cat-container.

We added two custom code �les to the dataset. First, a batch script, with a comprehensive spec-
i�cation and parameterization of all processing steps to be performed by CAT in an input image.
This script allowed us to bundle up all relevant analysis steps into single command that also de�nes
the smallest unit for recomputation. Second, a utility script to post-process all relevant outputs (≈30
individual �les) into four tar archives per computation in order to minimize disk space usage and
number of resulting �les. Controlling the total number of output �les was important due to the
amount of computational outcomes to be tracked in this particular result dataset. Only four �les per
computation translate to more than 160,000 �les in total. Such large datasets require substantial �le
system operations, even when only a subset of �le content is retrieved for a particular use case.

The resulting tar archives are organized according to envisioned consumption scenarios (vbm
containing modulated gray matter density and partial volume estimates in template space, native
with atlas projections and partial volumes in individual space, surface with surface projection and
thickness, and inforoi containing regional volume and thickness estimates of several atlases/par-
cellations; Figure 1a). tar was parameterized to create archived with a normalized �le order, cre-
ation time, and �le permissions in order to not introduce arti�cial variation between recomputa-
tions. Likewise, all result �les were carefully stripped of timestamps and other non-deterministic
log �le content. The resulting reproducible tarballs allow to attribute �le content variability across
re-computations to actual result variability.

Environment and performance optimized orchestration

Data were processed on an HPC cluster and a high-throughput computing (HTC) cluster, each im-
posing a di�erent set of resource constraints. The HPC system is a modular supercomputer with
1,872 nodes, currently among the 500 fastest compute infrastructures in the world42. While avail-
able disk space was abundant, storage was constrained by an inode quota of 4.4 million �les – less
than the total number of �les of the raw dataset. In contrast, the HTC cluster is a mid-sized compu-
tational cluster with 31 nodes with only about 400 TB storage capacity, preventing the existence of
more than one copy of the raw dataset, and limiting the size of derivatives that could be stored.

To reduce the disk space and inode demands, all DataLad datasets were stored in a RIA store.
In this "backend" representation (Figure 1d), a single participant dataset encompasses 25 inodes and
about 4GB of disk space. When cloned into a workspace (Figure 1a), it expands to several hundreds
of �les. In total, the employed RIA store hosts 42,715 datasets comprising the full UKB data, and
consumes 75.6 TB of disk space with less than 940k inodes.

The ability to extract subsets of otherwise compressed inputs only when needed in ephemeral
workspaces allowed us to adjust the parallel job load to the available resources. This enabled compu-
tations when disk space or inode availability were insu�cient for the full dataset. With this setup, we
were able to complete data processing for a one-hour-per-image pipeline on the HPC system within
10.5 hours, using 25 dedicated compute nodes, each executing 125 jobs in parallel on RAM disks. On
the HTC system in turn, HTCondor scheduled jobs dynamically across several weeks for available
compute slots in an otherwise busy system used for unrelated computations by other researchers.

In order to validate di�erent aspects of reproducibility all data processing was performed twice,
once on each computing platform, and also a third time for a small subset of the data on a personal
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laptop. For the two main computing platforms dedicated job submission scripts were implemented
for SLURM and HTCondor respectively. In contrast, the partial recomputation on a laptop solely
relied on the local availability of the Singularity container technology, but was otherwise fully auto-
matic, based on the captured provenance record, to con�rm practical reproducibility for an indepen-
dent consumer.

Because of the large number of participants in the dataset and the aim to be able to rerun the
data processing on a future, even larger release, one compute job per participant was generated. A
compute job serially processed either two images, only a single image, or none, depending on the
actual data availability. A dedicated provenance record was captured for each pipeline execution on
an individual input image, yielding a total of 41,180 records.

Execution and result consolidation work�ow

Data processing was executed based on two variants of the same DataLad dataset, each containing a
common computational environment, and the same input data, but a di�erent, optimized job sub-
mission implementation. Result consolidationwas �rst performed separately on each computational
infrastructure, following the steps described in the framework setup. Lastly, the two complete sets
of computational outcomes were integrated in the same dataset, as two di�erent branches, for com-
parison.

Result veri�cation

As prior manual data inspection was infeasible due to the amount of data, we included basic checks
to ensure availability of T1-weighted images during processing. Subsequent quality control analyses
were derived from the computed results. Figure 4 shows the distribution of quality control metrics
for T1-weighted images43 across the sample. With the exception of execution time, the number of
jobs, proportion of successful jobs, and size and structure of the results were identical between the
two systems. Speci�cally, with the exception of one output �avor (projections of computed estimates
to the cortical surface) more than 50% of all output �les were identical across the two computations.
Outcome variability for non-identical results was largely attributable tominor numerical di�erences,
as illustrated by themean squared error (MSE) over recomputations for a range of keyVBMestimates:
total surface area (� = 1891,MSE = 0.315), cerebro-spinal �uid (� = 365,MSE = 0.052), total in-
tracranial volume (� = 1508,MSE = 0.052), white matter (� = 519,MSE = 0.004), and gray matter
(� = 621,MSE = 0.001). We also computed correlations over di�erent brain parcellations included
in the CAT toolbox. The lowest observed correlation across recomputations for VBM estimate distri-
bution across di�erent brain parcellations were Pearson’s � > 0.998 for the Destrieux 2009 surface
parcellation44 for all brain regions. Quality control metrics depicted in Figure 4 exhibit � > 0.99999
for computation and recomputation.

(Re)use

After successful completion, results comprise a collection of di�erent VBM-related measures for all
images in the sample, represented in archives. For easier consumption, and as researchers are rarely
interested in the full set of measures, the output DataLad dataset was subsampled into smaller “spe-
cial purpose” datasets. These datasets contained a subset of the results in extracted, and option-
ally aggregated form, tailored to di�erent research questions, for easier and faster access. This pro-
cess relied on registering the main result DataLad dataset into a new tailored DataLad dataset via
nesting ("Tailored results A/B" in Figure 3), and extracting and transforming the required �les with
provenance-tracking by datalad run, i.e., the same mechanism that captured provenance for the
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Figure 4: Distribution of quality assurance measures, derived for 41,180 unprocessed T1-weighted images
from the UKB dataset. The quality measures were obtained retrospectively based on the preprocessing meth-
ods43,45. For both measures, lower values correspond to better quality. Abbreviations: IQR - image quality
rating, a weighted composite score based on noise, inhomogeneity, and image resolution (0.5-1.5 = “perfect”,
1.5-2.5 = “good”, 2.5-3.5 = “average”, 3.5-4.5 = “poor”, 4.5-5.5 = “critical”, >5.5 = “unacceptable”); ICR - inho-
mogeneity contrast ratio, estimated as the standard deviation within the white matter segment of the intensity
scaled image.

initial computation. This approach yields an transparently generated data view that can be updated
by re-applying this transformation in case of changed inputs via the datalad rerun command.

As a concrete example we generated a DataLad dataset with tissue volume statistics for regions of
interests in each parcellation and for all participants. We implemented a script that extracted aggre-
gated noise-to-contrast-ratio, inhomogeneity-to-contrast-ratio, image quality rating, total intracra-
nial volume, total gray matter volume, total white matter volume, total cerebral spinal �uid volume,
total white matter hyperintensities volume, and total surface area into one CSV �le per brain parcel-
lation. The results are a fraction of the size and number of �les of the total results, but su�cient for
investigating VBM-related research questions. Using the encoded, machine-actionable provenance
information, each result can be traced to the precise �les they were generated from in a transparent
and reproducible manner.

The direct computational output of the work�ow on the UKB sample is therefore not a �nal
result, but an intermediate representation optimized for storage and handling. More tailored views
for concrete use cases can be optimized for access convenience. With this, we achieve a compromise
between the desires of a data consumer and the demands of the storage infrastructure and operators.
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Open tutorial

As license restrictions prevent open sharing of data and container image used in the UKB showcase,
we implemented the processing framework for an additional use case, for which all components
can be publicly shared in readily usable form. The resulting, fully populated DataLad dataset is
publicly available at github.com/psychoinformatics-de/fairly-big-processing-workflow-
tutorial. It can serve as a functional reference implementation that a�ords reproducibility based
on machine-actionable provenance records. All setup steps were implemented in a bootstrap script
available at https://github.com/psychoinformatics-de/fairly-big-processing-workflow/
blob/main/bootstrap_forrest_fmriprep.sh

Self-contained processing speci�cation as a DataLad dataset

As input data we employed a dataset with structural brain imaging data for 20 individuals from the
studyforrest.org project32, linked as a subdataset at inputs/data. This is a BIDS-structured dataset
published under the permissive PDDL license. It is publicly available as aDataLad dataset at github.
com/psychoinformatics-de/studyforrest-data-structural.

For data processing we use fMRIprep’s structural preprocessing pipeline31 (version v20.2.0) that
is freely available as a Singularity container in the DataLad dataset of the public Repronim container
registry github.com/repronim/containers. With this pipeline, each T1-weighted MRI scan was
corrected for intensity non-uniformity using N4BiasFieldCorrection v2.1.046 and skull-stripped
using antsBrainExtraction.sh v2.1.0 (using the OASIS template). Spatial normalization to the
ICBM 152 Nonlinear Asymmetrical template version 2009c47 was performed through nonlinear reg-
istration with the antsRegistration tool of ANTs v2.1.048, using brain-extracted versions of both
T1w volume and template. Brain tissue segmentation of CSF, WM, and GM was performed on the
brain-extracted T1w using FAST49 (FSL v5.0.9).

Environment and performance optimized orchestration

As both foundational DataLad datasets for input data and pipeline are available from public sources,
their �le content did not need to be stored on local infrastructure at all. Instead, the processing spec-
i�cation superdataset linked the two components with their GitHub URL, and individual compute
jobs retrieved relevant input data from their associated web sources directly.

An example HTCondor-based job-scheduling setup for the HTC infrastructure used in the Open
Tutorial showcase is included in the shared resources.

Execution and result consolidation work�ow

For demonstration purposes the same execution work�ow as for the UKB showcase was used. How-
ever, due to the small number of compute jobs, and the long individual runtime of each job, imple-
mentation details like the separation of clone sources and push targets, or the distinction of result
�le transfer and provenance metadata deposition only has negligible performance impact.
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