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 10 

Abstract 11 

Motivation: Constraints-based modeling is a powerful framework for understanding growth of 12 

organisms. Results from such simulation experiments can be affected at least in part by the quality 13 

of the metabolic models used. Reconstructing a metabolic network manually can produce a high-14 

quality metabolic model but is a time-consuming task.  At the same time, current methods for 15 

automating the process typically transfer metabolic function based on sequence similarity, a 16 

process known to produce many false positives. 17 

Results: We created Architect, a pipeline for automatic metabolic model reconstruction from 18 

protein sequences. First, it performs enzyme annotation through an ensemble approach, whereby 19 

a likelihood score is computed for an EC prediction based on predictions from existing tools; for 20 

this step, our method shows both increased precision and recall compared to individual tools. Next, 21 

Architect uses these annotations to construct a high-quality metabolic network which is then gap-22 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464133doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464133
http://creativecommons.org/licenses/by/4.0/


filled based on likelihood scores from the ensemble approach. The resulting metabolic model is 23 

output in SBML format, suitable for constraints-based analyses. Through comparisons of enzyme 24 

annotations and curated metabolic models, we demonstrate improved performance of Architect 25 

over other state-of-the-art tools.  26 

Availability: Code for Architect is available at https://github.com/ParkinsonLab/Architect. 27 

Contact: john.parkinson@utoronto.ca  28 

Supplementary information: Supplementary data are available at Bioinformatics online. 29 

 30 

1. INTRODUCTION 31 

Metabolic modeling has been used for engineering strains of bacteria for bioremediation, 32 

for understanding what drives parasite growth, as well as for shedding light on how disruptions in 33 

the microbiome can lead to progression of various diseases (Bauer & Thiele, 2018; Nemr et al., 34 

2018; Song et al., 2013).  In any of these applications, the standard protocol is to first construct an 35 

initial draft of the metabolic model of the organism(s) (consisting of the biochemical reactions 36 

predicted present) followed by a gap-filling procedure, whereby additional reactions are 37 

introduced to ensure that simulations can be performed (Pan & Reed, 2018).  Importantly, errors 38 

introduced at any steps of model reconstruction can impact downstream simulations and result 39 

interpretation (Thiele & Palsson, 2010).  For instance, false positive enzyme predictions may mask 40 

the essentiality of key pathways; on the other hand, the organism’s metabolic abilities may be 41 

underestimated when metabolic enzymes and pathways are incorrectly left out or under-predicted 42 

(Guzman et al., 2015).  While these concerns can be addressed through dedicated manual curation, 43 

such efforts tend to be extremely time-consuming. Instead, attention has turned to the use of 44 

automated methods, such as PRIAM and CarveMe, the latter capable of generating fully functional 45 
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genome-scale metabolic models (Claudel-Renard, Chevalet, Faraut, & Kahn, 2003; Machado, 46 

Andrejev, Tramontano, & Patil, 2018). Given a genome of interest, CarveMe uses sequence 47 

similarity searches to assign confidence scores to reactions within a universal model of 48 

metabolism. Based on these scores, a genome-specific metabolic model is then reconstructed by 49 

removing reactions that are either not identified or poorly supported, and adding in reactions to fill 50 

gaps to construct functional pathways (Machado et al., 2018). 51 

A key step in this process is the accurate identification of enzymes based on sequence data 52 

alone and can be formally defined as follows: given an amino acid sequence, what are its associated 53 

enzymatic function(s), if any?  The problem is a multi-label classification problem; here we 54 

consider enzymatic functions as defined by the Enzyme Commission (EC), in which enzymes are 55 

assigned to EC numbers representing a top-down hierarchy of function (Bairoch, 2000).  Enzyme 56 

annotation can be performed by inferring homology to known enzymes based on sequence 57 

similarity searches using methods such as BLAST and DIAMOND (Altschul, Gish, Miller, Myers, 58 

& Lipman, 1990; Buchfink, Xie, & Huson, 2015).  However, such methods do not consider the 59 

overlap of sequence similarity between enzyme classes and are prone to an unacceptable rate of 60 

false positive predictions (Hung, Wasmuth, Sanford, & Parkinson, 2010). To overcome such 61 

errors, a number of more specialized tools have been developed that take advantage of sequence 62 

features or profiles specific to individual enzyme classes (Claudel-Renard et al., 2003; Hung et al., 63 

2010; Nguyen, Srihari, Leong, & Chong, 2015; Nursimulu, Xu, Wasmuth, Krukov, & Parkinson, 64 

2018). For example, DETECT (Density Estimation Tool for Enzyme ClassificaTion) considers the 65 

effect of sequence diversity when predicting different enzyme classes (Hung et al., 2010; 66 

Nursimulu et al., 2018), while PRIAM and EnzDP rely on searches of sequence profiles 67 
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constructed from families of enzymes (Claudel-Renard et al., 2003; Nguyen et al., 2015). Each 68 

tool provides different advantages in terms of accuracy and coverage.  69 

 Here we present Architect, a tool capable of automatically constructing a functional 70 

metabolic model for an organism of interest, based on its proteome. At its core, Architect exploits 71 

an ensemble approach that combines the unique strengths of multiple enzyme annotation tools to 72 

ensure high confidence enzyme predictions. Subsequently gap-filling is performed to construct a 73 

functional metabolic model in Systems Biology Markup Language (SBML) format which can be 74 

readily analysed by existing constraints-based modeling software. In parallel with its namesake, 75 

Architect not only designs the metabolic model of an organism, but it also coordinates the sequence 76 

of steps that go towards the SBML output given user specifications, such as the definition of an 77 

objective function for gap-filling. We evaluate the performance of Architect both in terms of its 78 

ability to perform accurate enzyme annotations, relying on UniProt/SwissProt sequences as a gold 79 

standard (The UniProt Consortium, 2014) and, separately, as a metabolic model reconstruction 80 

tool by focusing on 3 organisms for which curated metabolic models have already been generated 81 

(Caenorhabditis elegans (Witting et al., 2018), Neisseria meningitidis (Mendum, Newcombe, 82 

Mannan, Kierzek, & McFadden, 2011) and E. coli (Monk et al., 2017)).  Compared to other state-83 

of-the-art methods (Claudel-Renard et al., 2003; Machado et al., 2018), Architect delivers 84 

improved performance both in terms of enzyme annotation and model reconstruction.  85 

 86 

2. METHODS 87 

2.1  Sources of Sequence Data 88 

Sequences were downloaded from the SwissProt database (The UniProt Consortium, 2014) 89 

and their corresponding annotations from the ENZYME database (Bairoch, 2000) (downloaded on 90 
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February 9th, 2021). Only complete EC numbers were considered in building Architect’s ensemble 91 

classifiers.  Further, ECs associated with fewer than 10 protein sequences were removed to ensure 92 

sufficient training data. This filtering resulted in a final collection of 1,670 ECs represented by 93 

207,121 sequences (Supplemental Figure 1). A further set of 294,067 protein sequences not 94 

associated with either complete or partial EC annotations (subsequently referred to as “non-95 

enzymes”) was retrieved from the same version of SwissProt. For generation of test and training 96 

datasets for use in five-fold cross-validation steps, ECs associated with multifunctional proteins, 97 

were divided into appropriate sets using a previously published protocol (Sechidis, Tsoumakas, & 98 

Vlahavas, 2011). 99 

 100 

2.2 Enzyme Annotation Using Ensemble Classifiers 101 

For any given protein, EC predictions are generated through integrating the output from 102 

five state-of-the-art enzyme annotation tools: EFICAz v2.5.1 (Kumar & Skolnick, 2012), PRIAM 103 

version 2018 (Claudel-Renard et al., 2003), DETECT v2 (Nursimulu et al., 2018), EnzDP (Nguyen 104 

et al., 2015) and CatFam (Yu, Zavaljevski, Desai, & Reifman, 2009). In addition to examining the 105 

performance of two relatively simple approaches, majority rule (in which we take the prediction 106 

supported by the most tools) and EC-specific best tool (in which we take the prediction from the 107 

tool which is found to perform best for a specific EC), we also investigated the performance of the 108 

following three classifiers: (1) naïve Bayes, (2) logistic regression and (3) random forest. For 109 

training each method, we first find, for each EC x, positive (proteins actually of class x) and 110 

negative examples (other proteins predicted by any tool to have activity x). For each protein i, a 111 

feature vector is then constructed consisting of the level of confidence in each tool’s prediction 112 

(based on the confidence score output by the tool); the associated binary label yi indicates whether 113 
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the ith protein has activity x and thus has value 1 if and only if the protein has activity x.  For any 114 

EC predicted by all tools without false positives (that is without proteins of other classes 115 

misclassified with the EC), we apply a rule whereby we automatically assign the EC if made by 116 

any of these tools.  Otherwise, those predictions made by an ensemble method with a likelihood 117 

score greater than 0.5 are considered to be of high-confidence. 118 

For the naïve Bayes classifier trained on high-confidence predictions, given an EC 119 

predictable by k tools (1 ≤ k ≤ 5 depending on the number of tools that can predict the EC), each 120 

protein sequence is assigned a corresponding feature vector F of length k, where Fi = 1 if the EC 121 

was predicted with high-confidence by the ith tool, and Fi = 0 otherwise.  The posterior probability 122 

of a new protein j having EC x (the aforementioned “likelihood score”) is then given by the 123 

following equation, where each feature is assumed to follow a Bernouilli distribution: 124 

𝑝(𝑦j = 1|𝐹1 = 𝑓1, … , 𝐹𝑘 = 𝑓𝑘) =
𝑝(𝑦𝑗 = 1) ⋅ Πi=1

k p(Fi = fi|yj = 1)

∑ 𝑝(𝑦𝑗 = 𝐶) ⋅ Πi=1
k p(Fi = fi|yj = C)𝐶∈{0,1}

(1) 125 

Other ensemble methods explicitly consider the level of confidence by each tool (see 126 

Supplementary Material). For example, our logistic regression classifiers train on feature vectors 127 

which use one-hot encoding to denote the level of confidence in the EC prediction by each tool.  128 

In the case of our random forest classifiers, each element of the feature vectors takes on a discrete 129 

value indicating the level of confidence by each tool. 130 

 Given that those ECs associated with fewer than 10 protein sequences are filtered out of 131 

the training data, some ECs may not be predictable by the classifier but may nevertheless be 132 

predicted by other tools; in particular, PRIAM consists of profiles specific to ECs associated with 133 

as few as a single sequence.  To ensure higher coverage of metabolic reactions and pathways, EC 134 

predictions made with high-confidence by PRIAM are subsequently assigned as high-confidence 135 

during downstream model reconstruction. 136 
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 137 

2.3  Reconstruction of Metabolic Networks  138 

From the set of high confidence enzyme annotations generated for the organism of interest 139 

(using the naïve Bayes classifier by default), an initial metabolic model is constructed with 140 

reference to either the Kyoto Encyclopedia of Genes and Genomes (KEGG) resource (Kanehisa, 141 

Furumichi, Sato, Ishiguro-Watanabe, & Tanabe, 2021) or the Biochemical, Genetic and Genomic 142 

(BiGG) knowledgebase (King et al., 2016). In brief, reaction identifiers and equations 143 

corresponding to high-confidence EC predictions are collated, along with non-enzymatic, 144 

spontaneous and any user-specified reactions (see Supplementary Material). Amongst the latter 145 

reactions, an objective function (such as biomass production) is required for downstream gap-146 

filling.  Furthermore, if BiGG is used as the reference reaction database, we also include non-EC 147 

associated reactions (including transport reactions). This step is performed through BLAST-based 148 

sequence similarity searches of the organism’s proteome against a database of protein sequences 149 

representing these non-EC associated reactions, collated from the BiGG resource, using a cut-off 150 

of 10-20 (Altschul et al., 1990; Buchfink et al., 2015). 151 

 Having generated an initial network, Architect next attempts to fill gaps within the network, 152 

representing reactions required to complete pathways necessary for the production of essential 153 

metabolites (as defined by the objective function). First a global set of candidate gap-filling 154 

reactions (R) is constructed by combining: 1) reactions that were previously identified in the 155 

enzyme annotation step at either low- or no-confidence; and 2) exchange reactions for dead-end 156 

metabolites (whose presence otherwise results in inactive (blocked) reactions that can inhibit 157 

biomass production (Ponce-de-León, Montero, & Peretó, 2013)). From this global set, Architect 158 

attempts to identify a set of reactions which, when supplemented to the initial network, is 159 
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minimally sufficient for non-zero flux through the aforementioned user-defined objective function. 160 

This process leverages the mixed-integer linear programming (MILP) formulation employed by 161 

the CarveMe pipeline (Machado et al., 2018).  First, penalties are assigned for the addition of each 162 

gap-filling candidate as follows.  For the ith reaction associated with 1 or more ECs predicted with 163 

low-confidence by the ensemble classifier (0.0001 < score ≤ 0.5), we find the highest score 𝑠𝑖 164 

associated with any of the corresponding EC annotations.   Then, we scale the scores of the gap-165 

filling candidates to have a median of 1 (where 𝑠𝑀 is the median of the original scores): 166 

                                              167 

𝑠′𝑖 =
𝑠𝑖

𝑠𝑀
(2)                                                            168 

The penalty 𝑝𝑖 for adding the ith reaction is then inversely proportional to the normalized score:   169 

                                           170 

𝑝𝑖 =
1

1+𝑠′
𝑖

(3)                                             171 

    172 

Remaining candidate reactions for gap-filling (that is, those either not predicted with any 173 

likelihood score or which are exchange reactions for dead-end metabolites) are each assigned by 174 

default a penalty of 1.  The following MILP formulation then identifies a subset of reactions from 175 

the global set of candidate gap-filling reactions that together have the smallest sum of penalties 176 

and enable a minimum production of biomass (𝛽=0.1 h-1 by default). 177 

         178 

Minimize ∑ 𝑝𝑖𝑦𝑖𝑖∈𝑅 (4) 179 

subject to: S𝑣 = 0 180 

𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈  181 
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𝑦𝑖𝑣𝐿,𝑖 ≤ 𝑣𝑖 ≤ 𝑦𝑖𝑣𝑈,𝑖, ∀𝑖 ∈ 𝑅 182 

𝑦𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝑅 183 

𝑐𝑇𝑣 ≥ 𝛽 184 

Here, the variables are the flux vector v and y.  Each 𝑦𝑖 serves as an indicator variable: 𝑦𝑖 = 1 if 185 

and only if the ith candidate gap-filler (with flux vi) is included in the solution. 186 

 187 

2.4  Comparisons of Annotations and Networks 188 

Architect was used to annotate enzymes to the proteomes of three species: Caenorhabditis 189 

elegans, Escherichia coli (strain K12) and Neisseria meningitidis (strain MC58) using sequences 190 

collated from WormBase (WS235, (Lee et al., 2018)), SwissProt and the Ensembl database (Howe 191 

et al., 2021) respectively. For each species, the naïve Bayes-based ensemble method was retrained 192 

by excluding sequences from the respective organism. Architect predictions were evaluated 193 

against gold standard datasets derived from UniProt for C. elegans and N. meningitidis, and 194 

SwissProt for E. coli.  Performance was reported in terms of specificity and micro-averaged 195 

precision and recall (that is, irrespective of enzyme class size) (Sokolova & Lapalme, 2009). 196 

For network comparisons, models generated by Architect, CarveMe and PRIAM (Claudel-197 

Renard et al., 2003; Machado et al., 2018) were evaluated against two sets of gold-standard as 198 

described next. Performance was computed using micro-averaged precision and recall first using 199 

as a gold-standard, enzyme annotations assigned to genes in previously generated curated 200 

metabolic models: C. elegans - WormJam (Witting et al., 2018), E. coli - iML1515 (Monk et al., 201 

2017) and N. meningitidis - Nmb_iTM560 (Mendum et al., 2011). As a second measure of 202 

performance, we compared the annotations included in the models following gap-filling against 203 
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those in UniProt, here restricting the comparison to those ECs present in the relevant reaction 204 

database. 205 

Finally, for N. meningitidis and E. coli, in silico knockout experiments were performed 206 

using the models generated by Architect and CarveMe. Genes predicted to be essential in these in 207 

silico experiments were subsequently compared to the results of two genome-scale knockout 208 

studies (Mendum et al., 2011; Monk et al., 2017). Since Architect, unlike CarveMe, does not 209 

predict complex gene-protein-reaction relationships (Thiele & Palsson, 2010), only those reactions 210 

associated with a single protein could be assessed through gene knockout experiments, where the 211 

flux through such reactions corresponding to a single protein was constrained to be zero.    212 

 213 

3.  RESULTS 214 

3.1  Ensemble Methods Improve Enzyme Annotation 215 

 The motivation for developing an ensemble enzyme classifier is driven by the hypothesis 216 

that different enzymes (as defined by EC numbers) may be better predicted by different tools and, 217 

hence more accurate annotations may be obtained by combining predictions from individual tools. 218 

Based on this hypothesis we developed a novel enzyme prediction and metabolic reconstruction 219 

pipeline we term Architect (Figure 1). In brief, the pipeline begins with the prediction of enzyme 220 

annotations from proteome data (Module 1) using an ensemble classifier that combines predictions 221 

from five enzyme annotation tools (DETECT, EnzDP, Catfam, PRIAM and EFICAz). Next, these 222 

predictions of enzyme classification numbers are used to construct a functional metabolic model 223 

capable of generating biomass required for growth (Module 2). 224 

 To test our hypothesis, we compared the performance of individual tools of interest and of 225 

various ensemble methods on a dataset of enzymatic sequences. Here we investigated three 226 
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methods: naïve Bayes, logistic regression and random forest and employed five-fold cross-227 

validation in which ensemble methods were trained on 80% of the enzymes annotated in 228 

SwissProt. Once trained, the performance of each classifier was tested on the remaining annotated 229 

enzymes by evaluating their high-confidence predictions against the database’s annotations. In 230 

addition to the classifiers and individual tools, we also examined the performance of a ‘majority 231 

rule’ approach (in which we assign an EC label to a protein on the basis of voting among the five 232 

tools), as well as an ‘EC-specific best tool’ approach (in which we assign an EC label to a protein 233 

based on best performing tools for that EC as seen in training). The performance of each dataset 234 

was computed using macro-averaged precision, recall and F1 to ensure that smaller EC classes 235 

were equally represented; performance on the non-enzymatic dataset (i.e. protein sequences not 236 

associated with either complete or partial EC annotations) is computed using specificity (see 237 

Supplementary Material). 238 

Overall, we found that, with the exception of the majority rule, ensemble methods 239 

outperformed individual tools, resulting in both higher precision and recall (Figure 2). For 240 

example, the highest precision and recall of the individual tools—obtained by DETECT and 241 

PRIAM respectively—are lower than most of the ensemble methods applied.  Indeed, except for 242 

majority rule, most ensemble methods perform similarly on the entire test set, as well as on subsets 243 

of test sequences with lower sequence similarity to training sequences (Supplemental Figure 2).  244 

Additionally, macro-recall on multifunctional proteins is decreased for the naïve Bayes, logistic 245 

regression and random forest classifiers when applying a heuristic which filters out predicted ECs 246 

other than the top-scoring EC and frequently co-occurring enzymes as seen in the training data 247 

(Supplemental Figures 4 and 5 and Supplemental Text); therefore, henceforth, we evaluate 248 

performance of these classifiers by considering all their high-confidence EC predictions. 249 
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Next, we consider the possibility that higher predictive range (defined as the number of 250 

ECs that a tool can predict) primarily drives the increased performance of the ensemble methods. 251 

Indeed, the ensemble approaches are superior when quantifying performance on ECs predictable 252 

by at least 2 tools (Supplemental Figure 3) but have similar precision and recall as DETECT on 253 

sequences annotated with ECs predictable by all tools (Supplemental Figure 4). However, when 254 

looking at DETECT’s or PRIAM’s class-by-class performance on ECs that they can predict, the 255 

ensemble method has higher precision and recall on more ECs than either DETECT (better 256 

precision on 176 versus 18 ECs and better recall on 116 versus 37 ECs) or PRIAM (better precision 257 

on 98 versus 38 ECs and better recall on 191 versus 41 ECs) (Supplemental Figure 6).   258 

Given the main application of Architect is to annotate enzymes to an organism’s proteome, 259 

we were interested in assessing the ability of the ensemble approaches to minimize false positives. 260 

Applied to a set of proteins without EC annotations in SwissProt, we found that only the Naïve 261 

Bayes classifier gave comparable specificity as the individual tools (Supplemental Figure 8). 262 

Given the slightly elevated performance in terms of precision (for the enzymatic dataset) and 263 

specificity (for the non-enzymatic dataset), we chose the naïve Bayes classifier as the preferred 264 

method for Architect. We next investigated the performance of Architect to annotate the proteomes 265 

of three well-characterized organisms (C. elegans, N. meningitidis and E. coli; Supplemental 266 

Figure 9). We consider those annotations that feed into Architect’s model reconstruction module 267 

and compare them against high-confidence predictions by DETECT, EnzDP and PRIAM alone, 268 

these tools chosen due to their performance on the enzymatic dataset.  For all three species, 269 

Architect yields both higher precision and recall than DETECT, and higher recall than EnzDP.  In 270 

C. elegans, Architect gives higher recall than either PRIAM or EnzDP, albeit at the expense of 271 
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precision and specificity. Overall, these results demonstrate Architect’s wider applicability to 272 

annotate specific organisms.  273 

 Finally, we investigated whether combining predictions from all 5 tools is required to 274 

obtain improved performance with respect to the individual tools.  To this effect, we built the naïve 275 

Bayes-based method using predictions from fewer tools, then calculated performance once again 276 

on the held-out test set (Supplemental Figure 7). We observe that this procedure has a greater 277 

impact on macro-recall than macro-precision.  In particular, leaving out predictions from both tools 278 

with the highest predictive ranges (EnzDP and PRIAM) had the greatest impact, while the F1-279 

score decreased least when the tools with the lowest predictive ranges (CatFam and DETECT) are 280 

not included in the classifier. We also find that different tools are complementary to each other.  281 

While performance is mostly unaffected by excluding predictions from any single tool, combining 282 

predictions from at least 2 tools improves performance compared to using any single tool’s 283 

predictions.  Indeed, simply combining predictions from PRIAM and any other tool yields better 284 

macro-precision than any tool in isolation. Intriguingly, training on predictions from EnzDP and 285 

PRIAM results in the highest performance among pairs of tools, with macro-precision showing 286 

only minimal increases with the inclusion of any other tool’s predictions. These results suggest 287 

that a user may obtain reasonably improved performance by combining predictions from fewer 288 

than 5 tools, for example, by excluding tools with longer running times (e.g. EFICAz (Ryu, Kim, 289 

& Lee, 2019)). 290 

 291 

3.2 Automated Metabolic Reconstruction Using Architect 292 

 In addition to predicting suites of enzymes from an organism’s proteome, Architect utilizes 293 

these predictions to automatically reconstruct a functional metabolic model capable of generating 294 
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biomass required for growth (see Methods). The process begins by querying the set of EC activities 295 

predicted by module 1, against a database of known reactions (either the Kyoto Encyclopedia of 296 

Genes and Genomes; KEGG (Kanehisa et al., 2021) or the Biochemical, Genetic and Genomic 297 

knowledgebase; BiGG (King et al., 2016), to construct an initial high confidence metabolic 298 

network. Next a gap filling algorithm is applied to identify enzymes absent from the model 299 

(potentially arising from uncharacterized enzymes or sequence diversity (Atkinson, Babbitt, & 300 

Sajid, 2009; Lespinet & Labedan, 2006)) to ensure pathway functionality and the ability of the 301 

model to generate biomass. 302 

To validate the model reconstruction strategy, Architect was applied to reconstruct 303 

metabolic models for the three species previously investigated (C. elegans, N. meningitidis and E. 304 

coli) and compared to previously curated metabolic models (Mendum et al., 2011; Monk et al., 305 

2017; Witting et al., 2018). For comparison, metabolic models were also generated using CarveMe 306 

(Machado et al., 2018) and PRIAM (Claudel-Renard et al., 2003).  CarveMe performs metabolic 307 

model reconstruction in a top-down manner, retaining in a final functional model those reactions 308 

from the BiGG database (King et al., 2016) predicted with higher confidence scores for the 309 

organism of interest and required for model functionality; the confidence score is by default 310 

computed based on sequence similarity (Buchfink et al., 2015).  On the other hand, PRIAM uses 311 

its high-confidence predictions to output a KEGG-based metabolic model. To account for 312 

differences that may be introduced from using different databases of reactions, two versions of 313 

Architect models were predicted using either the KEGG or the BiGG database.  314 

 Focusing on the KEGG-based reconstructions (Figure 3 and Supplemental Figure 10), 315 

Architect produced models of higher precision than either PRIAM or CarveMe for C. elegans and 316 

N. meningitidis, and higher recall for C. elegans alone.  However, in E. coli, CarveMe has 317 
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significantly better precision and recall than Architect, likely a result of the presence of curated E. 318 

coli-related reactions in the BiGG database used for its reconstructions.  Similarly, Nmb_iTM560 319 

was based on the iAF1260 E. coli model (Feist et al., 2007), again likely contributing to CarveMe’s 320 

higher recall when reconstructing a N. meningitidis metabolic model.  Indeed, when the models 321 

are compared against organism-specific datasets retrieved from UniProt, Architect has higher 322 

precision and recall than either CarveMe or PRIAM for E. coli (as well as higher precision and 323 

recall than CarveMe for the other two species). This highlights differences in annotations 324 

associated with the curated models and UniProt. We also note that higher EC coverage in KEGG 325 

compared to BiGG (Supplemental Figure 11) may contribute towards higher recall by Architect 326 

and PRIAM compared to CarveMe, a factor we account for by next using the BiGG database for 327 

Architect’s model reconstructions. 328 

 Turning to models constructed with the BiGG database, as for the KEGG-based models, 329 

we find that Architect has higher precision for both C. elegans and N. meningitidis, and higher 330 

recall for the former (Supplemental Figure 12).  However, we now observe similar precision in 331 

E. coli, consistent with the reliance on the BiGG database, which avoids the inclusions of ECs 332 

exclusive to the KEGG database (and hence absent in iML1515). As expected from the lower 333 

coverage of ECs provided by the BiGG database, recall differences in E. coli qualitatively remain 334 

unchanged while in N. meningitidis, Architect’s recall, sacrificed for higher precision, is now 335 

significantly lower. Again, to account for the construction of the BiGG database from previously 336 

curated metabolic reconstructions that include E. coli, we compared the protein-EC annotations in 337 

the reconstructed models to those found in UniProt.  Architect is then perceived as having higher 338 

precision in both N. meningitidis and E. coli, and greater recall in E. coli.  Thus, our results indicate 339 

that Architect may be used to produce models with more accurate EC annotations than either 340 
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CarveMe or the PRIAM-reconstruction tool.  Additionally, the choice of reaction database when 341 

running Architect may impact the range of ECs covered.  Indeed, it should be noted that the BiGG 342 

reaction database used here contains reactions from bacterial models only; thus, use of KEGG for 343 

eukaryotic reconstructions is more appropriate, as evidenced by the better recall with the C. 344 

elegans metabolic model.  345 

 346 

3.3 Metabolic Reconstructions Benefit from Annotation Tools with High Predictive Range 347 

From the previous comparisons of metabolic reconstructions, it is clear that there is a 348 

difference between Architect’s performance as an enzyme annotation tool and as a tool for model 349 

reconstruction. This raises the question of whether improvement in enzyme annotation is 350 

associated with a corresponding improvement in accuracy of model reconstruction.  To address 351 

this, Architect’s model reconstruction module was applied to high-confidence predictions from 352 

individual tools, rather than from the naïve Bayes-based method (Supplemental Figure 13). 353 

Overall, models constructed from high-confidence DETECT predictions resulted in significantly 354 

lower recall compared to either the curated models or UniProt annotations. This is consistent with 355 

the idea that high predictive range is an important attribute in an enzyme annotation tool used for 356 

model reconstruction; accordingly, when comparing against model annotations, using high-357 

confidence predictions from either EnzDP or PRIAM instead of DETECT resulted in models with 358 

higher recall. At the same time, the resulting recall does not significantly differ from the recall 359 

obtained when using predictions from the ensemble method. Furthermore, similar precision is 360 

obtained when using EnzDP, PRIAM or the ensemble method when reconstructing C. elegans or 361 

N. meningitidis models; in the case of E. coli, significantly better precision is obtained by using 362 

predictions from EnzDP instead of the ensemble method. Therefore, based on comparisons of EC 363 
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annotations derived from curated models, there appears to be no benefit to substituting predictions 364 

from tools with high predictive range with those from the ensemble approach.  However, when 365 

comparing against annotations obtained from UniProt, the ensemble method results in higher recall 366 

than EnzDP for all 3 organisms and higher recall than PRIAM for C. elegans; similar precision is 367 

observed in all organisms, with the exception of lower precision than EnzDP and PRIAM for C. 368 

elegans.  These conflicting results reflect inherent differences in the gold-standard datasets, which 369 

in turn may indicate that existing curated models may have potential to be further expanded by 370 

using UniProt annotations. Interestingly, use of PRIAM’s high confidence EC predictions as input 371 

to Architect’s reconstruction module results in more accurate annotations than models generated 372 

from PRIAM’s reconstruction tool (Figure 3 and Supplemental Figure 13), highlighting 373 

methodological differences between the two tools.  It should also be noted that unlike the PRIAM 374 

pipeline, models constructed by Architect are simulation-ready.   375 

 376 

4.  CONCLUSION AND FUTURE DIRECTIONS 377 

Here, we present Architect, an approach for automatic metabolic model reconstruction.  378 

The tool consists of two modules: first, enzyme predictions from multiple tools are combined 379 

through a user-specified ensemble approach, yielding likelihood scores which are then leveraged 380 

to produce a simulation-ready metabolic model. Through the use of various gold-standard datasets, 381 

we have shown that Architect’s first module produces more accurate enzyme annotations, and that 382 

its second module can be used to produce organism-specific metabolic models with better 383 

annotations than similar state-of-the-art reconstruction tools, including CarveMe and PRIAM. Our 384 

expectation is that these models serve as near-final drafts, requiring users to perform only minimal 385 

curation to incorporate organism-specific data. For example, models for eukaryotic organisms may 386 
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require the independent definition of cellular compartments. Interestingly, it is unclear whether 387 

improvements in enzyme annotation, other than in terms of predictive range, lead to the 388 

construction of models with either improved annotations or greater accuracy of simulations.  389 

Instead, we propose three improvements to the input and the algorithm of the model reconstruction 390 

module that will likely yield better models. First, we find that most essential genes also 391 

incorporated into the final models were not predicted to be essential in silico (see Supplemental 392 

Text), suggesting that more accurate predictions of gene essentiality may be obtained by better 393 

encoding gene-protein-reaction relationships or by limiting the reactions included in the high-394 

confidence model based on EC annotation. Second, improving the predictions of transport 395 

reactions is needed to define the accurate import and export of metabolites which otherwise 396 

represent dead-ends in the initial network; in turn, this may lead to fewer blocked reactions (given 397 

high proportions of inactive reactions as shown in Supplemental Table 2). Third, considerations 398 

of thermodynamics have been absent from our reconstruction pipeline, whether in terms of 399 

reaction reversibility, or in terms of gap-filling.  Identifying thermodynamically likely solutions 400 

for gap-filling is expected to result in more biologically realistic models (Fleming, Thiele, & 401 

Nasheuer, 2009).  402 
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FIGURE LEGENDS 525 

 526 

Figure 1: Overview of Architect’s methodology Given an organism’s protein sequences, 527 
Architect first runs 5 enzyme annotation tools, then computes a likelihood score for each 528 
annotation using an ensemble approach (module 1).  From high-confidence EC predictions, 529 
Architect reconstructs a high-confidence metabolic model which it then gap-fills to enable biomass 530 

production using the aforementioned confidence scores (module 2).  In the illustrated example, 4 531 
sets of reactions are considered for gap-filling, with the solution highlighted in the blue box 532 
yielding the highest score. 533 

 534 
Figure 2: Performance of individual and ensemble enzyme annotation tools.  (A) 535 
Precision/recall graph indicating performance of each method on the enzymatic test set from 536 
SwissProt, (B) focus on the improved performance of the ensemble methods.  Our results show 537 
that combining predictions using almost any ensemble method gives better performance than using 538 

any individual tool.  539 

 540 
Figure 3: Performance of Architect as a model reconstruction tool versus CarveMe and 541 
PRIAM (as a model reconstruction tool). Quality of annotations is computed against the curated 542 

models over the genes found in these models, and against UniProt/SwissProt when restricting to 543 

those sequences found in the database and with ECs present in the KEGG reaction database.  Genes 544 
determined essential in silico are compared against those whose knockout was tested in vivo.  Error 545 
bars show the 95% confidence interval for precision and recall, each considered as the estimate of 546 

a binomial parameter.  P-values, computed using Fisher’s exact test, are calculated only between 547 
Architect and either CarveMe or PRIAM (with *, ** and *** representing p less than 0.05, 0.005 548 

and 0.0005 respectively). 549 
 550 

SUPPLEMENTAL FIGURES 551 

 552 

Supplemental Figure 1: Properties of ECs and proteins included in Architect’s database 553 

(A): Proportion of ECs in Architect’s training and test datasets combined associated with different 554 
numbers of proteins, with proportions relevant to the subset of those ECs predictable by all tools 555 
indicated in grey.  The percentages of ECs predictable by any tool and associated with different 556 
numbers of proteins are indicated above the bars. 557 
(B): Intersection of ECs predictable by different tools, when focussing on ECs (i) found in 558 

Architect’s training database and (ii) more generally.  These Venn diagrams were made using the 559 
interface at http://bioinformatics.psb.ugent.be/webtools/Venn. 560 
(C): Number of proteins in the training and test sets combined associated with 1 or more ECs.  The 561 
percentage of the proteins involved in each category is given above the bars. 562 
 563 

Supplemental Figure 2: Performance of different ensemble methods on test set at different 564 
levels of sequence identity to the training data 565 

Comparison of macro-averaged (A) precision, (B) recall, and (C) F1-score of ensemble methods 566 
at different MTTSIs—defined in the supplemental text. 567 
 568 
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Supplemental Figure 3: Performance of different ensemble methods on test set when 569 
considering ECs predictable by an increasing number of tools 570 

Comparison of (A) macro-precision, (B) macro-recall, and (C) F1-score of individual tools and 571 
ensemble methods on proteins with ECs predictable by at least 1, 2, 3, 4 tools and by all tools. 572 
 573 
Supplemental Figure 4: Precision and recall of ensemble methods and individual tools for 574 
enzyme annotation with respect to ECs predictable by all tools and on different sets of 575 

proteins 576 
(i) Comparison of precision and recall of ensemble (with and without multi-EC filtering) and 577 
individual tools on ECs predictable by all tools in (A) the entire test data set, (B) only proteins 578 

with a single EC, and (C) only multifunctional proteins.  The subscripts “all” and “high” reflect 579 
whether all or only high-confidence predictions from individual tools were considered, 580 
respectively. 581 
(ii): Comparison of precision and recall of ensemble methods (with and without multi-EC filtering) 582 
on ECs predictable by all tools in (A) the entire test data set, (B) only proteins with a single EC, 583 

and (C) only multifunctional proteins. 584 

 585 
Supplemental Figure 5: Precision and recall of ensemble methods and individual tools for 586 
enzyme annotation with respect to ECs predictable by any tool and on different sets of 587 

proteins 588 

(i) Comparison of precision and recall of ensemble (with and without multi-EC filtering) and 589 
individual tools on ECs predictable by any tool in (A) the entire test data set, (B) only proteins 590 
with a single EC, and (C) only multifunctional proteins.  The subscripts “all” and “high” reflect 591 

whether all or only high-confidence predictions from individual tools were considered, 592 
respectively. 593 

(ii): Comparison of precision and recall of ensemble methods (with and without multi-EC filtering) 594 
on ECs predictable by any tool in (A) the entire test data set, (B) only proteins with a single EC, 595 
and (C) only multifunctional proteins. 596 

 597 
Supplemental Figure 6: Class-by-class comparison of performance of the naïve Bayes 598 

method and two enzyme annotation tools, DETECT and PRIAM 599 

(A): Class-by-class comparison of (i) precision and (ii) recall between the naïve Bayes-based 600 
ensemble method and DETECT (high-confidence) when considering ECs predictable by 601 

DETECT.  Each dot represents an EC class, and those dots above the line correspond to EC classes 602 
for which the ensemble method performs better.  Only EC classes with defined precision from 603 
both DETECT and the ensemble classifier are shown. 604 
(B):  Same as (A), except that the class-by-class comparison is between the naïve Bayes-based 605 
ensemble method and PRIAM (high-confidence predictions) and on ECs predictable by PRIAM.  606 

Again, only EC classes with defined precision from both PRIAM and the ensemble classifier are 607 
shown. 608 
 609 

Supplemental Figure 7: Comparison of performance of the naïve Bayes method on the test 610 
set when training on predictions from combinations of fewer than 5 tools.   611 
In (A), the light green square in each row indicates when a tool’s predictions are being considered 612 
in a combination; this table shows the combinations of tools ranked from highest F1-score to 613 

lowest amongst those involving 2, 3 and 4 tools respectively. In (B), the purple diamond indicates 614 
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the performance when the naïve Bayes-based method is trained on the entire set of predictions, 615 
whereas each green circle indicates performance when considering a particular combination of 616 

tools (number corresponding to the rank in (A)). 617 
 618 
Supplemental Figure 8: Specificity of individual tools (high-confidence) and ensemble 619 
approaches on non-enzymatic dataset 620 
 621 

Supplemental Figure 9:  Comparison of organism-specific performance of Architect’s 622 
enzyme annotation tool using predictions by the naïve Bayes ensemble method and three 623 
individual tools, DETECT, EnzDP and PRIAM 624 

High-confidence PRIAM predictions were included to the predictions of the naïve Bayes 625 
classifiers for those ECs outside of Architect’s predictive range.  The comparison was done over 626 
those proteins present in both the input protein sequence file and those found in UniProt/SwissProt.  627 
Error bars show the 95% confidence interval for precision, recall and specificity, each considered 628 
as the estimate of a binomial parameter.  P-values are calculated using Fisher’s exact test and 629 

between Architect results and other tools only (with *, ** and *** representing p less than 0.05, 630 

0.005 and 0.0005 respectively). 631 
 632 
Supplemental Figure 10: Overlap of annotations in models reconstructing with Architect 633 

(based on KEGG), CarveMe and PRIAM’s reconstruction tool using as gold-standard (i) 634 

curated models, and (ii) UniProt/SwissProt. 635 
 636 
Supplemental Figure 11: Number of pathway-specific ECs present in Architect’s KEGG 637 

database versus in CarveMe’s main BiGG database.   638 
Each dot represents a pathway in KEGG, and the diagonal line indicates the points on the graph 639 

where a pathway is covered by the same number of ECs through KEGG and BiGG. 640 
 641 
Supplemental Figure 12: Performance of Architect as a model reconstruction tool (using 642 

BiGG as the reaction database) versus CarveMe in the case of the three organisms of interest.   643 
Quality of annotations is computed against the curated models over the genes found in these 644 

models, and against UniProt/SwissProt when restricting to those sequences found in the database 645 

and with ECs present in the BiGG reaction database.  Genes determined essential in silico are 646 
compared against those whose knockout was tested in vivo.  Error bars show the 95% confidence 647 

interval for precision and recall, each considered as the estimate of a binomial parameter.  P-values 648 
are calculated using Fisher’s exact test (with *, ** and *** representing p less than 0.05, 0.005 and 649 
0.0005 respectively). 650 
 651 
Supplemental Figure 13: Performance of Architect as a model reconstruction tool when 652 

using as input high-confidence predictions from the naïve Bayes-based method or from 653 
DETECT, EnzDP or PRIAM.   654 
Quality of annotations is computed against the curated models over the genes found in these 655 

models, and against UniProt/SwissProt when restricting to those sequences found in the database 656 
and with ECs present in the BiGG reaction database.  Genes determined essential in silico are 657 
compared against those whose knockout was tested in vivo.  Error bars show the 95% confidence 658 
interval for precision and recall, each considered as the estimate of a binomial parameter.  P-values, 659 

computed using Fisher’s exact test, are calculated only between Architect run on the ensemble 660 
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method and on Architect run on any of the individual tools’ predictions (with *, ** and *** 661 
representing p less than 0.05, 0.005 and 0.0005 respectively). 662 
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