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More species than ever before are at risk of extinction due to anthropogenic habitat loss and 27 
climate change. But even species that are not threatened have seen reductions in their populations 28 
and geographic ranges, likely impacting their genetic diversity. Although preserving genetic 29 
diversity is key to maintaining adaptability of species, we lack predictive tools and global 30 
estimates of genetic diversity loss across ecosystems. By bridging theories of biodiversity and 31 
population genetics, we introduce a mathematical framework to understand the loss of naturally 32 
occurring DNA mutations within decreasing habitat within a species. Analysing genome-wide 33 
variation data of 10,095 geo-referenced individuals from 20 plant and animal species, we show 34 
that genome-wide diversity follows a power law with geographic area (the mutations-area 35 
relationship), which can predict genetic diversity loss in spatial computer simulations of local 36 
population extinctions. Given pre-21st century values of ecosystem transformations, we estimate 37 
that over 10% of genetic diversity may already be lost, surpassing the United Nations targets for 38 
genetic preservation. These estimated losses could rapidly accelerate with advancing climate 39 
change and habitat destruction, highlighting the need for forecasting tools that facilitate 40 
implementation of policies to protect genetic resources globally. 41 
 42 
 43 
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Anthropogenic habitat loss and climate change (1, 2) have led to the extinction of hundreds of species 45 
over the last centuries (1, 2) and approximately one million more species (25% of all known species) 46 
are at risk of extinction (3). It has been estimated that an even larger fraction—at least 47%—of plant 47 
and animal species have lost part of their geographic range in response to the last centuries of 48 
anthropogenic activities (4, 5). Though this loss might seem inconsequential compared to losing an 49 
entire species, this range contraction reduces genetic diversity, which dictates species' ability to adapt 50 
to new environmental conditions (6–8). The loss of geographic range can spiral into a feedback loop 51 
where diversity loss further increases the risk of species extinction (9, 10).  52 
 53 

Although genetic diversity is a key dimension of biodiversity (11), it has been overlooked in 54 
international conservation initiatives. Only in 2021 did the United Nations’ Convention of Biological 55 
Diversity propose to preserve at least 90% of all species' genetic diversity (12, 13). Although analyses 56 
of genetic markers in animal populations sampled over time with the aim of quantifying recent genetic 57 
change are emerging (14, 15) and simulation studies with species distribution models or sensitivity 58 
analyses suggest within-species range variation may be strongly impacted (5, 16, 17), theory and 59 
scalable approaches to estimate genome-wide diversity loss across species do not yet exist, impairing 60 
prioritization and evaluation of conservation targets. Here, we introduce a framework to estimate global 61 
genetic diversity loss by bridging biodiversity theory with population genetics, and by combining data 62 
on global ecosystem transformations with newly available genomic datasets. 63 

 64 
The first studies that predicted biodiversity reductions in response to habitat loss and climate 65 

change in the 1990s and the 2000s projected species extinctions using the relationship of biodiversity 66 
with geographic area—termed the species-area relationship (SAR) (18) (see Supplementary Materials 67 
[SM] I for a comparison of mathematical models for predicting biodiversity). In this framework, 68 
ecosystems with a larger area (A) harbour a larger number of species (S) resulting from a balance of 69 
limited dispersal, habitat heterogeneity, and colonisation-extinction-speciation dynamics. The more a 70 
study area is extended, the more species are found. The SAR has been empirically shown to follow a 71 
power law, S = Az. It scales consistently across continents and ecosystems (19), with a higher z 72 
characterising more speciose and spatially structured ecosystems. Given estimates of decreasing 73 
ecosystem areas over time (At-1 > At), Thomas et al. (20) proposed rough estimates of the percentage of 74 
species extinctions in the 21st century ranging from 15 to 37% (SM I.3). Though this may be an 75 
oversimplification, SAR has become a common tool for policy groups including the Intergovernmental 76 
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) (3).  77 

 78 
As species richness is for to ecosystems’ biodiversity, within-species variation can be 79 

quantitatively described by the richness of genetic mutations within a species, defined here as DNA 80 
nucleotide variants appearing in individuals of a species. Although population genetics theory has long 81 
established that larger populations have higher genetic diversity (21), and it is known that geographic 82 
isolation between populations within the same species results in geographically separated accumulation 83 
of different mutations, there have been no attempts to describe the extent of genetic diversity loss driven 84 
by species’ geographic range reduction using an analogous “mutations-area relationship” (MAR). 85 

 86 
We suspected that such a mutations-area relationship must exist given that another general 87 

assumption is shared with species studies, namely that when mutations appear they are first in only one 88 
individual, and they typically remain at low frequency in a population, though a few prevail to high 89 
frequency through stochastic genetic drift and natural selection (22). This principle of “commonness of 90 
rarity” is well-known for species (i.e. most species in an ecosystem are rare while only a few are 91 
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common) and, together with limited spatial dispersal of species and communities, is a key statistical 92 
condition that led to the power-law SAR. 93 
 94 

To examine the expectation of a power-law MAR, we begin quantifying the rarity of mutations 95 
using millions of biallelic genetic variants of the Arabidopsis thaliana 1001 genomes dataset (Fig. 1A) 96 
(23) by fitting several common models of species abundances (24) to the distribution of mutation 97 
frequencies (q), termed the Site Frequency Spectrum in population genetics (Fig. 1B, SM II.1). The 98 
canonical L-shaped probability distribution (1/q) of this spectrum—which is expected under 99 
population-equilibrium and the absence of natural selection processes—fit this data well (Fig. 1B), 100 
although the more parameter rich Preston’s species abundance log-normal model achieved the best AIC 101 
value (Fig. 1B, SM III.1, Table S3, Table S10). Despite the small differences in fit, these models all 102 
showcase the similarities of abundance distributions of mutations within species and species within 103 
ecosystems, suggesting that they may behave similarly in their relationship to geographic area (22, 24). 104 
 105 
 106 

 107 
Fig. 1 | Mutations across populations follow a log-normal abundance distribution and a power 108 
law with species range area. (A) Density of individuals projected in a 1 x 1 degree latitude/longitude 109 
map of Europe and exemplary subsample areas of different sizes. (B) Distribution of mutation (SNPs) 110 
frequencies in 1,001 Arabidopsis thaliana plants using a site frequency spectrum histogram (grey inset) 111 
and a Whittaker’s rank abundance curve plot, and the fitted models of common species abundance 112 
functions in A. thaliana using a dataset random sample of 10,000 mutations also used in (C). The AIC 113 
fit of the three models is indicated with respect to the top model, log-normal. (C) The mutations-area 114 
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relationship (MAR) in log-log space built from 10 random subsamples of different areas of increasing 115 
size within A. thaliana’s geographic range along with the number of mutations discovered for each area 116 
subset. 117 
 118 

To quantify how genetic diversity within a species increases with geographic area, we 119 
constructed the MAR by subsampling different regions of different sizes of Arabidopsis thaliana’s 120 
native range using over one thousand geo-referenced genomes (Fig. 1A, C). As a metric of genetic 121 
diversity, we modelled the number of mutations (M) in space (number of segregating sites) consistent 122 
with the species-centric approach of SAR, which uses species richness as the metric of biodiversity 123 
(SM II.2). The MAR also followed the power law relationship M = cAz with a scaling value zMAR = 124 
0.324 (CI95% = 0.238–0.41) (Fig. 1C). Naturally, subsamples of larger areas may also contain more 125 
individuals, and therefore should also have more mutations. But the observed power law relationship 126 
goes beyond what is expected from the increase of number of samples in an area (which only accounts 127 
for increases of M ≈ log(A), see theoretical derivation SM II.3). The remainder may be attributed to 128 
population genetic drift and spatial natural selection causing structuring of genetic diversity across 129 
populations. The discovered power law scaling appears robust to different methods of area 130 
quantification, the effects of non-random spatial patterns, random area sampling, fully nested outward 131 
or inward sampling (19), raster area calculations, raster grid resolution (~10–1,000 km side cell size), 132 
and is adjusted for limited sample sizes (SM II.3.2, III.3, Fig. S14-18, Tables S7-9).  133 

 134 
We then wondered whether MAR can predict the loss of genetic diversity due to species’ range 135 

contractions. We explored several scenarios of range contraction in A. thaliana by removing in silico 136 
grid cells in a map representing populations that are lost (Fig. 2B). Our simulations included random 137 
local population extinction as if deforestation was scattered across large continents, radial expansion of 138 
an extinction front due to intense localised mortality, or  local extinction in the warmest regions within 139 
a species range (4, 25), among others (SM III.4). The MAR-based predictions of genetic loss, using 1-140 
(1-At / At-1 )z and assuming z = 0.3, conservatively followed the simulated local loss in A. thaliana 141 
(pseudo-R2 = 0.87, taking all simulations together) (SM II.4, III.4).  142 

 143 
Since genetic diversity is ultimately created by spontaneous DNA errors passed onto offspring 144 

every generation, the loss of genetic diversity seems reversible, as these mutations could happen again. 145 
However, the recovery of genetic diversity through natural mutagenesis is extremely slow (57), 146 
especially for mutations affecting adaptation. Simulating a species undergoing only a 5–10% in area 147 
reduction, it would take at least ≈140–520 generations to recover its original genetic diversity (2,100–148 
7,800 years for a fast-growing tree or medium-lifespan mammal of 15 year generation length), although 149 
for most simulations, recovery virtually never happened over millennia (see SM II.4-5, Fig. S11, SM 150 
III.6).  151 

 152 
 153 
 154 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.10.13.464000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Exposito-Alonso et al. 2022 Genetic diversity loss in the Anthropocene 
 

5 

 

 155 
Fig. 2 | The power law of genetic diversity loss with range area loss. (A) Percentage of loss of total 156 
genetic diversity in Arabidopsis thaliana from several stochastic simulations (red) of local extinction 157 
in (B), and theoretical model projections of genetic diversity loss using the MAR (dotted lines). The 158 
expectation for genetic diversity loss based only on individuals is in grey (using starting populations of 159 
N=104-109) (SM II.4). (B) Cartoon of several possible range contractions simulated by progressively 160 
removing grid cells across the map of Eurasia (red/grey boxes) following different hypothesised spatial 161 
extinction patterns. (C) A metric of adaptive capacity loss during warm edge extinction in (B). Using 162 
Genome Wide Associations (GWA) to estimate effects of mutation on fitness in different rainfall 163 
conditions, water use efficiency [wue], flowering time, seed dormancy, plant growth rate, and plant 164 
size. Plotted are the fraction loss of the summed squared effects (∑a2) of 10,000 mutations from the top 165 
1% tails of effects. We also plot (yellow) the fraction of protein-coding alleles lost (nonsynonymous, 166 
stop codon loss/gain, and frameshift mutations). 167 
 168 
 169 

To test the generality of the MAR, we searched in public nucleotide repositories for datasets of 170 
hundreds to thousands of whole-genome sequenced individuals for the same species sampled across 171 
geographic areas within their native ranges (Table 1, SM IV). In total, we identified 20 wild plant and 172 
animal species with such published resources and assembled a dataset amassing a total of 10,095 173 
individuals of these species, with 1,522 to 88,332,015 naturally occurring mutations per species, 174 
covering a geographic area ranging from 0.03 to 115 million km2. Fitting MAR for these diverse species, 175 
we recovered zMAR values similar to A. thaliana, with many species overlapping in confidence intervals, 176 
with the exception of some outliers (mean (SE) zMAR = 0.31 (±0.038), median = 0.26, IQR = ±0.15, 177 
range=0.10–0.82, mean (SE) z*MAR scaled = 0.26 (±0.048). See Table 1, SM IV, Fig. S22, Table S10). 178 
Theoretical derivations show that zMAR is a consequence of fundamental evolutionary and ecological 179 
forces (mutation, dispersal, selection) and should range from 0 to 1, depending on the strength of 180 
population structure (SM II.3, see Fig. S10 for its relationship with isolation-by-distance). These 181 
predictions were further confirmed by spatial population genetics coalescent and individual-based 182 
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simulations in 2D and continuous space (SM II.3), as well as with mainland-island community 183 
assembly simulations according to the Unified Neutral Theory of Biodiversity (UNTB) (SM V.3).  184 

 185 
 186 

Table 1 |The mutations-area relationship across diverse species. Summary statistics of individuals 187 
sampled broadly across species distributions, sequencing method and mutations studied, and convex 188 
hull area extent of all samples within a species. The mutations-area relationship (MAR) parameter z, 189 
which captures how spatially restricted mutations are, including a scaled correction z* for low sampling 190 
genomic effort. Percent area that needs to be kept for a species to maintain 90% of its genetic diversity, 191 
using the per-species MAR value estimates. Area predictions are not provided for threatened species, 192 
as these have likely already lost substantial genetic diversity and require protection of their full 193 
geographic range (Fig. 3). 194 
Species N Mtot 

Method 
Atot 

Km2x106 
MAR 
z [CI95%] 

MAR scaled 
z* [CI95%] 

Min area 90% 
% 

🌱  Arabidopsis thaliana  1,135 (1,001)# 11,769,920 W 27.34 0.324 (0.238–0.41) 0.312 (0.305 - 0.32) 71–78 
🌱  Arabidopsis lyrata 108 17,813,817 W 2.79 0.236 (0.218–0.254) 0.151 (0.137–0.165) 50–66 
🌱  Amaranthus tuberculatus 162 (155) 1,033,443 W 0.80 0.109 (0.081–0.136) 0.142 (0.136–0.149) 48–65 
🌳  Eucalyptus melliodoraVU  275 (36)* 9,378 GBS 0.95 0.466 (0.394–0.538) 0.403 (0.398–0.407) 77–82 
🌵  Yucca brevifoliaCA 290 10,695 GBS NA ?0.128 (0.109–0.147) 0.049 (0.037–0.062) - 
🌼  Mimulus guttatus 521 (286)#* 1,522 GBS 25.14 0.274 (0.259–0.29) 0.231 (0.221–0.241) 63–73 
🌾  Panicum virgatum 732 (576)† 33,905,044 W 6.29 0.232 (0.211–0.252) 0.126 (0.116–0.136) 43–63 
🌾  Panicum hallii  591 45,589 W 2.19 0.824 (0.719 - 0.928) 0.814 (0.745 - 0.883) 88–90 
🌲  Pinus contorta  929 32,449 GC 0.89 ?0.015 (0.014–0.016) -0.061(-0.062-0.060) - 
🌲  Pinus torreyanaCR 242 478,238 GBS NA ?0.236 (0.19–0.282) 0.105 (0.099–0.11) - 
🌳  Populus trichocarpa 882 28,342,826 W 1.12 0.275 (0.218–0.332) 0.165 (0.155–0.176) 53–67 
🦟  Anopheles gambiae  1142 (29)* 52,525,957 W 19.96 0.214 (0.164–0.264) 0.122 (0.111–0.132) 42–62 
      Acropora milleporaNT  253 (12)* 17,931,448 W 0.03 0.246 (0.209–0.283) 0.287 (0.28–0.294) 69–77 
🪰  Drosophila melanogaster 271% 5,019 W 115.21 0.437 (0.397–0.477) 0.325 (0.314–0.336) 72–79 
🐦  Empidonax traillii Decline 219 (199)& 349,014 GBS/GC 7.03 0.214 (0.174–0.254) 0.074 (0.047–0.102) 24–54 
🐦  Setophaga petechiaDecline  199 104,711 GBS 15.17 0.251 (0.236 - 0.267) 0.149 (0.135 - 0.163) 49--66 
🐁  Peromyscus maniculatus 80 (78)& 14,076 GBS 22.61 0.488 (0.264–0.713) 0.683 (0.615–0.751) 86–88 🦏

  Dicerorhinus sumatrensisCR 16 8,870,513 W NA ?0.412 (0.369–0.456) 0.127 (0.11–0.144) - 
🐕  Canis lupus  349 (230)† 1,517,226 W 19.10 0.256 (0.232–0.28) 0.184 (0.175–0.193) 56–70 
😷  Homo sapiens 2504 (24)* 88,332,015 W 80.76 ?0.431 (0.347–0.514) 0.281 (0.23–0.332) NA 
#Only individuals in the native range were used for the analyses.  195 
&Only individuals with available coordinates or matching IDs were used for analyses. 196 
%Numbers indicate pools of flies used for Pool-Sequencing. 197 
*Number of geographically separated populations, as multiple individuals were collected per population. 198 
†Only natural populations were used, excluding breeds, landraces, and cultivars. 199 
Area was not reported for species with unknown locations or where less than 2 populations were sampled. 200 
?Values excluded from global averages used for conservation applications due to uncertain estimates, suboptimal genomic data type, or 201 
because estimates should not be applied for conservation (i.e. humans or nearly extinct Sumatran rhinoceros). 202 
Acronyms: W = whole-genome re-sequencing or discovery SNP calling. GBS = genotyping by sequencing of biallelic SNP markers. GC = 203 
genotyping chip; CR = Red List Critically Endangered. VU= Red List Vulnerable. CA = included in the California Endangered Species Act. 204 
Decline = population decline reported in the Red List. 205 
 206 

 207 
Although we expect species-specific traits related to dispersibility or gene flow to affect zMAR 208 

(e.g. migration rate and environmental selection in population genetic simulations significantly 209 
influences zMAR, Table S2), no significant association was found between zMAR and different 210 
ecologically-relevant traits, mating systems, home continents, etc., for the 20 species analysed. Perhaps 211 
this is simply that there are still too few species that have large population genomic data to find such a 212 
signal (Table 1, Table S12-13). Nevertheless, the relative consistency of zMAR across largely different 213 
species may be promising for conservation purposes, as an average zMAR ~0.3 (IQR ±0.15 , Table 1, 214 
Table S11) could be predictive of large-scale trends of genetic diversity loss in many range-reduced 215 
species that lack genomic information. Further, although species will naturally have different starting 216 
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levels of total genetic diversity prior to range reductions, for instance, due to genome size, structure, or 217 
mating system differences (26), the application of zMAR provides relative estimates of genetic diversity 218 
loss. For instance, assuming zMAR ~0.3, we would predict that an area reduction of ~50% creates an 219 
approximate loss of ~20% of genetic diversity relative to the total genetic diversity of a given species. 220 
 221 

Finally, we used MAR to estimate the average global genetic diversity loss caused by pre-21st 222 
century land transformations. Although accurate species-specific geographic area reduction data in the 223 
last centuries are scarce, we leveraged global land cover transformations from primary ecosystems to 224 
urban or cropland systems (3, 27) (Table S14-15). Using the average scaled z*

MAR (Table S18) and 225 
several global averages of Earth’s land and coastal transformations for present day (38% global area 226 
transformation from (27), 34% from (28), and 43-50% from (29)), we estimate a 10-16% global genetic 227 
diversity loss on average across species (Fig. 3A). While these estimates may correctly approximate 228 
central values across species in an ecosystem, we expect a substantial variation in the extent of loss 229 
across species, ranging theoretically from 0 to 100% (Fig. 3, Fig. S26). One cause of this variation is 230 
the heterogeneity in land cover transformations across ecosystems; for example, more pristine high-231 
altitude systems have only lost 0.3% of their area, while highly managed temperate forests and 232 
woodlands have lost 67% (Fig. 3B, Table S14-15).  233 
 234 

Another cause for the variability in genetic loss among species (even within the same 235 
ecosystem) may be their differential geographic ranges and abundances, life histories, or species-236 
specific threats. We gathered data from species red-listed by the International Union for Conservation 237 
of Nature (IUCN) (1), which evaluates recent population or geographic range area reduction over ±10 238 
years / ±3 generations to place assessed species in different threat categories using several thresholds 239 
(guidelines for assessments and thresholds available at www.iucn.org). Again, assuming that with the 240 
average zMAR ~0.3 we can capture general patterns, we translate these category thresholds into genetic 241 
diversity loss (Fig. 3C, see SM V, Table S17). Vulnerable species, having lost at least 30% of their 242 
geographic distribution, may have experienced >9% of genetic diversity loss, endangered species, 243 
which have lost over 50% of their geographic distribution, should have incurred >16% of genetic 244 
diversity loss, and critically endangered species, with over 80% area reduction, likely suffered >33% 245 
of genetic diversity loss (Fig. 3B). This clearly showcases that even species in no imminent risk of 246 
extinction (e.g. least concern, near threatened, vulnerable), such as the majority of species for which 247 
population genomic data exists, may already be losing substantial genetic diversity (Fig. 3A). 248 
  249 

 250 
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 251 
Fig. 3 | The parameter space of genetic diversity loss mapping pre-21st century ecosystem 252 
transformations and species threat categories against possible values of the mutations-area 253 
relationship. (A) Possible values of two key parameters, the mutations-area relationship scaling 254 
parameter (MAR) and % of area reduction of a species geographic range (as a proxy of entire ecosystem 255 
transformation). The theoretical % of genetic diversity loss is represented as filled grey colour, with 256 
isolines in white. Estimates of scaled z*

MAR from Table 1 per species are in orange with their 95% 257 
confidence intervals (for unscaled zMAR see Fig. S23). Although exact area losses per species are 258 
unknown, species are plotted based on their IUCN Red list (C) status, using the broad ranges of  259 
minimum and maximum recent population or area decline per category. The global average is calculated 260 
with the average zMAR across species and % of the Earth transformed from IPBES. (B) Percentage of 261 
transformed ecosystem area from the Millennium Ecosystem Assessment (MEA) (27) are represented 262 
by light blue arrows, from the Intergovernmental Science-Policy Panel for Biodiversity and Ecosystem 263 
Services (IPBES) (28) for 2010 and 2050 are dark blue arrows, and from the Land Use Harmonization 264 
2 (LUH2) dataset (29) are in dark purple. (C) The minimum criterion value of population or geographic 265 
area loss to be classified in each category of the IUCN Red List are indicated with pink arrows (the near 266 
threatened category does not have a range of values, instead we used 30% ±10%). The number of plant 267 
species (for which population abundance loss approximates area loss) included in each category is 268 
shown as box sizes (1). The IUCN ranges were used to place ranges of estimates in (A) per species. 269 

 270 
The ultimate challenge is to understand how genetic diversity loss relates to loss of adaptive 271 

capacity of a species. To this end, we leveraged the extensive knowledge of the effect of mutations in 272 
ecologically relevant traits in A. thaliana from Genome-Wide Associations (GWA) (Fig. 2C, SM III). 273 
We again conducted spatial warm edge extinction simulations, this time tracking metrics of adaptive 274 
capacity, including the total sum of effects estimated from GWA of remaining mutations (∑i ai for 275 
i=1…10,000 variants of putative ai effect), the additive genetic variance (Va= ∑i pi(1-pi)ai

2 , which 276 
accounts for each variant’s population frequency pi), and the loss of nonsynonymous mutations (SM 277 
III.5). Although determining the effect of mutations through GWA is technically challenging even in 278 
model species (30, 31), and variants may even be either deleterious or advantageous depending on 279 
genomic backgrounds (32) or environments (33), our simulations suggest putatively functional 280 
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mutations may be lost more slowly (z<0.3, Fig. 2C) than neutral genetic diversity (Fig. 2A). In fact, 281 
the additive variance Va parameter, often equated to the rate of adaptation, appears rather stable (34) 282 
until just before the extinction event when it sharply collapses (Fig. S21; see also Fig. 2C, and SM 283 
II.3.4 for simulations that replicate this pattern). This is analogous to the famous “rivet popper” 284 
metaphor where ecosystem structure and function may suddenly collapse as species are inadvertently 285 
lost (35). Projections of the MAR using genome-wide variation may crucially serve as early 286 
conservation tool in non-threatened species (36, 37), before species reach accelerating collapsing 287 
extinction dynamics—an acceleration that we expect to be even more dramatic due to elevated drift and 288 
accumulation of deleterious mutations of small critically-endangered populations (38, 39). 289 
 290 

To achieve the recently published United Nations target to protect “at least 90% of genetic 291 
diversity within all species”(13), it will be necessary to aggressively protect as many populations as 292 
possible for each species. Here, we have discovered the existence of a mutations-area relationship 293 
(MAR) and provided a mathematical framework to forecast genetic diversity loss with shrinking 294 
geographic species ranges. The MAR contrasts with existing studies on the risk of losing entire species 295 
by focusing on quantifying the magnitude and dynamics of genetic diversity loss likely ongoing in most 296 
species. This framework demonstrates that even with conservative estimates, substantial area protection 297 
will be needed to meet the UN Sustainable Development Goals. For vulnerable or endangered species, 298 
we may have likely already failed.  299 
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I. Background on species biodiversity and biogeography 122 
 I.1 Theoretical models of biodiversity 123 
 124 
Studies in biogeography have modelled the species-area relationship with several functions. 125 
Below we summarise the different approaches using an example of richness of S = 100 126 
species, with variable abundance or area, A. 127 
 128 

We may visualise the different areas or abundances of species as a frequency 129 
histogram (Fig. S1, Preston plot), with x-axis: logarithm of abundance bins (historically log2 130 
as a rough approximation to the natural logarithm), and y-axis: number of species at given 131 
abundance. Alternatively, as a rank-abundance diagram (Fig. S1, Whittaker plot): x-axis: 132 
species list, ranked in order of descending abundance (i.e. from common to rare), and y-axis: 133 
logarithm of % relative abundance. 134 

 135 
 136 

 137 
Fig. S1 | Example of typical plots used for species abundance curve studies 138 
Due to their strong skew, Species Abundance Curves are often plotted using the Preston plot (left) where the x axis 139 
represents bins of log2 abundances (also referred to as octaves), or using the Whittaker plot (right) where the x axis is the 140 
rank of each species in a dataset and y axis the species' relative abundance. 141 
 142 

 143 
 144 
I.1.2. Niche apportionment approaches 145 
 146 
A series of theoretical deterministic and stochastic "niche apportionment models" have been 147 
put forward (summarised in (1) or (2, 3)). 148 
 149 

The Motomura (4) geometric series suggests that each species that arrives takes half 150 
the area. The first would take 50%, the second 50% of 50%, and so forth, which can be 151 
expressed as:  152 
 153 

. 154 
 155 
Similarly, one can imagine that as a species colonises a habitat, it takes up a fraction different 156 
than 50%. This gives a geometric series with parameters  which can be written as 157 
 158 
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. 159 
 160 
Other geometric series-related models include stochasticity, where k instead of being a fixed 161 
parameter is a random uniform variable and there is a ki each time i a new species arrives to 162 
the ecosystem. The "dominance preemption" model draws from 50-100% at any new arrival 163 
of a species, the random fraction model draws from 0-100%. Then the abundance of a species 164 
depends on the stochastic process of previous f = 1...i-1 species arriving first: 165 
 166 

 167 
 168 
Another approach is the broken stick by MacArthur (5), which theorised a habitat is broken 169 
into S-1 places at random, which creates  fractions of an area. Then the relative area of a 170 
species is: 171 
 172 

. 173 
 174 
 175 
I.1.2. Niche statistical approaches of species sampling 176 
 177 
Differently from niche partitioning functions, statistical approaches such as the log-series 178 
from Fisher (6) and log-normal from Preston (7) are probability distributions, and approach 179 
modelling in a conceptually different way: they model the sampling process of species 180 
collections given an underlying relative abundance (see below). 181 
 182 
  183 

Statistical-based derivations probably began with Fisher (6), with the log-series 184 
distribution. It assumes that species abundances in the community are independent identically 185 
distributed variables, sampling is a Poisson process, sampling is done with replacement, or 186 
the fraction sampled is small enough to approximate a sample with replacement. Here, 187 
 188 

, 189 
 190 

where  is a constant  related to the sample dataset (typically close to 1), 191 
, and  is a new constant term (ecosystem-specific) that is used as a measure of 192 

biodiversity. Fisher proposed the number of species could be estimated as: 193 
 194 

 195 
 196 

Finally, Preston (8) posed that the skewness of previous proposals is due to lack of 197 
sampling. With little data, common species are collected sooner, but with more abundant 198 
sampling, the rarest species are also well-sampled and have abundances well above 0. Preston 199 
then proposed that the octaves (bins of doubling abundance) follow a normal distribution, 200 
making the raw abundance log-normal distributed. Given  is the number of species in the 201 
model octave of abundance and a variance composite of the log-Normal , the number of 202 
species per abundance (octave) bin  (=log(n)) is: 203 
 204 
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. 205 
 206 

The Unified Neutral Theory of Biodiversity (UNTB) by Hubbell (1) takes a stochastic 207 
approach of a community with immigrants, extinctions, and speciation in continuous 208 
dynamics. Interestingly, the UNTB's key parameter, θ, coincides with Fisher's α, as the log-209 
series is a limiting case of UNTB. Hubbell's discovery was that α=2Jmv, where  is the size 210 
of the external metacommunity that provides migrants of species to the focal community, and 211 
 is the speciation rate. Alonso and McKane (9) derived the so-called Metacommunity Zero-212 

Sum Multinomial (MZSM) distribution from the UNTB. In practice, both distributions have 213 
almost-identical fits (lines completely overlapping in Fig. S2 below). 214 
 215 
 216 

 217 
Fig. S2 | Summary of theoretical models of Species Abundance Curves. 218 
Five niche partitioning or statistical models shown in a Whittaker plot. The different models expect different levels of 219 
evenness in abundance across the species in the community, from the lowest (geometric series) to the highest (log-normal). 220 
 221 
 222 

I.2 Metric of species diversity 223 
 224 
Although a number of metrics exist to measure species diversity, such as the Shannon index, 225 

 (with Pi the relative proportions of species abundances) or Fisher's non-226 
dimensional  parameter, the study of species abundances and area relationships has focused 227 
on species richness S, that is, the total number of species in a given location or area. Below 228 
we therefore focus on species richness. 229 
 230 
 231 
I.3 Biogeography of species and extinction. 232 
 233 
SAD and SAR connection 234 
 235 
Due to many species being rare, it is expected that as researchers sample an area, the most 236 
common species will be sampled first, and as the area studied increases, more and more 237 
species will be discovered. This is thought to happen following a power law relationship, 238 
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where the number of species in that area SA increases with the sampled area , with scaling z 239 
(slope in a log-log plot), and with a constant c: 240 
 241 

. 242 
 243 

Preston (7) derived theoretically that from a log-normal series, one would expect 244 
z=0.27, under a number of assumptions (Fig. S3). This has been empirically shown to be 245 
close to reality (7, 10), although there is some variation across ecosystems and spatial scales. 246 
 247 

 248 
Fig. S3 | Example of a Species-Area Relationship in Galapagos Islands 249 
Classic species richness dataset from the Galapagos Islands (Preston, 1962). It depicts species richness as a function of 250 
island area in a log-log plot. 251 
 252 
 253 

I.4 Estimating extinction of species from the species area relationship 254 
 255 
The first estimates of species extinction used the SAR relationship. Given a reduction of 256 
ecosystem area, A, by an area of a (11, 12). If these areas, as well as the SAR scaling, z, are 257 
known, then one can predict the number of species in the future as: 258 
 259 

, 260 
 261 
However, we are normally interested in the fraction of species that will go extinct Xs so we 262 
can take the ratio: 263 
 264 

. 265 
 266 
 267 
II. Population genetics models and the site frequency spectrum. 268 
II.1 The Wright-Fisher model and the site frequency spectrum 269 
 270 
Statisticians and population geneticists from the 20th century, Wright and Fisher, built a 271 
simple statistical model of evolution of a population. It assumes that each generation a 272 
population of N monoecious (hermaphrodite) individuals mate randomly to create a new 273 
generation of N individuals and then immediately die so that only N individuals remain in the 274 
population at any given time. This random sampling process causes the frequency of a variant 275 
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in one generation to possibly differ from its frequency in the previous generation—a process 276 
known as genetic drift. 277 
 278 

When a nucleotide mutation or variant (e.g. ACGAA → ACGTA ) emerges by a 279 
random process of, for instance, DNA replication error, it will first be in 1/N individuals (if 280 
we consider these diploid, 1/2N chromosomes). Through random sampling that T mutation 281 
may be lost, stay at the same frequency, or randomly move to higher frequency. Although 282 
rarely, just by chance, the mutation may reach 100% frequency.  This results in a 283 
“commonness of rarity” when looking at mutations in a population, as we have seen in 284 
previous sections for species. Since these genetic drift dynamics affect all mutations genome-285 
wide, we therefore expect the majority of mutations to be absent, or rare, and only a much 286 
smaller proportion of variants to be at moderate or high frequencies.  287 

 288 
 The site frequency spectrum (SFS) refers to the distribution of frequencies of variants 289 
in a population. This is the number of sites at which we observe a variant at frequency q in a 290 
sample of n individuals. To derive the expected SFS distribution, we turn to Kingman’s 291 
Coalescent (13). Both models describe the same ideal population of random mating, constant 292 
population size, and mutations emerging at a low rate and drifting in frequency. But while the 293 
Wright-Fisher model describes the dynamics of a whole population forward-in-time, the 294 
Kingman’s Coalescent describes the genealogy of a sample of individuals from a population, 295 
going backward in time. By building a model around the individuals that are sampled or that 296 
survived, rather than of an entire population, the Coalescent provides a simpler way to derive 297 
expectations in small populations or in cases, for example here, where a limited sample of 298 
genomes are sequenced. Using the Coalescent (see (14) for details), one obtains that the 299 
expected number of mutations of a given abundance, n, is inversely related to their frequency, 300 
𝑞: 301 
 302 

 303 
 304 
for some constant c that depends on the mutation rate and the population size. This SFS from 305 
population genetics theory is remarkably similar to the Species Abundance Relationship. In 306 
fact, Fisher himself (15) derived an expression similar to the above. 307 
 308 

Rearranging terms, one can see this is a constrained version of the log-series 309 
Probability Mass Function (PMF), which Fisher also proposed for the distribution of species 310 
abundances (6). Below, one can graphically see the similarities (Fig. S4): 311 
 312 

 313 
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Fig. S4 | Similarity between the Species Abundance Distribution and the Site Frequency Spectrum 314 
Left is the Probability Mass Function of the log-series (p=0.999), center is the SFS (N=100, c=1), and right is 315 
the log-series-based abundance of species (alpha=100, N=10000). 316 
 317 

Keeping the abundance, , constant (and low), when the number of individuals 318 
, we know that the constant  from Fisher's SAD approaches 1, . Then, 319 

we can rewrite the number of species at any given abundance ( ) as: 320 
 321 

 322 
 323 

So both have the same form as the log series PMF:  when . In 324 
the next section we will see that the constants of the SAD and the SFS are proportional to 325 
species and mutation diversity, although the Site Frequency Spectrum (SFS) is a specific case 326 
of SAD. One can also see that because the constant in the SFS is the population scaled 327 
mutation rate, , and Fisher's  for large N. 328 
 329 
II.2 Metrics of genetic diversity 330 
 331 
In population genetics, multiple measurements of genetic diversity have been put forward. 332 
The most straightforward is the allelic richness, also number of mutations, or also called the 333 
number of segregating sites. Segregating sites, M, is the direct equivalent of the species 334 
richness, S, and it depends on the number of samples used and length of DNA sequence 335 
explored (Note: we use the non-standard notation, M, as the standard in population genetics is 336 
S [for segregating sites] but this is already in use for species richness. We then use M for 337 
mutations and S for species). This metric can also be thought of as the area under the curve of 338 
the SFS. Two other metrics that describe the SFS but that aim to be sequence-length- and 339 
individual independent are Watterson's Theta, , and Nucleotide diversity, , (also called 340 
). These two metrics of diversity are identical at population equilibrium and are estimates of 341 
4Neμ (when the SFS follows a 1/q relationship), with effective population size Ne and per-342 
generation mutation rate μ, whereas they differ in non-equilibrium demographics, under 343 
natural selection, or under other behaviors not considered in the Wright-Fisher neutral model, 344 
such as different mating systems (16).  345 
 346 
First,  is described as: 347 
 348 

, 349 
 350 
and  as:  351 
 352 

, 353 
 354 

where  is the n-1th Harmonic number, which serves to scale the segregating 355 
sites based on the assumption that the abundance of mutations follows a 1/q SFS. The 356 
diversity metrics  and  are both functions of the SFS, as opposed to Fisher's  from the 357 
Species Abundance Distribution, which is a parameter that changes the shape of the 358 
distribution.  359 

 360 
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Although often nucleotide diversity  is reported as a typical measure of genetic 361 
diversity of a species, since it can be calculated for a single genome and it captures the 362 
process of inbreeding of a population (17), classic literature relating germplasm management 363 
for conservation and breeding has advocated for allelic richness (18).  364 

 365 
 366 
II.3 Spatial genetics and the mutations-area relationship (MAR) 367 
 368 
Since its inception, a number of concepts in population genetics have dealt with genetic 369 
variation in populations of different sizes, or populations separated in space. For instance, one 370 
classic result in population genetics is the relationship of π ≈ 4Nc μ, which relates genetic 371 
diversity π with the effective population size Ne and the mutation rate of the species μ. A 372 
relationship which is still studied nowadays in an effort to reconcile data with theory (17).   373 

In 1943, Sewall Wright turned to study the genetics of multiple populations within a 374 
species. He proposed that populations sampled further apart geographically must differ more 375 
in allele frequency due to more independent drift (19), leading to the commonly used 376 
correlation between geographic distance and the metric of differentiation FST. Most 377 
prominently, the use of correlation in the accumulation of mutations of populations that are 378 
geographically close or share evolutionary history has been uncovered using dimensionality 379 
reduction approaches such as PCA (20).  380 

Despite these enormous advances in understanding spatial genetic structures, 381 
surprisingly little quantitative work has been done to parametrize the loss of genetic diversity 382 
by direct loss of habitat.  383 

Because of the abundance of rare mutations in populations, it is straightforward to 384 
think that the more area and individuals sampled, the more segregating sites will be found. 385 
Analogous to the Species Area Relationship (SAR), S=cAz, we should thus be able to 386 
estimate the equivalent scaling for a mutations-area relationship (MAR): 387 

 388 
M=cAz,  389 
 390 
with a scaling z = zMAR, which corresponds to the slope of best fit in a log-log-plot of 391 

A and M for a given species. (Other functions are often fit empirically for SAR datasets, 392 
which we explore later in section III.3. We work with the power law because of its historical 393 
use, mathematical convenience, and because other more complicated functions only 394 
improved fitting marginally, see Table S4).  395 

 396 
This differs from other efforts to understand the number of segregating sites or 397 

heterozygosity differences across species that differ in their total census size or geographic 398 
distribution (21, 22). The MAR instead is built within a species, as its ultimate aim is to relate 399 
the number of mutations left in a species as it loses spatial populations.  400 

 401 
Below we derive what are the expectations of MAR taking two opposite scenarios of 402 

neutral population evolution, and study how many segregating sites or mutations M are 403 
discovered with increasing area in the simulations. We further test the scenario of meta-404 
populations in space with varying migration rates and neutral or natural selection processes. 405 
 406 
II.3.1 Panmictic population  407 
 408 
The expected number of mutations, M, is a constant that depends on the mutation rate, μ, and 409 
the expected total branch length of the population genealogy, L, with M=μL. Under the 410 
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coalescent, the total branch length is equal to the number of lineages or individuals sampled 411 
from the population, n, times the time of the genealogy during which there are such lineages, 412 
Tn, plus n-1 times the time in the genealogy with such number of lineages, and so forth:  413 
 414 

.  415 
 416 
Under the coalescent,  417 
 418 

,  419 
 420 
and thus: 421 
 422 

, 423 
 424 
which simplifies to 425 
 426 

, 427 
 428 

where Hn-1 is the (n-1)th harmonic number. This is of course related to one of the 429 
diversity metrics (section II.2), where Watterson’s  scales the number of segregating sites 430 
(M) by the harmonic number of sampled individuals. This is based on the expectation that as 431 
more individuals are sampled, we expect to discover more mutations proportional to the 432 
above harmonic number. Because such number is not so easy to work with to create an 433 
expectation for zMAR, we further simplify this expectation following the Taylor expansion 434 
approximation of the harmonic number:  435 

 436 
,  437 

 438 
which we can further approximate as: 439 

 440 
. 441 

 442 
Therefore, assuming a constant mutation rate and effective population size (Ne) under 443 

panmixia, M grows following log(n). In such a case, a log-log plot (typical power law plot) 444 
does not display a linear relationship, and the slope is asymptotic to z → 0 for N → ∞. On the 445 
other hand, with low values of x (area or individuals sampled close to 0), the slope zMAR will 446 
be incorrectly high. We can show this effect trivially by studying the local derivative of the 447 
function log10(M) = log10(log(N)). The local slope of that function is an approximation of our 448 
zMAR parameter. This can be locally estimated at any given point N by taking the derivative:  449 

 450 

 . 451 
 452 
The implication of this nonlinear function is that if we sampled only few individuals 453 

or areas of a species (e.g., n=100), even if this species was completely panmictic we would 454 
expect a non-zero zMAR, a value that will change with sampling effort. We can roughly approximate 455 
zMAR by the local slope of the number in the midpoint of the graph, e.g., for n=100 we look at 456 
the slope at n=50, and obtain 1/(log10(50) x log(10))≅ 0.256. Therefore, with small sample 457 
sizes, this parameter will not be helpful to understand whether a species behaves 458 
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panmictically or is limited by migration, which may be problematic for estimates of genetic 459 
diversity loss later. We can visualise our expectation of the zMAR under panmixia plotting the 460 
first derivative above (Fig. S5). Because—as we will show below—we do expect a power 461 
law relationship under a migration-limited scenario, zMAR should theoretically not change with 462 
sample size. The graphical study of the (non-)linearity of the log-log plots between the 463 
number of mutations and area sampled should be diagnostic to this problem (We see for 464 
instance that Pinus contorta has a highly nonlinear relationship, likely due to the use of 465 
ascertained intermediate frequency markers instead of genome-wide data, Fig. S22). 466 
 467 

Finally, we used msprime (23) to corroborate this finding (zMAR being constant with 468 
respect to sample size) with simulations, simulating 1600 demes in a 40x40 grid of demes or 469 
populations of N=Ne=1000 that are completely panmictic (universal gene flow or dispersal, 470 
so this is equivalent to a single panmictic deme). We observed the zMAR for t=100...10,000 471 
generations in log10 increments. After this time, we sample n=1...100 individuals in 472 
increasingly large groups of adjacent demes. The range of estimates of zMAR in these 473 
simulations was 0.07-0.15. 474 
 475 

Fig. S5 indicates that the minimum average zMAR even under panmixia would 476 
continuously increase with lower numbers of individuals of a species sampled. This is due to 477 
the fact that the site frequency spectrum is not fully sampled with small numbers of 478 
individuals. Therefore, we devised an approach to rescale zMAR. 479 
 480 
  481 
 482 

 483 
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Fig. S5 | Expected ranges of z MAR given sample sizes. 484 
For increasing numbers of individuals sampled, we plot the expected mean zMAR under two theoretical trends of a migration-485 
limited (green) and a panmictic (purple) species (Purple dots indicate averages from SLiM simulations under panmixia to 486 
confirm the theoretical trend based on the derivative approach above). In black, zMAR and 95% Confidence Interval of 487 
species analyzed in section IV are plotted (see section for details).  488 
 489 

 490 
II.3.2 Scaling zMAR for low sampling and low census size 491 

 492 
Let zpan-n = E[zMAR | n, panmixia], be the expected value of zMAR of a panmictic 493 

species given that we only have small sampling of n. Although theoretically zMAR should 494 
approach 0, with small samples it can be upwardly biased. In order to force the possible 495 
values of zMAR to range 0-1 despite small sample sizes, we can scale it as: 496 

 497 
znaive scaled = (zMAR - zpan-n) / (1-zpan-n).  498 
 499 
In words, this moves the purple line in Fig. S5 to zero, stretching the space above it 500 

accordingly.  501 
 502 
Most species have census sizes so large that zMAR should indeed approach 0 under 503 

panmixia, so we should correct the sample estimate zMAR to range 0-1. However, some 504 
species have such low census size N that even if we sample all individuals of a species, the 505 
sample size will still be small. In those cases, we should not scale zMAR to range 0-1, but 506 
rather scale it from zpan-N  - 1, where zpan-N = E[zMAR | N, panmixia] is the expected value of 507 
zMAR  given a census size N (plants or animals living in the wild). The updated scaling 508 
approach for both census and sample size would then be: 509 

 510 
z*scaled = (1-zpan-N ) (zMAR - zpan-n) / (1-zpan-n) + zpan-N .  511 

 512 
 513 
Note that this scaled estimate must be conservative because while we adjust the 514 

minimum z for the average value expected for low sample sizes, we do not adjust for the 515 
maximum possible z, which only under very extraordinary theoretical conditions can be z=1, 516 
namely under an unrealistic complete disconnection of populations by gene flow (see below). 517 
Because deriving the maximum z would require more biological knowledge of the species’ 518 
demography, landscape connectivity, genome structure, etc., and because we rather create 519 
conservative estimates, we do not create further scaling approaches. 520 

 521 
II.3.3 Meta-populations in space 522 
 523 
A more realistic simulation than a panmictic population is that of the same 40x40 deme grid 524 
where migration can happen between adjacent demes. This migration rate can be changed to 525 
understand the effect of population structure and migration on zMAR. Under no migration (or 526 
very low migration), we expect the mutations in two distinct populations (and thus their SFS) 527 
to be (almost) completely independent. Hence, when explored demes are doubled (Ne 528 
doubles), we discover twice as many mutations. In this case, the number of mutations should 529 
scale linearly with the area, so we expect the following to be true: M=A, log(M) = log(A), 530 
and zMAR=1. Our analyses under different sampling schemes, and with different numbers of 531 
“burn-in generations” (generations since a single deme colonised the full 40x40 space) 532 
confirm that zMAR approaches 1 in the limit of low migration (see Table S1 and Fig. S6). 533 
Different from the panmictic situation, as we increase the sampled area, we not only increase 534 
, which would lead to a log(A) in mutations, but also increase Ne. 535 
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 536 
 537 
 538 

 539 
Fig. S6 | msprime 2D deme simulations and the mutations-area relationship 540 
Simulations with different burn-in and migration rates under neutrality, and their corresponding zmar.  541 
 542 
Table S1 | msprime population genetic simulations in 2D 543 
Simulations summarised by grouping ranges of the resulting zMAR parameters. The average parameters of the simulations 544 
with similar zMAR EW provided. (Acronyms: Nemt = product of effective population size, migration rate, and simulated 545 
generations). 546 
 547 

zMAR Samples/deme Generations Migration rate Nemt 
0.2 +/- 0.05 2.4 50001.7 0.0271675 5000044.23 
0.3 +/- 0.05 20.25 70003 0.0561655 7000075.77 
0.4 +/- 0.05 26.5714286 13057.4286 0.04450857 1305497.96 
0.5 +/- 0.05 12.9230769 121759.462 0.04017769 752221.743 
0.6 +/- 0.05 15.6111111 3218.77778 0.045735 321174.768 
0.7 +/- 0.05 35.6842105 35034.8421 0.03395895 143791.614 
0.8 +/- 0.05 35.030303 15655.1212 0.03055818 58023.5539 
0.9 +/- 0.05 36.5806452 3057.12903 0.0253029 15290.4081 
1 +/- 0.05 42.0140845 13625.4085 0.00861178 1798.36141 

 548 
 549 

These simulations corroborated that we can recover zMAR values ranging between 0-1 550 
just varying migration and burn-in generation parameters. We found that it was both the time 551 
of the system to reach an equilibrium as well as the migration rate that determined zMAR. In 552 
the future, it will be interesting to study different non-equilibrium scenarios to better 553 
understand how genetic drift, gene flow, and different landscape structures may shape the 554 
zMAR . 555 
 556 
II.3.4 Metapopulations in space with local adaptation 557 
 558 
In order to simulate local adaptation, we use the individual-based simulation software SLiM 559 
(24) following the approach of (25). These simulations were set up for 196 demes arranged in 560 
a 14 x 14 grid. Each grid cell contains a population of N=1000 and has an environment 561 
attribute, , which varied spatially from the lower-left to the upper-right corners (approx. -7 < 562 
e < 7). 12 locations in the genome were allowed to be under directional natural selection. The 563 
selection coefficient was fixed for a simulation, and grid runs were conducted with 564 
0<s<0.05, but this selection would vary based on the environmental selection value of a grid 565 
cell, according to e × s. Therefore, these alleles are antagonistic pleiotropic. Selected 566 
mutations across the 12 loci in the genome behaved additively (e.g. if an individual in grid 567 
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cell i had two of the selected mutations, fitness would be w=1+2s × ei). The migration rate 568 
varied from one individual in a billion (1×10-9), to one individual every ten (1×10-1). Finally, 569 
the mutation rate was set to 10-8 mutations/bp/generation and the recombination rate to 10-7 570 
crossovers/bp/generation.  571 
 572 
  573 
 574 

 575 
Fig. S7 | SLiM population genetic simulations in 2D with selection and local adaptation 576 
Simulations were carried out with different combinations of migration rates and strength of antagonistic 577 
pleiotropic selection at 12 QTLs. (A) Marginal relationship between zMAR with the strength of spatially-varying 578 
selection s. (B) Marginal relationship between zMAR with the migration rate m. 579 
 580 

These results, together with individual-based simulations, corroborate what we had 581 
observed with coalescent simulations, i.e. that zMAR is lowest with a high migration rate. The 582 
simulations also appear to show a negative effect of selection on zMAR . Generating a linear 583 
model fitting migration rate and selection and their interaction to understand what factors 584 
explain the scaling coefficient: zMAR ~ log10(m) + s + log10(m) s; we confirm that both had a 585 
significant effect, and that selection significantly reduces zMAR (Fig. S7, see below summary 586 
Table S2). This may seem counterintuitive, as one may expect that locally-adaptive mutations 587 
are rare and will be localised only to where they are adaptive. More work is necessary to 588 
understand the signatures that spatially-varying natural selection (and its different types) 589 
create on zMAR, but we can think that under migration limited scenarios (where  approaches 590 
1) adaptive alleles and their linked mutations permeate faster to similar neighbour 591 
environments than neutral alleles.  592 

 593 
Table S2 | Linear model explaining zMAR by migration rate and natural selection  594 
Summary table of the linear model zMAR  ~ mig + s + mig:s 595 

 Estimate SE t-value P-value 
intercept 0.3385022 0.0469174 7.214859 0.0000001 

mig -0.0419733 0.0085804 -4.891792 0.0000407 
s -4.693492 1.6290184 -2.881178 0.0076725 

mig : s  -0.4998393 0.2426463 -2.059950 0.0491621 
 596 
 597 
II.3.5. Metapopulations in space with purifying selection 598 
 599 
To understand the effect of purifying selection on zMAR we also ran 2D simulations with a 600 
fraction of the genome allowed to be globally-deleterious (i.e. independent of the spatially-601 
varying environment). We simulated an increasingly strong purifying selection (|s| range 602 
from 0.0 to 0.1), simulating roughly that 29% of the genome of Arabidopsis is coding 603 
(arabidopsis.org) and mutations can be deleterious. We also varied the degree of 604 
recombination. Following our expectation, with stronger purifying selection deleterious 605 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.10.13.464000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Exposito-Alonso et al. 2022 Genetic diversity loss in the Anthropocene 
 

17 
 

mutations are pushed to lower allele frequencies, stopping their geographic spread, which 606 
increases zMAR. Recombination rate appears to have a minor role on zMAR (Fig. S8). 607 
 608 
  609 

 610 
Fig. S8 | SLiM population genetic simulations in 2D with purifying selection 611 
Simulations were carried out with varying strengths of purifying selection (|s| range from 0.0 to 0.1) at coding positions, 612 
representing about 29% of the genome. Different values of recombination rate were also used in all pairwise combinations 613 
with |s|. 614 
 615 
II.3.6 Continuous-space non-Wright-Fisher models 616 
 617 
In order to confirm zMAR generality in highly realistic conditions and its behavior through the 618 
population extinction process (II.4), we set up SLiM simulations in continuous space using 619 
non-Wright-Fisher dynamics (24). Spatial population structure in these simulations was 620 
established through individual dispersal, local mate choice and spatial competition, which we 621 
chose to lead to realistic values of FST across space. Spatial competition also acted as 622 
population control, by keeping the total population size below a target carrying capacity 623 
through direct effects on individual fitness. In addition to competition, fitness was also 624 
affected by individual age as well as by a polygenic trait under stabilising selection. A subset 625 
of variants (final proportion ~10%) directly affected this trait with effect sizes drawn from a 626 
Gaussian distribution with mean = 0.0 and standard deviation = 0.1, and a fitness penalty was 627 
incurred by deviating from the optimal trait value using a Gaussian fitness function centered 628 
at the optimum and with a standard deviation = 5.0. We initialised functional variation for 629 
SLiM using neutral coalescent simulations with msprime (23) to reduce the computational 630 
burden of burn-in, and loaded the resulting tree sequences into SLiM (26, 27). We drew 631 
functional effect sizes for these variants, placed individuals into continuous space, and ran 632 
simulations forward-in-time for 5,000 generations. After that, the geographic distribution of 633 
the species experienced impacts as expected during global change: every generation, 0.001 of 634 
one edge of the species distribution got its carrying capacity reduced to 0. This meant that 635 
over 1,000 generations the whole species would disappear (note that this is a reasonable 636 
fraction of area reduction given the estimates of yearly deforestation and habitat change in 637 
section V). We subsequently overlayed neutral mutations on the tree sequence using 638 
msprime, and analysed genomes sampled throughout the extinction process (by tracking them 639 
in the tree sequence output) and extracted using tskit. 640 
 641 
 642 
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 643 

 644 
Fig. S9 | Continuous space SLiM population genetic simulations 645 
At 19 timepoints leading up to extinction, 1,000 individuals were sampled randomly in continuous space to quantify diversity 646 
loss (black line). The prediction of MAR (dashed line) using the starting zMAR seemed to follow the real trend better than the 647 
baseline of just loss of individuals(dashed line). This suggests that even if zMAR varies during the population extinction 648 
process, it is relevant to understand genetic loss by area reduction. We also tracked metrics of population structure (zMAR, 649 
FST) and a proxy of adaptive capacity (Va), which showed qualitatively similar patterns as the GWA-based trends (Fig S21). 650 
 651 
 652 
II.3.7 Connection of  zMAR  with the isolation-by-distance pattern 653 
 654 
Ultimately, zMAR is a complex integrator of evolutionary forces acting in space (mutation, 655 
migration, drift, selection) and captures how structured the distribution of a species' 656 
mutations is. Although the isolation-by-distance pattern conceptually resembles zMAR, we have 657 
found no obvious analytical expression that relates both. Note that FST is defined based on 658 
heterozygosity or , instead of the number of segregating sites (i.e., mutations M). For 659 
instance, using Hudson's estimator (28) to compute FST across a set of populations we 660 
calculate FST = 1- (πw / πb), where πw is the diversity or heterozygosity within a population 661 
and πb is the same parameter calculated for the meta-population. Plotting FST of a 662 
metapopulation by the distance of the farthest demes shows the typical non-linear trend of 663 
isolation-by-distance, which shows that very close populations have similar allele frequencies 664 
whereas populations further away drift apart. A challenge of FST is that it requires pre-665 
defining discrete populations, which is straightforward in stepping-stone simulations but hard 666 
in real data. Comparing average FST of our 14x14 spatial demes and zMAR, we see that the two 667 
parameters correlate (Fig. S10C). However, it appears that for low values of FST, zMAR captures 668 
more variation across the simulations (Fig. S10). These patterns were also confirmed in 669 
continuous space simulations (not shown).  670 
 671 
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 672 
Fig. S10 | SLiM population genetic simulations in 2D comparing FST and zMAR 673 
Neutral SLiM simulations with different degrees of migration. (A) Hudson's FST across populations with different area 674 
subsamples. Following the expectation of the isolation-by-distance pattern, as the distance between the farthest demes in the 675 
subsample increases, FST becomes larger and saturates at large distances. (B) The mutations-area relationship. (C) 676 
Comparison between FST and zMAR . 677 
 678 
 679 
II.4 The loss of mutations (genetic diversity) in space 680 
 681 
The aim is to predict the fraction of genetic diversity loss, xM, from shrinking of an ecosystem 682 
by an area a. To define all terms, we then have a past area At-1 and a present reduced area 683 
At=At-1 -a , and a fraction of area extinct x=a/At-1 684 
  685 

We first think of the loss of genetic diversity xM through the basic process of losing 686 
individuals. From the population genetics’s coalescent theory derivation of the number of 687 
mutations or segregating sites from individuals we got the approximation M~log(N). 688 
Assuming the loss of area is simply the loss of individuals (A=N), we can derive the fraction 689 
of genetic diversity loss as: 690 
 691 

692 

 693 
 694 
The loss of mutations is then in the scale of: log(1-x); which is very slow, as we 695 

expected from having derived the trend that under panmixia zMAR ≈ 0. A substantial loss of 696 
genetic diversity in this case only happens when population extinction is almost complete.  697 
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 698 
Species do not typically behave perfectly panmictic given different zMAR values. Under 699 

population structure, we can use our relationship to project the number of mutations (genetic 700 
diversity) lost as the geographic distribution due to habitat loss or climate change following 701 
equation:  702 
 703 

. 704 
 705 

In the most extreme scenario of zMAR ≈ 1, the fraction loss of geographic area directly 706 
translates to the same fraction loss of genetic diversity. 707 
 708 

Reality should be in between the panmictic and fully-migration-limited cases. With 709 
combinations of environmental selection, non-equilibrium demography, and long-range 710 
dispersal, we may get intermediate zMAR values, and it will be empirical estimates that can 711 
inform us how much may be lost (Section III). 712 
 713 
II.5 Recovery of genetic diversity after a bottleneck or local extinction 714 
 715 

 716 
Fig. S11 | 2D stepping-stone msprime simulations with extinction and recovery 717 
(A) Recovery of genetic diversity (number mutations) after loss of a fraction of the population. (B) Recovery of genetic 718 
diversity after instantaneous loss of a fraction of the population and consecutive repopulation.  719 
*Simulations with number of generations until recovery that are exceedingly large are assigned a value of 1,500, as none 720 
are realistic for current conservation timelines. 721 
 722 
 723 

The intuition that rapid recovery of genetic diversity may be possible is likely flawed. 724 
While genetic recovery may be faster than speciation rates, which are on the order of millions 725 
of years, the time for a set of populations that went through a simulation burn-in of 1,000 726 
generations (not yet in diversity equilibrium), and that suffer an instantaneous 5% reduction 727 
of area and an instantaneous recovery (e.g., through reforestation) would range from 20-90 728 
generations. This number of generations for long-lived species would translate into centuries 729 
or millennia of recovery without further impacts. About 49% of simulations – including every 730 
simulation that reached equilibrium (burn-in generations >10,000) – have a recovery time of 731 
more than a thousand generations (Fig. S11). 732 
 733 
  734 
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SUPPLEMENTAL RESULTS 735 
 736 
III. The mutations-area relationship with the 1001 Arabidopsis Genomes 737 
 738 
We begin testing the idea of a general mutations-area relationship using the extensive 739 
sampling of the model plant species Arabidopsis thaliana and the 1001 Arabidopsis Genomes 740 
Project (29). This section will serve as a case study to explore different approaches and biases 741 
when building MAR to then apply the learned lessons across species (section IV). 742 
 743 
 744 
III.1 The Site Frequency Spectrum of the 1001 Arabidopsis Genomes 745 
 746 
We began analyzing the frequency distribution of 11,769,920 biallelic genetic variants (i.e., 747 
mutations), which is typically called the Site Frequency Spectrum (SFS) in population 748 
genetics.  749 
 750 
 751 

 752 
 Fig. S12 | Mutation abundance study in A. thaliana 753 
(A) Site Frequency Spectrum (SFS). (B) Preston plot of mutation abundances. (C) Whittaker plot of mutation rank 754 
abundances. 755 
 756 

To showcase the similarities to the Species Abundance Distributions (SAD), we use 757 
the Whittaker plot of mutation rank abundance (Fig. S12) that suggests a log-normal of S-758 
shape may be the best fitting model (Table S3). For a review listing many popular models, 759 
see (30), and for implementation details of 13 SAD models see the thorough manual of R 760 
package SADS (31). As we shall see later, the log-normal distribution seems to be the best fit 761 
across species. 762 
  763 
 764 
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 765 
Fig. S13 | Fit of mutation abundance study in A. thaliana with different SAD models 766 
Representative models from Table S3 are plotted along with the observed frequency of 11,769,920 mutations. 767 
 768 
Although model AIC captures best the fit of a curve accounting for the difference in 769 
parameter complexity of each model and the statistical distributions behind, we often are 770 
interested in the variance explained. We then calculated a proxy of predictive accuracy using 771 
a pseudo-R2 approach of the difference between the model fit and the observed data as: 772 

. For A. thaliana, we used 10,000 SNPs sampled at random to an accuracy of 773 
over R2 >0.999 for both the top log-Normal model and the bottom log-Series model, 774 
indicating that all “commonness of rarity” models must have a pretty good fit of mutation 775 
frequency data. 776 
 777 
Table S3 | AIC values for model fit of common species distribution curves. 778 
For each SAD model, the degrees of freedom and the delta AIC compared to the top model are reported. 779 
 780 

Model dAIC df 
log-Normal 0 2 

Poisson 7204.37509 2 
Geometric 44267.5475 1 
Weibull 45872.3678 2 
Gamma 48805.6065 2 

Broken Stick 49076.4368 0 
UNTB (MTZSM) 168434.181 1 

log-Series 168434.726 1 
 781 
 782 
The typical SFS from population genetics is of course not implemented in current packages for Species 783 
Abundance Distributions like R sads. For comparison, in the main text we also calculate the log 784 
likelihood and AIC of this following the standard population genetics likelihood: 785 
 786 

, 787 
 788 
where N represents the number of individuals in a sample, and qi is the minor allele frequency of a 789 
SNP in the sample, in the main text calculated for i=1…10000 random SNPs (see main text). As 790 
before, Hn is the harmonic number function. 791 
 792 

 793 
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 794 
III.2 Building the Mutations-Area Relationship 795 
 796 
In the following, we explain how the area was estimated that was used to compute zMAR on 797 
real world data. In short, we used a grid on the world map, with samples placed on the map 798 
based on their geo-coordinates of origin (Fig. 1). We first create square spatial subsamples of 799 
the Arabidopsis thaliana geographic distribution (Fig. 1, Fig. S15) and quantify diversity M 800 
as the total segregating sites. Excluding zeros, these two variables are fed to the sars_power 801 
function from the R SARS package (32).  802 
 803 

Although the power law mutations-area relationship was already theoretically 804 
motivated (II.3), here we also fit different types of functions typically applied to the Species-805 
Area Relationship. Doing this, we reach the conclusion that multiple models perform very 806 
similarly, and the classic power law is among the top models, see Table S4. Although small 807 
marginal fitting accuracy could be achieved with other models, for mathematical convenience 808 
and historical continuity, we use the power law for later sections and the study of MAR 809 
across species (Sections IV and V). 810 
  811 
 812 
Table S4 | Different SAR curves fit to mutations. 813 
We fit 20 different functions and calculated the variance explained (R2), Pearson's r, and Spearman's rho. 814 
 815 
Model R2 r rho 
Asymptotic regression 0.21825683 0.46717965 0.53510077 
Beta-P cumulative 0.22012799 0.46917799 0.53374757 
Chapman Richards 0 NA NA 
Cumulative Weibull 3 par. 0.21929646 0.468291 0.53374757 
Cumulative Weibull 4 par. 0.21930145 0.46829633 0.53374757 
Extended Power model 1 0.21833611 0.46726449 0.53026812 
Extended Power model 2 0.21682584 0.46564561 0.53462775 
Gompertz 0.16393078 0.40488366 0.45964364 
Heleg(Logistic) 0.21929721 0.4682918 0.53531975 
Kobayashi 0.22228406 0.47147011 0.53526975 
Linear model 0.19579007 0.44248171 0.53510077 
Logarithmic 0.20280401 0.45033767 0.53430311 
Logistic(Standard) 0.22536996 0.47473146 0.53549765 
Monod 0.22500999 0.47435217 0.53579276 
Negative exponential 0.22801633 0.47751055 0.53447179 
Persistence function 1 0.21929612 0.46829063 0.53501182 
Persistence function 2 0.21760028 0.46647645 0.53409266 
Power 0.21929556 0.46829004 0.53543785 
PowerR 0.21753225 0.46640353 0.53493321 
Rational function 0.22072491 0.46981369 0.53451874 

 816 
  817 
Because in the species literature it is recommended to only quantify richness of 818 

endemic species (33), we also count segregating sites that are private to the area subsample, 819 
creating the equivalent endemic-mutations-area relationship (EMAR) (33). The MAR slope 820 
and 95% Confidence Interval was 𝑧 = 0.324 (0.238 - 0.41) (Table S5, Fig. S14 A), while the 821 
EMAR was 𝑧 = 1.241 (1.208 - 1.274) (Table S6, Fig. S14 B). Interestingly, the endemics-area 822 
relationship of 𝑧 ≈ 1 resembles that of endemic species, whereas the total mutation 823 
relationship with area is above that of species relationships, which typically follows the 824 
canonical 𝑧 ≈ 0.2 − 0.4. 825 

 826 
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We must note that EMAR, the genetic analogy of the Endemic-(species)-Area 827 
Relationship (EAR) may not be that meaningful when analyzing genomic data (we did not 828 
find a way to theoretically motivate it in section II), and later we see it overestimates loss in 829 
our simulations (Fig. S18) 830 
 831 
Table S5 | The mutations-area relationship (MAR). 832 
Fitted values in a log-log power function between area sampled and mutations discovered. 833 

 834 
 835 
Table S6 | The endemic-mutations-area relationship (EMAR). 836 
Fitted values in a log-log power function between area sampled and endemic mutations discovered. 837 

 838 
 839 
 840 

 841 
Fig. S14 | The mutations-area and endemic-mutations-area relationships in A. thaliana.  842 
Dividing A. thaliana native geographic distribution into a 1 degree lat/long grid, square areas with 1 degree side-length to 843 
36 degrees side-length were randomly placed (n=100 for each size) across the distribution, and genetic diversity metrics 844 
were computed to produce the (A) Mutations-Area Relationship and (B) Endemic-Mutations Area relationship. 845 
 846 
 847 
III.3 Testing for potential numerical artefacts 848 
 849 
We wondered whether MAR estimates may be affected by some numerical artefacts in our 850 
software pipeline (available at https://github.com/moiexpositoalonsolab/mar). For instance, 851 
real world data may have uneven sampling in space, the spatial resolution of georeferenced 852 
samples may vary, projection of samples into gridded maps may have limited resolution, 853 
software pipelines may produce biased estimates, etc. To test this, we conducted several 854 
experiments: 855 
 856 
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Lower bound of the method for zMAR . Our first experiment when building the MAR 857 
aimed to make sure that spatial sampling, or some unknown bias in genome sequencing, or 858 
the number of samples used, are not creating artificially large zMAR. We then simulated a mock 859 
dataset of A. thaliana with the same number of mutations, samples, and using the original 860 
geographic locations. The number of SNPs were also sampled in a way that we created a 861 
canonical 1/q SFS for the whole species. Under no biases, we then expect the MAR to follow 862 
the theoretical derivation under panmixia with a z~0.  This exercise confirmed we get a value 863 
approaching zero: z=0.033, (-0.095 - 0.162).  864 
 865 
 Table S7 | MAR built with different area calculations and grid sizes 866 
 867 
Grid resolution  
(deg.) 

zMAR [CI95%] 
(cell area) 

zMAR[CI95%] 
(total area) 

A=N 0.431 (0.423 - 0.439) NA 
0.1 0.435 (0.424 - 0.446) 0.367 (0.281 - 0.454) 
0.25 0.454 (0.449 - 0.459) 0.422 (0.376 - 0.467) 
0.5 0.488 (0.465 - 0.511) 0.352 (0.152 - 0.551) 
1 0.543 (0.529 - 0.558) 0.389 (0.295 - 0.483) 
2.5 0.644 (0.6 - 0.688) 0.388 (0.251 - 0.526) 
5 0.617 (0.205 - 1.029) 0.403 (-0.204 - 1.011) 
 868 
 869 

 870 
Grid sizes, area calculations, and non-random spatial sampling. In order to 871 

streamline geospatial operations, we implemented the MAR relationship calculations in this 872 
project using R raster objects (34). This required projecting the collected samples of a species 873 
and the observations of any given mutation into a world map (i.e., each mutation's geographic 874 
distribution). Necessarily, in order to be able to assign areas to sets of samples or mutations 875 
on the map, the projection requires the choice of a grid size. The larger the grid size (e.g., 876 
lower spatial resolution), the faster the spatial operations can be performed. Further, for larger 877 
grid sizes, we expect the slope of MAR to be more influenced by larger-scale patterns, while 878 
for smaller grid sizes, the MAR will be influenced by smaller-scale patterns. To test this, we 879 
repeated the subsampling of A. thaliana distribution with grid sizes ranging 0.1 degrees 880 
latitude/longitude (roughly 10km side-length in temperate regions) to 10 degrees (roughly 881 
1,000 km side-length). The estimates were roughly consistent between 0.4-0.6, but increases 882 
in value at larger grid sizes (row in Table S7 for large grid size values), a scale-dependent 883 
pattern that resembles results of SAR of species in ecosystems fitted at different scales (10). 884 

 885 
Because we often have sparse samples of individuals in space, we devised two 886 

strategies to calculate areas during the subsampling of MAR (see cartoon in Fig. S15): (A) 887 
the total square area of the minimum and maximum latitude/longitude values of all the 888 
samples analyzed. That is, simply the area of the red box in the figure. (B) the sum of areas of 889 
grid cells that contain at least one sample. That is, the sum of the grey squares within the red 890 
box in the figure. In addition, we also calculated the MAR relationship assuming the total 891 
area is equal to the number of individuals (A=N) (which should be theoretically equivalent to 892 
a grid of very high resolution where we end up with a maximum of one individual sampled at 893 
any grid cell). 894 

 895 
Table S7 values suggest there is a dependency of zMAR with the grid size when areas 896 

are calculated as the sum of grid cells with at least one sample. Our intuition for this pattern 897 
is that lower resolution grids (e.g., 5 degrees side) lead to some grid cells having many 898 
samples, which would increase the number of mutations discovered when discovering the 899 
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area. On the other hand, the calculation of zMAR using the total area does not seem to affect the 900 
zMAR estimate; however, because large areas often do not have samples (limiting the potential 901 
to find new mutations), it creates a higher variance in the estimate of zMAR (see confidence 902 
intervals in Table S7 and Fig. S16). Here, we favored consistency of z at the expense of 903 
broader, more conservative confidence intervals. All the estimates reported below and in the 904 
main text therefore use the total area approach. 905 

 906 
 907 

 908 

 909 
Fig. S15 | Cartoon of raster sampling to build the MAR 910 
Map of mock samples of a species projected into a raster. Grey scale indicates the number of samples per grid cell. Red 911 
boxes exemplify the process of spatial subsampling of increasing area to build the MAR relationship. Two example grid sizes 912 
were created for illustrative purposes: (A) Small grid size or high spatial resolution. (B) Large grid size or low spatial 913 
resolution. 914 
 915 
 916 

  917 
Fig. S16 | MAR comparison with different area calculations. 918 
(A) Using total area, (B) using grid cell sum with at least one sample. For 1 degree latitude/longitude grid cell. 919 
  920 

Geographic subsampling strategy (inwards, outwards, random). It has been 921 
indicated that the way the Species-Area Relationship (SAR) and Endemics-Area Relationship 922 
(EAR) are created may create differences in the scaling parameter z. The plots and estimates 923 
above were produced by randomly placing boxes of different size or area across the 924 
distribution of the species. Often, however, either discovery of species or extinction happen 925 
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in certain patterns. For instance, we often imagine sampling an ecosystem concentrically 926 
outwards from a focal point, whereas we may think of the extinction process of species area 927 
reductions being concentrically inwards (33). Because these patterns seem of importance, we 928 
also calculated the MAR and EMAR outwards from the latitude and longitude median of all 929 
the samples in the map, moving outwardly until the map is filled (Fig. S17, Table S8). 930 
Likewise, the inward pattern is conducted in an inverse manner.  931 
 932 
 933 
 934 

 935 
Fig. S17 | MAR and EMAR in Arabidopsis thaliana using outward and inward sampling. 936 
Dividing A. thaliana native distribution in 1 degree lat/long grid, a square area of 1 degree was placed at the median of the 937 
sampling range and was expanded iteratively by 1 degree lat/long until all the area of the distribution was covered. (A-B) 938 
MAR and EMAR using a typical outward sampling. (C-D) MAR and EMAR using an inward sampling. The latter may not be 939 
a common process of sample collection, but it is common for extinction progress. 940 
 941 
 Table S8 | Outward and inward MAR and EMAR  942 
The MAR and EMAR relationship computed with inward or outward nested subsampling, calculating area only as those 943 
cells with samples. 944 
 945 
Relationship z 

MAR outwards 0.444 (0.412 - 0.476) 
EMAR outwards 1.086 (0.982 - 1.189) 
MAR inwards  0.561 (0.524 - 0.597) 
EMAR inwards 1.295 (1.192 - 1.399) 
  

 946 
 947 
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Incomplete sampling of the species. To check whether the relationship holds with 948 
few individuals of a species or limited geographic distributions, we compared the species-949 
wide MAR with that of subset populations. Downsampling the native distribution of A. 950 
thaliana to a region within North-East Spain (-2.00–4.25 degrees East, 36.52–42.97 degrees 951 
North), or to a region within Germany (2.69–13.73 degrees East, 50.0–52.0 degrees North), 952 
and using only 1,000 SNPs, we recovered zMAR= 0.423(0.233-0.614) for Spain and 953 
0.525(0.242-0.807) for Germany, which were close to the estimate based on the whole 954 
distribution (Table 1). This result is reassuring in that if migratory patterns are relatively 955 
homogeneous, one may be able to estimate this parameter from a subset of the species 956 
distribution. For heterogeneous population structure cases, we expect incomplete sampling to 957 
produce unreliable estimates. 958 
 959 

Number of genome-wide SNPs used. To check whether different numbers of SNPs 960 
used for the analyses would lead to different zMAR, we conducted analyses with random 961 
subsets consisting of 100, 1,000, and 10,000 SNPs, replicated 3 times. Estimates had a 962 
coefficient of variation of 4.7%, which is way below the standard error of typical estimates 963 
(Table 1). 964 
 965 

Locally-adaptive variants. We then aimed to understand the effect of utilizing SNPs 966 
that appear to be related to adaptation. To study this, we utilized an outdoor climate-967 
manipulated experiment that recorded fitness data (survivorship and reproduction output of 968 
seeds) for 515 Arabidopsis thaliana ecotypes part of the 1001 Genomes set in 8 environments 969 
(Exposito-Alonso, 2019). We devised two sets of alleles: 10,000 that were negatively 970 
correlated with fitness in a Genome-Wide Association across 8 different environments, and 971 
10,000 alleles that were associated positively with fitness in one environment but negatively 972 
in another (antagonistic pleiotropic). The MAR relationship was computed as before and 973 
compared to the original random (putatively neutral) set of alleles from the previous sections 974 
(Table S9). Although we see a trend that locally-adaptive alleles have a slightly higher z, 975 
estimates overlap. The effects seen here of having smaller z for adaptive alleles than neutral 976 
variation could, however, be due to top GWA SNPs often being ascertained to higher 977 
frequency than background SNPS. 978 
  979 
  980 
Table S9 | MAR for putatively neutral, deleterious, and locally adaptive alleles in Arabidopsis thaliana 981 
 982 
SNP set z 

neutral 0.324 (0.238 - 0.41) 
globally deleterious 0.209 (0.13 - 0.288) 
locally adaptive 0.291 (0.217 - 0.365) 
globally positive 0.234 (0.137 - 0.332) 
  

 983 
 984 
III.4 Local population extinction in Arabidopsis 985 
 986 
Using the MAR framework, we can make projections of loss of mutations (or its inverse, the 987 
remaining genetic diversity. By doing this, the known intuition is that with z >1 (as from 988 
EMAR) the decrease of diversity is much faster than the decrease of habitat, but with z < 1 989 
(as from MAR), there is a (desirable) slower dynamics of genetic loss. In the latter, despite 990 
habitats disappearing, reservoirs of mutations distributed across different locations enable 991 
conservation of certain variation. To study which one is more likely and to observe the 992 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.10.13.464000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Exposito-Alonso et al. 2022 Genetic diversity loss in the Anthropocene 
 

29 
 

stochastic nature of genetic diversity loss, we simulated in silico population extinctions of 993 
map cells from the Arabidopsis map (Fig. 1) and directly estimated from the genome matrix 994 
of remaining individuals the remaining genetic diversity. These simulations were 995 
implemented to capture different hypothesised patterns of extinction (see main text). All, 996 
however, agree with the more hopeful estimate of zMAR ≈ 0.3. 997 
 998 
  999 
 1000 

 1001 
Fig. S18 | Loss of mutations with habitat loss in A. thaliana.  1002 
Predictions based on MAR and EMAR functions and in silico extinction stochastic simulations in A. thaliana. 1003 
 1004 

To study the fit of the genetic loss predictions based on MAR relationships and the 1005 
results from computer simulations, we calculated a pseudo-R2 based on the squared 1006 
differences between the predicted line and the “observed” genetic loss as: . 1007 
This results in a high fit R2=0.872 of the MAR, built from random samples of distribution 1008 
areas, while the EMAR had a poor fit due to overestimation of genetic loss: R2=-0.710 1009 
(negative values indicate predictions are worse than the mean of the data). 1010 

 1011 
 1012 
III.5 Potential impacts of genetic loss in adaptability 1013 
 1014 
Although likely imperfect, Genome-Wide Associations could help to understand the 1015 
relevance of mutations in different frequency classes in model organisms such as Arabidopsis 1016 
thaliana. Fig. S19 shows the site frequency spectrum and a metric of the "total accumulated 1017 
effect in fitness" of the alleles in every bin. Effect sizes were retrieved from GWA on lifetime 1018 
fitness of 515 ecotypes in outdoor experiments (35). The average effect size across 8 fitness 1019 
GWA from 8 experimental combinations were used: high/low precipitation, high/low latitude 1020 
of outdoor stations, and high/low plant density. This exercise showcases the phenomenon that 1021 
low frequency variants often have strong effect sizes, which is expected under a stabilising 1022 
selection quantitative model (36). Because low frequency alleles will be the first to be lost 1023 
during a bottleneck (as would happen with the rapid extinction of populations of a species), 1024 
we may expect to lose variants that are related to fitness and thus potentially lose diversity 1025 
that could be advantageous in some environments. Alternatively, deleterious mutations are 1026 
also expected to be at low frequency, in which case would also make them more easily lost. 1027 
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 1028 
  1029 

 1030 
Fig. S19 | Bias of low frequency mutations and effect size for fitness traits in A. thaliana.  1031 
Grey bars represent the site frequency spectrum (scaled for visualisation purposes). The black dots represent the mean 1032 
absolute effects of alleles as estimated from GWAs with 515 accessions scored for fitness traits in 8 outdoor experiments. 1033 
 1034 
 1035 

To further build intuition on the progress of extinction in relation to loss of genetic 1036 
diversity that is not neutral, we repeated warm edge extinction simulations with several 1037 
subsets of alleles: randomly selected SNPs, SNPs that were associated positively in 2 1038 
environments (low precipitation Spain and high precipitation Germany) (labelled globally 1039 
positive), and SNPs that were associated positively in one environment and negatively in the 1040 
other (labelled antagonistic pleiotropic or putatively locally-adaptive). This (Fig. S20) 1041 
supports our intuition that although putatively functional alleles (or alleles tightly linked to 1042 
such functional ones) may have slower loss dynamics than neutral variants due to a high 1043 
frequency and zMAR , certain population extinction patterns may actually lead to rapid loss of 1044 
potentially-adaptive genetic diversity. The complexity of these patterns, together with the 1045 
evolutionary feedback created by lowering genetic standing variation that affects fitness, 1046 
make the inference of adaptive capacity loss even more difficult than just inferring the loss of 1047 
genetic diversity itself. 1048 

 1049 
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 1050 
Fig. S20 | Simulations illustrating the potential loss of locally-adaptive mutations in A. thaliana.  1051 
Simulations of extinction using multiple patterns of population losses with different subsets of alleles ascertained to show 1052 
positive associations in fitness GWA in two outdoor experiments (green), positive associations in one environment (e.g. low 1053 
precipitation) but negative in a second environment (e.g. high precipitation) or vice versa (green). These were compared to 1054 
a random set (grey). 1055 
 1056 
  1057 

 1058 
Fig. S21| Extinction simulations showing proxies of adaptive capacity of A. thaliana.  1059 
Using estimated allele effect sizes from 10,000 SNPs in the 1% P-value tails of several Genome-Wide Associations, we show 1060 
(A) Percentage of change of Va as a proxy of adaptive potential and (B) raw square sum of allele effects to showcase the 1061 
inflating effect of intermediate frequency alleles. Grey background shape indicates the minimum and maximum boundaries 1062 
of trajectories created by replicated frequency-matched non-effect sets of SNPs (one per GWA). The trajectories of some 1063 
effect alleles appear to show faster loss than the non-effect background trajectories.  1064 
 1065 
 1066 
III.6 Case study of a massive natural bottleneck 1067 
 1068 
A recent colonisation of North America by Arabidopsis thaliana can help us understand the 1069 
recovery of genetic variation. Whole-genome sequencing of 100 specimens of North 1070 
American A. thaliana indicates that it migrated from its native range of Europe to North 1071 
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America in the 17th century, and began spreading across the continent from a genetically-1072 
homogeneous population (37). Despite ideal conditions to re-gain genetic diversity—a 1073 
continental population expansion aided by human travel (38, 39)—only ~8,000 new 1074 
mutations were detected through spontaneous accumulation, equivalent to only ~0.067% of 1075 
the species-wide native genetic diversity. Because most of these mutations are at very low 1076 
frequency, as expected during population expansion, the scaling of genetic diversity with area 1077 
is approximately 1 ( zMAR = 1.025 [CI95%: 0.878 - 1.173]).  1078 
 1079 
 1080 
  1081 
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IV. The mutations-area relationship in diverse species 1082 
 1083 
Every dataset was retrieved online either from the published article in the form of VCF or 1084 
fastq files, or provided by the study authors upon request. All datasets were first transformed 1085 
into PLINK files using PLINK v1.9 (40). For computational efficiency, and since we showed 1086 
random subsampling does not appear to affect calculations of zMAR (Section III.3), we 1087 
conducted all analyses with up to 10,000 randomly selected SNPs for each species sampled 1088 
genome-wide, or in the largest chromosome for those species with large genomes. We aim to 1089 
use mostly unfiltered SNP datasets to avoid ascertainment biased toward intermediate 1090 
frequency SNPs, and therefore we did not apply a MAF filter for any analyses. By default, 1091 
PLINK transforms SNP matrices into biallelic (if multiallelic, it takes the two most common 1092 
alleles). Although the preservation of structural genetic variation may also be relevant and 1093 
may have important consequences in adaptation (41), we do not expect dramatic differences 1094 
in their scaling relationship compared to biallelic SNPs, as their SFS are relatively similar 1095 
(Structural variants may show a skew to lower frequency, resulting in steeper zMAR. By 1096 
excluding those, our analyses may be conservative). In order to properly characterise the 1097 
geographic distribution of a mutation using all available geo-tagged individuals, we filtered 1098 
for genotyping rate (plink --geno), and the final value is reported per dataset.  1099 
 1100 
Details for dataset processing or homogenization are described below.  1101 
 1102 

- The 1001 Arabidopsis Genomes Consortium (29) generated a WGS Illumina 1103 
sequencing dataset of Arabidopsis thaliana comprising 1,135 individuals and 1104 
11,769,920 SNPs. The VCF with the data is available at: https://1001genomes.org. 1105 
The raw sequencing data is available at 1106 
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA273563. These included recently 1107 
colonised regions such as North America or Japan. Analyses of zMAR were calculated 1108 
only for the native range, which comprises most of the species diversity (>99%) and 1109 
1001 individuals. For computational efficiency, we conducted analyses using 1110 
randomly sampled SNPs from chromosome 1, as we did not observe any difference 1111 
when sampling from other chromosomes. A number of MAR approaches were tested 1112 
in this species (section III). For homogeneity, the final reported estimate (Table 1) 1113 
was conducted following the same procedures as other species with a random sample 1114 
of 10,000 SNPs.  1115 

 1116 
- Lucek & Willi (42) recently published a dataset of WGS Illumina sequencing 108 1117 

Arabidopsis lyrata individuals from North America, which the authors directly shared 1118 
as a VCF. The raw data is available at 1119 
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB30473. We retrieved the 1120 
latitude/longitude data from the supplemental material. We applied a genotyping rate 1121 
filter ending with a dataset of 0.955431 genotyping rate. 10,000 SNPs were subsetted 1122 
at random from the genome-wide data. 1123 

 1124 
- Kreiner et al. (43) WGS Illumina sequenced 165 individuals of Amaranthus 1125 

tuberculatus. The raw data is available in the link 1126 
https://www.ebi.ac.uk/ena/browser/view/PRJEB31711. The authors provided a VCF. 1127 
Overall, 155 individuals contained latitude and longitude information and were kept 1128 
for the analyses. The genotyping rate was 0.98162 and we subsetted randomly 10,000 1129 
SNPs.  1130 

 1131 
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- Supple et al. (44) generated a dataset of Eucalyptus melliodora of 275 individuals 1132 
from 36 broadly distributed populations. The dataset was produced by Illumina 1133 
sequence Genotyping-by-Sequencing (GBS) libraries digested with ApeKI as in 1134 
Elshire et al. (2011). The raw data is available at 1135 
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA413429/. The authors provided the 1136 
dataset in PLINK format. Genotyping rate was 0.769807 but we did not apply a 1137 
further filter to avoid reducing the total number of variants. We conducted analyses 1138 
with all 9378 SNPs. The genotyping rate in this dataset is likely not problematic as the 1139 
total number of GPS locations is 36, with multiple individuals sampled closely. This 1140 
sampling scheme probably allows to characterise an allele's distribution correctly 1141 
despite the lower genotyping rate. 1142 

 1143 
- Vallejo-Marin et al. (45) generated a GBS dataset of 521 Mimulus plants, with 286 1144 

samples being Mimulus guttatus from its native distribution. Libraries for 1145 
Genotyping-By-Sequencing were prepared with PstI enzyme as described in Twyford 1146 
& Friedman (2015) and sequenced using Illumina. The VCF of this dataset is 1147 
available at http://hdl.handle.net/11667/168 and was also directly shared by the 1148 
authors. After applying a filtering for missingness, we ended up with a genotyping 1149 
rate of 0.904192 and 1,498 SNPs, which were used for the analyses. 1150 

 1151 
- Lovell & MacQueen (46) generated a WGS Illumina sequencing dataset of 1152 

Switchgrass, Panicum virgatum, of a collection of 732 individuals and 33,905,044 1153 
variants. The raw data is available at: 1154 
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA622568. The authors provided a 1155 
VCF file and latitude/longitude tables. 576 individuals were from natural collections. 1156 
The dataset contains also other collections such as cultivars, which were not used to 1157 
build the MAR. The genotyping rate was 0.976393 and analyses were conducted with 1158 
10,000 SNPs drawn from the largest chromosome. 1159 

 1160 
- MacLachlan et al. (47) generated a SNP chip dataset of Pinus contorta comprising 1161 

929 trees with latitude and longitude information and 32,449 SNPs. Genotyping was 1162 
conducted with the AdapTree lodgepole pine Affymetrix Axiom 50,298 SNP array 1163 
and data was provided in the supplemental material of the paper along with custom 1164 
scripts to parse the data. The database is available at 1165 
https://datadryad.org/stash/dataset/doi:10.5061/dryad.ncjsxkstp. The genome matrix 1166 
was transformed into PLINK. The genotyping rate was 0.959146, and analyses were 1167 
conducted with 10,000 randomly drawn SNPs. The fact that this dataset was created 1168 
with ascertained SNPs likely generates a frequency bias. In Fig. S22, one can see that 1169 
this may be a problem to calculate zMAR, as the mutations~area graph appears 1170 
nonlinear and rapidly saturates. This confirms the expectation that SNPs are 1171 
ascertained to be common, as they are discovered immediately with very few samples.  1172 

 1173 
- Tuskan et al. (48) WGS Illumina sequenced 882 Populus trichocarpa trees. The 1174 

dataset includes 28,342,826 SNPs. The data is available under this DOI 1175 
https://doi.ccs.ornl.gov/ui/doi/55 which redirects to a globus data sharing platform. 1176 
The authors provided the dataset as a VCF along with latitude/longitude coordinates. 1177 
This dataset was downsampled to the first chromosome. The genotyping rate was 1178 
0.921191, and 10,000 SNPs were randomly sampled for analyses. 1179 

 1180 
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- The Anopheles gambiae 1000 Genomes Consortium (49) (Phase 2) produced Whole-1181 
Genome Illumina sequencing data for 1142 wild-caught mosquitoes of Anopheles 1182 
gambiae. All raw and processed data are available through 1183 
https://www.malariagen.net/data. We downloaded a VCF and latitude/longitude 1184 
coordinate files. The VCF was filtered for genotyping rate ending up at a 0.998895 1185 
rate. For efficiency, 10,000 randomly-selected SNPs from the VCF of the largest 1186 
chromosome 2L were used for analyses downstream. 1187 

 1188 
- Fuller et al. (50) WGS Illumina sequenced 253 coral individuals of Acropora 1189 

millepora in 12 reefs. The dataset was downloaded as fastq files from the published 1190 
online material from https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA593014, 1191 
and SNPs were called as described in the supplemental material ending with 1192 
17,931,448, which were filtered to achieve a genotyping rate of 0.935709 for a total of 1193 
2,512 SNPs, which were used in the analyses. 1194 

 1195 
- Ruegg et al. (51) generated a dataset of 219 birds Empidonax traillii, for which 199 1196 

could be matched with geographic coordinates. SNPs were ascertained from several 1197 
publications using RAD seq and Fluidigm 96.96 IFC described and available in their 1198 
repository https://github.com/eriqande/ruegg-et-al-wifl-genoscape. A total of 349,014 1199 
SNPs were parsed using their custom scripts and we transformed them into PLINK 1200 
files. A genotyping rate filter was applied ending with a 0.96061 rate and 195,700 1201 
SNPs. 10,000 SNPs were selected at random for downstream analyses. Similarly, as 1202 
with the Pinus contorta, the incorporation of some ascertained SNPs in the dataset 1203 
based on Fluidigm technology could lead to quick saturation of the MAR curve (Fig. 1204 
S22).  1205 
 1206 

- Bay et al. (52) generated a dataset of 199 Setophaga petechia birds using a Restriction 1207 
site–associated DNA sequencing (RAD-Seq). The raw data is available at 1208 
https://www.ncbi.nlm.nih.gov/bioproject/421926. The authors shared a VCF file, with 1209 
a genotyping rate of 0.962419 and a total of 104,711 SNPs. 10,000 SNPs were 1210 
selected at random for downstream analyses. 1211 

 1212 
- Kingsley et al. (53) produced a dataset of 80 Peromyscus maniculatus deermice, for 1213 

which 78 could be matched with geographic locations. The SNP dataset was produced 1214 
using MY-select capture followed by Illumina sequencing. The VCF and PLINK files 1215 
are available via Figshare at https://doi.org/10.6084/m9.figshare.1541235. The dataset 1216 
included a total of 14,076 variants which were filtered to achieve a genotyping rate of 1217 
0.940411 for 2,946 SNPs, which were used in subsequent analyses. 1218 

 1219 
- We identified two published datasets for wolves. Smeds et al. (54) produced a WGS 1220 

Illumina sequencing dataset and combined it with pre-existing datasets for a total of 1221 
349 local dog breeds and wolves, of which 230 were Canis lupus from natural 1222 
populations. However, these samples did not have GPS locations assigned. The 1223 
second dataset we identified was from Schweizer et al. (55), which contained 107 1224 
geo-tagged grey wolves from North America using a capture and resequencing 1225 
approach for 1040 genes. The raw data is available at 1226 
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP065570, and meta-data along 1227 
with a VCF area available at https://doi.org/10.1111/mec.13467. This data contained 1228 
13,092 SNPs at 0.993061 calling rate, and a better geographic resolution. We report 1229 
data for the second dataset. 1230 
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 1231 
- The 1000 Genome Consortium (56) created WGS Illumina sequencing for over 2,504 1232 

humans and 24 unique geographic locations. We downloaded chromosome 1 from 1233 
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/datacollections/ 1234 
1000G2504highcoverage/working/20190425NYGCGATK/ and gathered the 1235 
population locations from https://www.internationalgenome.org/data-1236 
portal/population. To conduct analyses, we subsampled 10,000 SNPs at genotping 1237 
rate 0.991069. 1238 

 1239 
- Palacio-Mejia (57) used WGS for 591 Panicum hallii individuals to sequence at low 1240 

coverage. The raw data is available at 1241 
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA390994. The authors shared an 1242 
unfiltered VCF of 45,589 SNPs. Because of the low-coverage, stringent filters of 1243 
calling rates as used for other species would lead to removing all SNPs, and we settled 1244 
on a genotyping rate of 0.825824 for 242 variants, all of which were used for 1245 
downstream analyses. 1246 

 1247 
- Royer et al. (58) produced a SNP dataset using RAD-Seq based Genotyping-By-1248 

Sequencing of 290 Yucca brevifolia (Joshua Tree) individuals. A total of 10,695 SNPs 1249 
with a genotyping rate of 0.897501 wre used for the analyses. The data was available 1250 
at Dryad https://datadryad.org/stash/dataset/doi%253A10.5061%252Fdryad.7pj4t.  1251 

 1252 
- Kapun et al. (59) produced a WGS dataset of pooled Drosophila melanogaster, 1253 

sequencing ~80 pooled individuals from each of 271 populations as part of the 1254 
European "Drosophila Evolution over Space and Time" (DEST) project. A total of 1255 
5,019 shared SNPs with a genotyping rate of 0.937697 were used for analyses. The 1256 
dataset, both raw and processed, is available through https://dest.bio. 1257 

 1258 
- Di Santo et al. (60) studied the highly-threatened species Pinus torreyana. They used 1259 

Genotyping-by-Sequencing of 242 individuals of the last remaining populations. The 1260 
dataset is not yet available through NCBI but the authors kindly shared a VCF directly 1261 
with us. From a total set of 166,564 SNPs with a genotyping rate of 0.964632, 10,000 1262 
were randomly selected for our analyses. 1263 

 1264 
- von Seth et al. (61) studied the highly-threatened species Dicerorhinus sumatrensis. 1265 

They used Illumina WGS of 16 individuals of the last remaining populations. The raw 1266 
data is available at https://www.ebi.ac.uk/ena/browser/view/PRJEB35511. The 1267 
authors shared a VCF. In total, this comprises a set of 8,870,513 SNPs, with a 1268 
genotyping rate of 0.854862, which we did not further filter due to the small number 1269 
of individuals. For computational efficiency we selected 10,000 SNPs from the largest 1270 
chromosome. 1271 

 1272 
Information and results per species are gathered in Table 1 and its extended version, Table 1273 
S10, and the average zMAR across species are provided in Table S11. 1274 
 1275 
 1276 
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Fig. S22 | MAR summaries across species.  1277 
For each species we plot (left) the map of sample density in space and (right) the mutations-area relationship. (The locations 1278 
of 16 Dicerorhinus sumatrensis are unknown so only Sumatra is shown. Pinus torreyana was only found in two extant 1279 
populations.) 1280 
 1281 
Table S10 | The mutations-area relationship across species. Extended Table 1 1282 
The Mutations-Area Relationship (MAR) fitted with Area = Individuals and the scaled version. In the main text areas to 1283 
protect 90% of genetic diversity per species are provided given the scaled z*. Here, we also provide the average estimated 1284 
area based on % of grid cells per species to be transformed from 2015 to 2050 using the LUH2 dataset, the area where at 1285 
least 10% of grid cells will be transformed, and the genetic loss corresponding to those area transformations (see section 1286 
V.2). 1287 
 1288 

Species (study) SFS 
mod [ΔAIC] 

MAR (A=N) 
zN [CI95%] 

MAR scaled 
z* [CI95%] 

LUH2 
change  
‘50 

LUH2 
>10% 
change 
‘50 

LUH2 
extinct  
‘50 

LUH2 

>10% 
extinct  
‘50 

Arabidopsis thaliana (29) logN (85.8) 0.431 (0.423 - 0.439) 0.312 (0.305–0.32) 4.58 13.54 1.12 3.43 
Arabidopsis lyrata (42) logN (9592.4) 0.254 (0.238 - 0.27) 0.15 (0.136–0.165) 0.79 2.64 0.19 0.64 
Amaranthus tuberculatus (43) logN (7317.5) 0.244 (0.237 - 0.251) 0.142 (0.135–0.148) 4.86 11.13 1.19 2.79 
Eucalyptus melliodora (44) logN (157.5) 0.531 (0.526 - 0.536) 0.402 (0.397–0.406) 3.82 7.77 0.93 1.92 
Yucca brevifolia (58) logN(33300)  0.141 (0.128 - 0.155) 0.049 (0.037–0.062) 0.74 0 0.18 0 
Mimulus guttatus (45) logN (580.8) 0.342 (0.331 - 0.353) 0.231 (0.221–0.241) 3.78 NA 0.92 NA 
Panicum virgatum (46) logN (8345.2) 0.226 (0.215 - 0.237) 0.126 (0.116–0.136) 8.07 27.65 2 7.47 
Panicum hallii (57) logN (86) 0.983 (0.907 - 1.059) 0.814 (0.745 - 0.883) 3.78 11.36 0.92 2.85 
Pinus contorta (47) Wei (19413.7) 0.019 (0.018 - 0.02) - 1.95 5.54 0.47 1.36 
Pinus torreyana (60) logN(766156) 0.239 (0.232 - 0.245) 0.105 (0.099–0.11) 25.4 NA 6.79 NA 
Populus trichocarpa (48) logS (0) 0.268 (0.257 - 0.28) 0.164 (0.154–0.175) 4.68 17.28 1.14 4.45 
Anopheles gambiae (49) logS (0) 0.221 (0.209 - 0.233) 0.121 (0.11–0.132) 9.95 21.96 2.48 5.78 
Acropora millepora (50) logN (452.3)  0.403 (0.395 - 0.41) 0.287 (0.28–0.293) 72.73 84.69 26.79 36.26 
Drosophila melanogaster (59) logN(33300)  0.445 (0.433 - 0.458) 0.324 (0.313–0.336) 0.95 NA 0.23 NA 
Empidonax traillii (51) Wei (640401.9) 0.169 (0.139 - 0.199) 0.074 (0.047–0.101) 5.55 15.14 1.36 3.86 
Setophaga petechia (52) ln (67138.5) 0.251 (0.236 - 0.267) 0.149 (0.135 - 0.163) 2.83  7.54 0.69 1.86 
Peromyscus maniculatus (53) logN (1449.7) 0.844 (0.769 - 0.919) 0.68 (0.613–0.748) 5.61 13.68 1.38 3.47 
Dicerorhinus sumatrensis (61) w (107864.2) 0.474 (0.449 - 0.498) 0.123 (0.106–0.14) 0.25 NA 0.06 NA 
Canis lupus (55) logN (85.8) 0.29 (0.28 - 0.301) 0.183 (0.174–0.193) 0.23 NA 0.06 NA 
Homo sapiens (56) logN (9592.4) 0.395 (0.339 - 0.451) 0.28 (0.229–0.331) 28.81 40.13 7.83 11.58 
Extended acronyms: 1289 
logN: log Normal distribution. logS: log Series distribution. Wei: Weibull distribution. 1290 
 1291 

IV.1 Exclusion of species from global averages 1292 
 1293 
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To avoid contaminating across-species averages of zMAR with estimates of species whose data 1294 
we do not fully trust, we conducted global averages excluding species for which we are not 1295 
confident zMAR reflects the correct species diversity-area relationships. 1296 
 1297 
Pinus contorta showed a lower zMAR than what is expected in a theoretical baseline from 1298 
individual sampling (section II). This is most likely due to this being the only species for 1299 
which SNPs were previously ascertained to be intermediate frequency (i.e. the genome 1300 
technology was a SNP chip). This alters SFS, so we are not confident the zMAR is the true 1301 
parameter of the species. 1302 
 1303 
Yucca brevifolia was a dense sampling of several local populations within a constrained area 1304 
that is a hybrid zone. Since this species was not sampled range-wide we do not feel confident 1305 
to include it in downstream analyses. The species also has a lower z than expected (Fig. S5) 1306 
 1307 
Pinus torreyana only has two wild populations left, and therefore the MAR is based on two 1308 
area sizes (Fig. S22). Because this is such a threatened species with already most of its range 1309 
loss, we do not have confidence in the z parameter. 1310 
 1311 
Dicerorhinus sumatrensis has only ~30 estimated adult individuals in the wild. Again we do 1312 
not have confidence in the z parameter in such extinction-edge cases. 1313 
 1314 
Homo sapiens. We exclude our own species.  1315 
 1316 
Table S11 | Mean zMAR  and other summary statistics across species.  1317 
We selected those species that did not show artefacts in Fig. S22 or whose  zMAR  overlapped with 0 to calculate a species-1318 
wide mean. See section IV.1. 1319 
 1320 
 zMAR zMAR (A=N) z*MAR scaled 
mean 0.31 0.39 0.27 
mean se 0.038 0.053 0.048 
median 0.25 0.29 0.18 
IQR 0.15 0.19 0.17 
    

 1321 
 1322 

Although we could not see any obvious patterns relating zMAR with certain groups of 1323 
species (Table 1), we wondered whether any life history trait of the species analysed could 1324 
explain the variation we observed (see Table S12 of traits). An ANOVA did not show any 1325 
significant relationship. Because we know theoretically this parameter must be related to the 1326 
degree of dispersal ability of genotypes of a species relative to the whole species geographic 1327 
range, we expect traits involved in determining these to be good predictors. Future work will 1328 
be necessary to validate this, as the sample size (n=19) may not permit enough power to 1329 
detect these expected patterns. 1330 
 1331 
Table S12 | Traits, life history, and other characteristics of the analyzed species. 1332 
Species RedList 

Known 
Decline Kingdom Reproduction Pollination Mobility AreaRange 

Arabidopsis thaliana NO NO Plantae Selfing Selfing Sessile 27337467.4 
Arabidopsis lyrata NO NO Plantae Outcrossing Vector Sessile 2791301.4 
Amaranthus tuberculatus LC NO Plantae Outcrossing Vector Sessile 804124.8 
Eucalyptus melliodora VU NO Plantae Outcrossing Wind Sessile 948699.3 
Yucca brevifolia LC YES Plantae Outcrossing Vector Sessile 1213454.4 
Mimulus guttatus LC NO Plantae Outcrossing Vector Sessile 25138310.6 
Panicum virgatum LC NO Plantae Outcrossing Wind Sessile 6291400.2 
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Panicum hallii NO NO Plantae Outcrossing Wind Sessile 2188807.4 
Pinus contorta LC NO Plantae Outcrossing Wind Sessile 886182.2 
Pinus torreyana CR YES Plantae Outcrossing Wind Sessile 30781.95 
Populus trichocarpa LC NO Plantae Outcrossing Wind Sessile 1119664.1 
Drosophila melanogaster NO NO Animalia Outcrossing Activemating Fly 115208408 
Anopheles gambiae NO NO Animalia Outcrossing Activemating Fly 19959809.9 
Acropora millepora NT YES Animalia Outcrossing Activemating Fly 26725.9 
Empidonax traillii LC YES Animalia Outcrossing Activemating Fly 7027395.2 
Setophaga petechia LC NO Animalia Outcrossing Activemating Fly 15172431.15 
Peromyscus maniculatus LC NO Animalia Outcrossing Activemating Mobile 22609152.6 
Dicerorhinus  sumatrensis CR YES Animalia Outcrossing Activemating Mobile 3335605.58 
Canis lupus LC NO Animalia Outcrossing Activemating Mobile 19102403.5 
Homo sapiens NA NA NA NA NA NA 80763121.8 
 1333 
 1334 

Table S13 | Association of traits, life history, and other characteristics with zMAR.  1335 
Acronyms: NO=not assessed but likely non-threatened, LC=low concern, VU=vulnerable, CR=critically endangered 1336 
 

 
Df Sum Sq Mean Sq F value Pr(>F) 

RedList 4 0.0952396 0.0238099 0.5580988 0.7040464 
KnownDecline 1 0.0275537 0.0275537 0.6458527 0.4580865 
Kingdom 1 0.0011684 0.0011684 0.0273876 0.8750400 
Reproduction 1 0.0003238 0.0003238 0.0075890 0.9339612 
Pollination 1 0.0375975 0.0375975 0.8812784 0.3909509 
Mobility 1 0.1600627 0.1600627 3.7518370 0.1104995 
AreaRange 1 0.0174745 0.0174745 0.4095989 0.5503439 
Residuals 5 0.2133125 0.0426625 NA NA 
 1337 
 1338 

While no association between life history and zMAR was found (Table S13), this may 1339 
be due to limited power, as the sample size of species analysed here is still small, n=20. 1340 
Further studies expanding the numbers of species will be necessary to confirm or reject this 1341 
expected association. 1342 
 1343 
 1344 
 1345 
  1346 
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V. An estimate of global genetic diversity loss 1347 
 1348 
Using the approach described in section II.4, we generated a number of estimates either per 1349 
ecosystem or per species. All estimates below tried to be conservative, and thus we always 1350 
used the scaled zMAR values (section II.3.2.) 1351 
 1352 

V.1 Estimates of ecosystem area losses 1353 
  1354 
Table S14 | Millennium Ecosystem Assessment land cover transformation.  1355 
Changes of ecosystem area pre-21st century. Ecosystem names are repeated for ecosystem sub-classes. 1356 
Source: https://www.millenniumassessment.org  1357 
 1358 
 1359 
System Area (km2 x106) Earth % surface Protected areas (%) Area transformed (%) 
MARINE 349.3 68.6 0.3 NA 
COASTAL 17.2 4.1 7 NA 
 - TERRESTRIAL 6 4.1 4 11 
 - MARINE 11.2 2.2 9 NA 
INLAND WATER 10.3 7 12 11 
FOREST/WOODLAND 41.9 28.4 10 42 
 - TROPICAL 23.3 15.8 11 34 
 - TEMPERATE 6.2 4.2 16 67 
 - BOREAL 12.4 8.4 4 25 
DRYLAND 59.9 40.6 7 18 
 - HYPERARID 9.6 6.5 11 1 
 - ARID 15.3 10.4 6 5 
 - SEMIARID 22.3 15.3 6 25 
 - SUBHUMID 12.7 8.6 7 35 
ISLAND 7.1 4.8 17 17 
 - STATES 4.7 3.2 18 21 
MOUNTAINS 35.8 24.3 14 12 
- 300-1000 13 8.8 11 13 
- 1000-2500 11.3 7.7 14 13 
- 2500-4500 9.6 6.5 18 6 
- 4500+ 1.8 1.2 22 0.3 
POLAR 23 15.6 42 0.38 
CULTIVATED 35.3 23.9 6 47 
- PASTURE 0.1 0.1 4 11 
- CROPLAND 8.3 5.7 4 62 
- MIXED 26.9 18.2 6 43 
URBAN 3.6 2.4 0 100 
GLOBAL 510 NA 4 38 
 1360 
 1361 
 1362 

Ecosystem transformation has been tracked over decades. We extracted ecosystem 1363 
transformations from the Millennium Ecosystem Assessment (62), which estimated 1364 
ecosystem transformations from presumably native systems to cultivated or urban areas by 1365 
GLC2000 land cover dataset (Table S14). The forest/woodland is calculated as percentage 1366 
change between potential vegetation from WWF ecoregions to the current actual 1367 
forest/woodland areas from GLC2000. These provide bulk ecosystem reductions, not for a 1368 
given species, but may be a good proxy for an average across species.  1369 
 1370 
Table S15 | IPBES land cover transformation,  1371 
Source: https://ipbes.net  1372 
 1373 
Region Area(Mkm2) MSA_2010 MSA_2050_SSP2 MSA_2050_SSP1 MSA_2050_SSP3 

North America 20 65 56 NA NA 

Central and South America 18 65 53 NA NA 

Middle East and Northern Africa 11 81 77 NA NA 

Sub-Saharan Africa 24 70 56 NA NA 

Western and Central Europe 6 37 29 NA NA 

Russian region and Central Asia 21 73 65 NA NA 
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South Asia 5 44 35 NA NA 

China region 11 56 49 NA NA 

Southeast Asia 7 55 43 NA NA 

Japan, Korea and Oceania 8 71 57 NA NA 

Polar 2 96 91 NA NA 

World 132 66 56 62 54 

 1374 
 1375 
 1376 
 1377 

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 1378 
Services (IPBES) recently used a PBL satellite product from the Netherlands Environmental 1379 
Assessment Agency (https://www.pbl.nl/en/nature-and-biodiversity) to study the % of area 1380 
ecosystem transformation in the world (Table S15). This provides an updated estimate to the 1381 
Millennium Assessment as well as projections under several Shared Socioeconomic 1382 
Pathways (1-3) for 2050. These were reported per region as of 2010, and for projections to 1383 
2050 (scenario SSP2). Instead of direct area, the metric is a composite of land use 1384 
information to predict Mean Species Abundance (MSA), a measure of the size of populations 1385 
of wild organisms as a percentage of their inferred abundance in their natural state (% MSA).  1386 

 1387 
A global transformation metric can also be captured by the most updated land use 1388 

transformation data, the Land Use Harmonization 2 (release v2e for 2015-2011 and release 1389 
v2h for baseline 1850-2015) (63). Baseline transformation of primary ecosystems was 1390 
calculated subtracting the total area covered by primary forest (primf) and primary non-forest 1391 
(primn) variables between year 1850 layer (roughly pre-industrial baseline) and the present, 1392 
2015, as 1-A2015 / A1850 (Table S16). Analyses that use projections to mid-21st century were 1393 
conducted similarly as in (64), summing over all transitions from primary forest (primf), 1394 
primary non-forest (primn), secondary forest (secdf) and secondary non-forest (secdn) lands 1395 
to any other category for all years within the 2015-2050 period (see Table S10).  1396 
 1397 
Table S16 | Land Use Harmonization 2 from 1850 to 2015 1398 
Source: https://luh.umd.edu/data.shtml 1399 
 1400 
 Area % 

Primary forest transformed 43 
Primary non-forest transformed 50 
  

 1401 
Finally, we searched for timely estimates of forest reduction (based on vegetation 1402 

cover) reported in the Global Forest Watch website: 1403 
https://www.globalforestwatch.org/dashboards/global/ (accessed June 2021). From 2002 to 1404 
2020, there has been a global tree cover loss of 10%, with an annual tree cover loss of 0.6-1405 
1.1%.  1406 
  1407 

Although these are not direct area transformations, we also used the IUCN Red List 1408 
resource (https://www.iucnredlist.org, Table S12 shows status of the species analysed here), 1409 
which includes guides to categorise species as vulnerable, endangered, critically endangered, 1410 
and extinct, and has conducted extensive assessments across thousands of species (Table 1411 
S17). 1412 
 1413 
Table S17 | IUCN Red List categories of extinction risk and number of species.  1414 
Source: www.iucnredlist.org, January 2021 1415 
 1416 
IUCN Red List Description Criterion of area or pop. # plant species 
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Category reduction (>%) 
EX Extinct 100 164 
EW Extinct in the Wild 100  
CR Critically Endangered 80 4674 
EN Endangered 50 8593 
VU Vulnerable 30 8459 

NC, LR, NT, DD,LC 
No Concern, Low Risk, Near Threatened, 
Data Deficient, Least Concern, Other 

0 32237 

 1417 
 1418 

V.2 A global estimate of genetic loss 1419 
 1420 
Taking the estimates and standard error of zMAR  across species, and the world's reduction of 1421 
ecosystems we can calculate the fraction of genetic diversity reduction following the MAR 1422 
equation (section II.4), giving a range of estimates (Table S18).  1423 
 1424 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.10.13.464000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Exposito-Alonso et al. 2022 Genetic diversity loss in the Anthropocene 
 

49 
 

 1425 
Fig. S23 | The parameter space of genetic diversity loss, extended 1426 
(A) The theoretical space of genetic diversity loss. zMAR values (using area, unscaled for samples, differently from Fig. 32) 1427 
computed for species analyzed here are marked as orange vertical lines, with confidence intervals as orange shading. Blue 1428 
horizontal lines correspond to ecosystem transformations from the Millennium Assessment (light blue) and IPBES 1429 
Assessment (dark blue) (B) Density histogram of percentages of area transformed across ecosystems from the MA, with 1430 
averages per ecosystem marked in the distribution as well as horizontal lines in (A). (C) The number of species of each of the 1431 
IUCN categories and the most optimistic range of area or abundance reduction for each of the category brackets. 1432 
 1433 
 1434 
Table S18 | Estimates of average expected genetic loss for different ecosystems.  1435 
Assuming ecosystem transformation approximately translates into average species distribution reduction, and using the 1436 
ranges of zMAR  from Table 1 of the main text, we project the average genetic loss using the Mutations Area Relationship. 1437 
 1438 
System Area transformed  

(%) 
Genetic loss 
% (mean z based) 

Genetic loss 
% (min z based) 

Genetic loss 
% (max z based) 
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COASTAL TERRESTRIAL 11 3.2 0.9 9 
INLAND WATER 11 3.2 0.9 79.7 
FOREST/WOODLAND 42 14.0 4 35.8 
FOREST/WOODLAND 
TROPICAL 34 10.5 3 28.7 
FOREST/WOODLAND 
TEMPERATE 67 26.5 7.9 59.4 
FOREST/WOODLAND 
BOREAL 25 7.7 2.1 20.9 
DRYLAND 18 5.4 1.5 14.9 
DRYLAND HYPERARID 1 0.3 0.1 0.8 
DRYLAND ARID 5 1.4 0.4 4.1 
DRYLAND SEMIARID 25 7.7 2.1 20.9 
DRYLAND SUBHUMID 35 11.3 3.2 29.6 
ISLAND 17 5.0 1.4 14.1 
MOUNTAINS 12 3.5 0.9 9.9 
MOUNTAINS 300-1000 13 3.8 1 10.7 
MOUNTAINS 1000-2500 13 3.8 1 10.7 
MOUNTAINS 2500-4500 6 1.7 0.5 4.9 
MOUNTAINS 4500+ 0.3 0.1 0 0.2 
POLAR 0.4 0.1 0 0.3 
GLOBAL 38 12.4 3.5 32.2 
 1439 
 1440 

Assuming the average zMAR, and utilising tree cover from the Global Forest Watch 1441 
(https://www.globalforestwatch.org), which estimates 0.6-1.1% of transformation per year 1442 
across Canada, United States and Australia, we extrapolated genetic diversity loss in the next 1443 
50 years for tree species to be 8-15% genetic diversity loss.  1444 

 1445 
Assuming that the calculated zMAR estimates (Table 1) are representative of plant 1446 

species, we conducted an experiment to create a distribution of % of genetic diversity loss in 1447 
threatened species. We used the number of species in each IUCN category (Table S17) for a 1448 
total of 54,127 plant species. For plant species, one of the evaluation criteria of percentage of 1449 
population loss likely translates faithfully to area reduction in the species. Thus, the 1450 
proportion of species per category gives a discrete probability distribution of the ranges of 1451 
percentage of area loss: P(0-29%)=0.596, P(30-49%)=0.156, P(50-79%)=0.159, P(80-1452 
99%)=0.086, P(99%-100%)=0.003. Using a simulation-based sampling approach, we drew 1453 
350,000 random area reductions At / At-1 from the previous distribution and a zMAR from the 1454 
mean and variance of our estimates from Table 1 for plants. These were plugged into the 1455 
MAR equation (Section II.4) to calculate the percentage of genetic diversity loss of these 1456 
350,000 random draws. The resulting distribution had a median and interquartile range of 1457 
17.53 % [7.51- 31.82]..  1458 

 1459 
Using the Land Use Harmonization 2 dataset, we also create per-species predictions 1460 

based on the % transformation of each of the sampled regions per species (Table S14). As 1461 
before, the land use transformations that merit be considered area losses are all transitions 1462 
from primary forest (primf), primary non-forest (primn), secondary forest (secdf) and 1463 
secondary non-forest (secdn) lands to any other category. Taking all the locations where each 1464 
species has been sampled, we extracted the predicted % of land use change per cell and 1465 
summed over all cells where individuals had been sampled (we call this LUH2 change ‘50, 1466 
see column in Table S10). We also produced the alternative area loss estimate taking that at 1467 
least 10% predicted habitat transformation for a grid cell renders the entire area of that grid 1468 
cell as impacted or lost  (we call this LUH2  >10% change ‘50). These per-species area losses, 1469 
in combination with the matched zMAR, provided a range of potential loss estimates to 2050 1470 
ranging 0-36% depending on the species (Table S10). 1471 

 1472 
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 1473 

V.3 Community ecology simulations and MAR 1474 
 1475 
To test whether intermediate levels of MAR would be expected across species in entire 1476 
ecosystems, we conducted community assembly simulations of ~100-500 species following 1477 
the Neutral Theory of Biodiversity (1, 41) and coalescent simulations (23) using the software 1478 
MESS (65). These simulations are computationally demanding and could not run in a 1479 
complete 2D spatial grid. Instead, they were simulated in a mainland-island system, with 1480 
islands of increasing areas. The community forms by species colonising an empty island 1481 
according to Hubbell's Unified Neutral Theory of Biodiversity and Biogeography (UNTB), 1482 
where all species are equally likely to colonise and persist in the local community. Continued 1483 
colonisation and migration to the local community continues to bring in new species that may 1484 
or may not survive, while also continuously bringing in individuals of species already in the 1485 
local community. The community assembly process ends when the community has reached 1486 
an equilibrium denoted as the balance between local extinction and new species dispersing 1487 
into the area (Hubbell 2001). Once the forward-time process has ended, we simulate the 1488 
coalescent history of each species backward in time. For this, MESS considers the population 1489 
size, divergence time, and migration rates of the meta and local communities. These 1490 
coalescent simulations provide us with genetic data and ultimately diversity estimates for 1491 
each species in the community. 1492 
 1493 

We simulated 100 MESS communities, and for each community the size of the local 1494 
community was varied from 1K to 100K. We varied the size of communities to emulate 1495 
variation in area occupied by a given community because we assume as the number of 1496 
individuals in a community increases from 1,000 to 100,000, so does the area occupied. All 1497 
other parameters were kept consistent across each of these community simulations, and most 1498 
remained at their default value. The parameters changed were the length of the sequences 1499 
simulated for the coalescent-based simulations, which was fixed at 10,000 bp, and the 1500 
migration rate, which was fixed at 0.01. 1501 
 1502 
  The simulation output was used to then compute a single zSAR for the system as 1503 
S=cAzSAR, and one zMAR for each species in the same way, M=cAzMAR. This resulted in the 1504 
distribution of zMAR from Fig. S24. This confirmed that we can recover typical zSAR and zMAR 1505 
values from completely stochastic neutral yet spatially structured systems such as species in 1506 
communities and mutations in populations of a species. 1507 
 1508 

 1509 
Fig. S24 | zMAR calculated from MESS eco-evolutionary simulations 1510 
Using the MESS framework of a mainland-island model with different island sizes, zMAR per species is recovered. The 1511 
stochastic nature of the simulations results in each species having different abundances and migration histories that change 1512 
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the scaling value. Values were typically around 0.3. Rarely some species had values above 1, which appear could be noisy 1513 
estimates from recently colonising species in the simulations.  1514 
. 1515 
 1516 
 1517 

V.4 The nested species extinction and genetic diversity loss processes 1518 
 1519 
Finally, we worried that our estimates of V.2 would be mistaken as overestimates. In fact, we 1520 
believe these may be underestimated. Recent policy proposals for the United Nations’ 1521 
Sustainability Goals emphasize that the target of protecting 90% of species genetic diversity 1522 
for all species cannot leave the already-extinct species behind (66) (That is, one cannot 1523 
protect 90% of species and leave 10% to become extinct to meet this goal). This clearly 1524 
exemplifies a problem in conservation biology that what researchers can study is (most of the 1525 
time) what has escaped extinction, and therefore if we do not account for extinct species in 1526 
our overall estimates of genetic diversity loss we may naively think ecosystems have not 1527 
suffered genetic diversity loss (i.e. in the extreme scenario, an ecosystem that has lost all but 1528 
one abundant species may not really appear genetically eroded if such species is in good 1529 
shape).  1530 
 1531 
 We then created spatial simulations in R where 1,000 species are distributed in 1532 
100x100 grid cells following a UNTB abundance distribution and then proceeded with an 1533 
edge extinction of the ecosystem (see Fig. S25 for a cartoon).  1534 
 1535 
 1536 
 1537 

  1538 
Fig. S25 | Cartoon of nested extinction of species and genetic diversity loss.  1539 
An ecosystem with multiple species within it (left), distributed in space, with few species broadly distributed and many 1540 
narrowly distributed. Moving one level of biological organization lower, mutations within species (right) are also spatially 1541 
distributed with many narrowly distributed. As extinction happens (red line moving bottom to top), all species below the red 1542 
line go extinct, but only the mutations within species 1 below the line are lost, while mutations above the line remain. 1543 
Species 3 has already become extinct, and therefore also all the mutations within it. 1544 
 1545 
 1546 

Two extreme types of distributions of species can be imagined: species are randomly 1547 
placed in space, or species are found mostly in perfectly contiguous ranges (We ended up 1548 
using as an example a simulation with 85% of the individuals of a species found in a core 1549 
square continuous distribution and 15% found outside that core in fragmented observations, 1550 
as this scenario produced the canonical SAR of z~0.3). Spatial structure interestingly creates 1551 
two extreme distributions of area reductions across species (Fig. S26): random placement of 1552 
cell habitats essentially show that the average area reduction per ecosystem is followed by 1553 
most species, while autocorrelated placement of cell habitats create a U distribution in area 1554 
reductions, where at the beginning of the extinction process most species have not 1555 
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experienced any impact (Fig. S26B left) but at the end of ecosystem reduction virtually all 1556 
species are already extinct (Note we may be at the beginning of S26B process given the data 1557 
from IUCN, Fig 3C). 1558 
 1559 
 1560 

 1561 
Fig. S26 | The distribution of per-species area lost and total ecosystem extinction with 1000 species 1562 
Two ecosystems of 100x100 cells with 1000 species. Species are either randomly distributed in cells (A) or spatially 1563 
autocorrelated with occupying mostly contiguous cells (B). As the extinction process wipes out part of the ecosystem 1564 
(snapshots are provided at 5%, 50%, and 95%), the area loss per species (and hence genetic diversity lost) is tracked. In (A) 1565 
the average area lost per species is roughly the total reduction of the ecosystem, whereas in (B) the distribution is U shaped 1566 
(note the log-scaled y-axis). While in (B) the mean area lost in the distribution correctly captures the area loss of the 1567 
ecosystem, per species losses are highly uneven. 1568 
 1569 

To study the consequence of the above differential area loss and the effect of some 1570 
species going extinct on the total ecosystem genetic diversity, we conducted the next 1571 
analysis: For extant species, we assumed they would lose genetic diversity following the 1572 
MAR relationship (section II.4), with all species having zMAR = 0.3 for simplicity (i.e. all 1573 
species lose genetic diversity at the same rate). For extinct species (100% of their area 1574 
reduced), we considered genetic diversity loss was 100%. The compound total genetic 1575 
diversity loss would then just be the sum of those  (Of course, in reality species 1576 
may vary in their genome-wide diversity average, and we could for instance use Watterson’s 1577 

 (see section II.2) to scale the total loss of genetic diversity in the ecosystem accounting 1578 
for different basal level of diversity per species: ). Interestingly, if we calculate the 1579 
z of the slope of compound genetic diversity across species in an ecosystem it is much larger 1580 
than MAR or SAR alone: zcompunded = 0.6 (Fig. S27).  1581 

 1582 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2021.10.13.464000doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464000
http://creativecommons.org/licenses/by-nc/4.0/


 
 
Exposito-Alonso et al. 2022 Genetic diversity loss in the Anthropocene 
 

54 
 

 1583 
Fig. S27 | Numeric simulation of nested species and genetic diversity loss.  1584 
(A) Simulating the extinction of an ecosystem with 1,000 species that follow a log-normal species abundance curve. 1585 
Extinction of the ecosystem creates a curve of species loss of z~0.3 (grey). Likewise, each species trajectory (light red, 15 1586 
species drawn randomly) follows a simulated genetic diversity loss of zMAR~0.3 as they lose area. Because species' 1587 
geographic distributions are by construction smaller than the whole ecosystem area, those distributed closer to the start of 1588 
the extinction front lose area first, while those distributed farthest from the extinction front only lose area when the 1589 
ecosystem is almost completely destroyed. Because genetic diversity loss is both due to complete extinction of species as well 1590 
as area reduction of extant species, the compound genetic diversity loss curve (red) follows the faster loss dynamics. (B) 1591 
Holding zSAR=0.3 constant, and varying zMAR  in independent simulations shows that the compound genetic diversity across 1592 
species is close to the sum of both z slopes (the SAR and the MAR), but it saturates at ca. 0.85 (grey dotted line shows zMAR 1593 
+ zSAR). 1594 
 1595 
 1596 
  1597 
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VI. Limitations and outlook 1598 
 1599 
In this last section we list some potential limitations of an inherently simple scaling law, and 1600 
what approaches could be used to address those and improve genetic diversity loss 1601 
projections. 1602 
 1603 
VI.1 Reasons for overestimations 1604 
 1605 
Many researchers have posited that SAR likely overestimates species extinction (33, 67). For 1606 
instance: 1607 

- Ignoring that a diversity-area relationship can be defined outwards, inwards, or 1608 
focusing on endemisms can have an impact (10, 33, 67). To address this, we 1609 
confirmed relative consistency between inward, outward, and random placement 1610 
MAR, and proposed that the EMAR may not be that appropriate to study genetic 1611 
diversity loss (or at least EMAR does not show predictability in our simulation). 1612 

- Species may persist in altered habitats, like some animals are known to do (68). We 1613 
have focused some of the estimates in this study on plants, for which area loss should 1614 
equate to population loss and vice versa, but further extensions could be applied in the 1615 
future as described by Pereira and Daily (68). 1616 

- SAR is not a mechanistic model (69). We have derived its ranges of possible values 1617 
and averages analytically and are beginning to understand how evolutionary forces 1618 
shape MAR. Realistic simulations can help understand in a process-based framework 1619 
how populations (and their MAR) react to partial population extinction (continuous 1620 
space simulations with progressive area reductions appear to fit well with the MAR 1621 
predictions calculated before the extinction process starts, section III.2.6). 1622 

- There is a scale dependence in the SAR slope, with slight increase in the slope at large 1623 
scales (10). Since power laws are typically fit with large-scale datasets and used to 1624 
predict local scale extinctions, predictions could be overestimated at local scales. 1625 

 1626 
VI.2 Reasons for underestimations 1627 
 1628 
While the simplicity of power laws to make predictions of species extinction may lead to 1629 
overestimations, there are also important reasons to believe MAR would underestimate 1630 
genetic loss. 1631 

- Perhaps even more so than in species list datasets and census, the discovery of low 1632 
frequency genetic variants is highly underpowered (70). These are highly prevalent, 1633 
but genomic pipelines, with the aim to be conservative, often filter out rare variants. 1634 
This would underestimate zMAR and therefore the degree of genetic diversity loss with 1635 
area shrinkage. This is clear in the pre-selected-only marker dataset of Pinus contorta. 1636 

- Related to the previous: Although sequencing methods have an error rate that 1637 
misreads true nucleotide sequences, this rate is typically extremely low (many 1638 
sequencing projects described here used Illumina HiSeq series, which has a 0.112% 1639 
error rate, or about 1 misread nucleotide in 1000). This could intuitively lead to 1640 
overestimates in mutations in space but in fact, the mis-reading of DNA ends up 1641 
causing an underestimation. This is because bioinformatic software that transforms 1642 
raw data into SNP variant tables errs towards the conservative direction, often not 1643 
calling mutations that have been observed very few times, and thus likely under-1644 
representing rare mutations (71).  1645 

- The use of scaled zMAR proposed in section II.3.2. accounts for that the minimum zMAR 1646 
is rarely exactly 0, especially when sample sizes are limited. We use this correction 1647 
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scaling down zMAR to be conservative. However, zMAR could only in very exceptional 1648 
circumstances be 1, but we do not correct for this, again, to have a conservatively low 1649 
zMAR. Hence, our conservative approach would generally lead to underestimates of 1650 
genetic diversity loss. 1651 

- When species shrink in area, the effective population size of the remaining population 1652 
decreases, increasing drift and moving towards a lower diversity equilibrium. This 1653 
reactive process is not captured by the phenomenological MAR relationship. 1654 

- The nested extinction of species and genetic diversity loss (section V.3) would lead 1655 
us, by the right of “survival bias”, to underestimate how much genetic diversity has 1656 
been lost cumulative in an ecosystem. 1657 

 1658 
VI.3 Final notes 1659 
 1660 
Ultimately, to make accurate predictions of genetic diversity loss and increased extinction 1661 
risk of species, very detailed data and expert assessment per species will be required: census 1662 
sizes, genome size, migration in metapopulations, mating system, detailed maps of genetic 1663 
makeups, and finescale area transformations. This could enable mechanistic models projected 1664 
forward-in-time such as discussed in section II.3.6. The production of new genomic datasets 1665 
across entire ecosystems should further help create maps of genetic diversity at high 1666 
resolution to track losses (72–74).  1667 
 1668 

Our philosophy in this work has been to err on the conservative side when projecting 1669 
genetic diversity loss (e.g. using area calculations that produce lower zMAR values, scaling 1670 
them for low sample bias, using lower estimates of ecosystem transformation, etc.). However, 1671 
this conservative approach can also lead us into under-estimating loss. As described in V.4., 1672 
the phenomenon of survival bias likely leads us to underestimate what has been lost given we 1673 
do not observe it. A phenomenon also highlighted as a possible explanation for the relatively 1674 
shy difference in genetic diversity between threatened and non-threatened species (75, 76) 1675 

 1676 
Because to our knowledge, no other approaches exist to project genetic diversity, we 1677 

believe that MAR is a quantitative and scalable first-approximation of genetic diversity that 1678 
would just require accurate understanding of abundance or area reductions and minimal 1679 
information about population structure or mating/dispersal/range relationships. Given that 1680 
scaling relationships are already applied by conservation policy (77), and given that 1681 
assumptions and limitations are understood, we expect MAR to become a relevant tool to 1682 
project losses of a dimension of biodiversity so far mostly invisible or unaddressable in large 1683 
conservation projections. 1684 
 1685 
 1686 
  1687 
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