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Abstract

When we choose actions aimed at achieving long-range goals, proximal information cannot
be exploited in a blindly myopic way, as relevant future information must often be taken
into account. However, when long-range information is irrelevant to achieving proximal
subgoals, it can be desirable to focus exclusively on subgoal-relevant considerations.
Here, we consider how an underlying parallel mechanism simultaneously influenced by
proximal and future information may be at work when decision makers confront both
types of situations. Participants were asked to find the shortest path in a simple maze
where the optimal path depended on both starting-point and goal-proximal constraints.
This simple task was then embedded in a more complex maze where the same two
constraints, but not the final goal position, determined the optimal path to the subgoal.
In both tasks, initial choice responses predominantly reflected the joint influence from
relevant immediate and future constraints, yet we also found systematic deviations from
optimality. We modeled initial path choice as an evidence integration process and found
that participants weighted the starting-point more than the equally relevant goal in
the simple task. In the complex task, there was no evidence of a separate processing
stage where participants first zeroed in on the subgoal as would be expected if task
decomposition occurred strictly prior to choosing a path to the subgoal. Participants
again placed slightly more weight on the starting point than the subgoal as in the simple
task, and also placing some weight on the irrelevant final goal. These results suggest
that optimizing decision making can be viewed as adjusting the weighting of constraints
toward values that favor relevant ones in a given task context, and that the dynamic
re-weighting of constraints at different points in a decision process can allow an inherently
parallel process to exhibit approximate emergent hierarchical structure.

Author Summary

Optimal approaches to achieving long-term goals often require considering relevant
future information and, at other times, chunking a problem into subproblems that can
be focused on one at a time. These two situations seemingly require separate modes of
thinking. While simultaneous consideration allows proximal and future information to
jointly guide our actions, tackling subgoals is often thought to require first coming up
with a higher-level plan, then focusing on solving each subtask separately. In this study,
we examine how both abilities might be explained by a shared mechanism. We conducted
behavioral experiments and used computational modeling to understand how people
weight various factors in choosing goal-reaching paths. We found that their weighting
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of task-relevant factors allowed them to approximate optimal path choices, but they
tend to place somewhat more weight on factors relevant to the immediate next action
than on future considerations, and suboptimally place some weight on task-irrelevant
factors. These results open up the space for considering the role of situation-dependent
constraint weighting as a mechanism that allows people to integrate multiple pieces
of information in decision making in a flexible, context-sensitive manner in service of
optimizing performance in reaching an overall goal.

Introduction 1

A hallmark of human intelligence is our ability to conduct goal-directed behavior: our 2

plans and actions are guided by long-term goals. For behavior to be effective towards 3

achieving a goal, future information related to the goal often shapes many critical steps 4

in our decision making. For example, when packing for an upcoming trip, the weather 5

and our planned activities at the destination must be taken into account, even though 6

the act of packing happens in an early stage in the global context of traveling. Studies 7

have examined how initial-stage decision making already considers future choice points 8

and incorporates whole-path or aggregated future information in a decision tree [1–3]. 9

Backward reasoning stemming from known conditions about a goal is even sometimes 10

the optimal strategy in figuring out how to achieve the goal [4]. 11

Yet efficient planning is also marked by the ability to break a problem into smaller 12

problems, achieving key subgoals before planning details toward the ultimate goal. In 13

some cases, information regarding a final goal may be completely irrelevant to solving a 14

subtask at hand. To come back to our traveling example, deciding which transportation 15

to take to the departure airport is one subtask that can be independent to the final goal, 16

once the flight and departure time has been settled. Indeed, studies have shown that 17

humans engage in hierarchical planning in such situations, using learned knowledge to 18

construct subtasks in novel problems and switching in and out of sequences of different 19

subgoal contexts as they progress through them [5–7]. One early characterization of how 20

people approach decomposing a problem is means-ends analysis [8], which emphasizes the 21

application of relevant means to solve a sequence of intermediate subgoals to iteratively get 22

closer to the final goal. More recent work provides precise computational accounts of how 23

humans are able to optimally and efficiently discover hierarchical task structures [7,9–11]. 24

The idea of temporarily focusing on subtasks before returning to the global task context 25

is also at the core of hierarchical reinforcement learning, a computational framework 26

capturing temporally abstract action plans in reward-based learning [12]. 27

From an algorithmic perspective, humans can certainly approach solving a long-term 28

goal by first identifying the key subgoals that must be achieved before the final goal, 29

then devoting effort to tackle each subgoal. If the identified higher-level subgoal sequence 30

is often close-to-optimal, this approach would naturally support efficiently solving the 31

overall goal through the deployment of a series of lower-level, subtask decision processes. 32

However, such a sequential mode of thinking differs from an overall parallel consideration 33

of immediate as well as future constraints that is often beneficial in service of an overall 34

goal and would seem to require different subprocesses to be responsible for breaking 35

down the problem, focusing in on a subpart, then deciding the appropriate solution to 36

each subproblem. 37

Here, we consider how an inherently parallel process can both account for the co- 38

exploitation of relevant immediate and future constraints and also exhibit approximate 39

adherence to the behavior of a more strictly sequential, hierarchically structured process. 40

Indeed, many domains of human cognition that have often been viewed as inherently 41

sequential, including reading, sequential action, and language production, need not rely 42

on strictly serial processing [13–17]. Evidence of a degree of parallelism in these domains 43
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comes from observations of both highly optimized, skilled behaviors as well as errors 44

which seem to be deviations from optimality. For example, optimally typing the sequence 45

of letters in a word can involve hand movements that prospectively prepare for future 46

letters [17], increasing overall speed and fluency. People also produce speech errors 47

reflecting intruding influences from words before or after the target word [13]. These 48

behavioral patterns reveal interactions between what may otherwise be thought of as 49

independent steps in a sequential process, rendering serially-staged characterizations of 50

the cognitive process approximate rather than exact characterizations. This has led to 51

the proposal that parallel processing mechanisms are the core form of computation in 52

the brain [15]. Similar types of integrative and context-sensitive considerations, rather 53

than modular and serial computations, may also play a role in value-based decision 54

making [18]. 55

We suggest that efficient goal-directed decision making can be supported by a parallel 56

processing mechanism through the flexible weighting of multiple constraints or factors. 57

Just as the optimal exploitation of relevant immediate and long-range information may 58

require the simultaneous and approximately equally weighted consideration of multiple 59

constraints, an approximation to focusing exclusively on a particular subtask can also 60

arise out of a simultaneous and appropriately weighted consideration of subtask-relevant 61

and subtask-irrelevant factors. Consider, for example, the goal-directed problem shown 62

in Fig 1A. The task is simply to find the shortest path to the goal location, where the 63

optimal path depends both on constraints proximal to the starting point (the starting 64

position relative to the starting-point proximal wall) and on constraints proximal to the 65

goal location (the goal position behind the goal-proximal wall). Although a sequential 66

consideration of these two constraints is possible, the optimal approach would be to 67

simultaneously consider and equally weight both constraints in decision making. 68

A B
Task:       (start)           (goal)

parallel

C

D

sequential

Fig 1. Sequential and parallel approaches to solving a goal hierarchy. A. Achieving the goal benefits from the
joint consideration of immediate and future information. B. The same task in A. embedded in a larger task context
leading to a critical subgoal location. C. A sequential approach to solving the goal hierarchy in B. by first decomposing
the goal sequence, then exclusively focusing on achieving the subgoal before considering the final goal. D. Approximately
exclusive focus on the subgoal can emerge in a parallel approach through the simultaneous but different weighting of
subgoal-relevant and subgoal-irrelevant factors. However, this approach may allow suboptimal influence from
out-of-subtask factors leading to deviations from strictly optimal decision making.

When the same task is embedded in a larger task context, such that what was the goal 69

location before becomes a crucial subgoal location on the way to the final goal (Fig 1B), 70

finding the optimal overall path still requires balanced consideration of the same two 71

constraints (now associated with the starting point and the subgoal location). Thus, 72

once the subgoal has been determined, an optimal decision maker should focus on the 73
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subtask alone, regardless of the location of the final goal. In a sequential approach, the 74

associated mental processes might be marked by an initial stage of explicitly processing 75

the task structure and identifying the relevant subgoal, followed by an exclusive focus 76

on only the two optimality-relevant constraints leading up to the subgoal (Fig 1C). 77

But if parallel mechanisms would eventually be recruited to optimally process the two 78

subgoal-relevant constraints, the same mechanism may also support the processing of 79

the goal hierarchy in this case. For path selection to be close to optimal, the weighting 80

of the various factors considered simultaneously must allow the two relevant constraints 81

within the subtask context to exert a near equal and jointly predominant influence. But 82

if weighting is a matter of degree, the irrelevant final goal may sometimes remain active 83

enough to exert a subtle influence while the initial path is being chosen, perhaps biasing 84

and/or degrading the process of choosing a path (Fig 1D). 85

To explore these issues, we studied how human participants approached solving the 86

maze problems shown in Fig 2. We compared the decision processes and outcomes when 87

the core two-constraint task was presented as an independent problem or embedded 88

as a subtask that had to be accomplished on the way to a final goal. We tested if 89

participants’ decision making was more in accordance with a sequential approach or 90

a parallel weighting approach, exploiting the idea that these different approaches in 91

this context can be modeled using an evidence integration framework [19]. Specifically, 92

a sequentially-staged approach would lead to an increase in the initial non-decision 93

time to process the task hierarchy, followed by the very same integration of the two 94

optimality-relevant constraints prior to the subgoal location when the subtask was 95

presented alone. In a parallel approach, path choices may instead reflect influences 96

from both the subgoal-relevant constraints and the subgoal-irrelevant final goal. We 97

first confirmed that choosing among candidate goal-reaching paths indeed involved the 98

joint consideration of both immediate and relevant long-range constraints, though the 99

myopic constraint tended to receive somewhat greater weight (Experiment 1). When 100

the same task appeared in a subtask context (Experiment 2), we found no delayed 101

onset of the integration of the subgoal-relevant constraints, and decisions were subject 102

to degradation and biasing influence from the irrelevant final goal, consistent with 103

predictions from the parallel approach. In the General Discussion, we return to the 104

broader question of whether a more parallel, constraint-satisfaction based approach 105

might be the biological brain’s way of approximating the optimal weighting of relevant 106

constraints in different goal-directed task contexts, through the dynamic modulation of 107

the weighting of constraints as thought and behavior unfold. 108
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Base Trials

Congruent 
Advantage

Incongruent 
Advantage

Base Trials

Congruent 
Advantage

Incongruent 
Advantage

Base Trials

Neutral Myopic Advantage Future Advantage

Base Trials

Neutral Myopic Advantage Future Advantage  Experiment 2

Subgoal Trials

Neutral

NT

Subgoal Trials

Myopic Advantage

SA

Subgoal Trials

Congruent Advantage

CA

Subgoal Trials

Incongruent Advantage

IA

NT SA CA IA

  Experiment 1

base

subgoal

Fig 2. Experimental design. Blue block, starting point. Starred red block, goal location. Correspondence between
the two optimality-relevant path advantages: NT=neutral advantage, SA=single advantage, CA=congruent advantage,
IA=incongruent advantage.

Results 109

Experiment 1 110

We first examined how people take into account the immediate and future constraints in 111

achieving a goal in a maze task where the starting-point proximal (myopic) advantage 112

and the goal-proximal (future) advantage of candidate goal-reaching paths together 113

determine the shortest path. We analyzed how these two path advantages shaped the 114

decision in each trial, as revealed by the first action choice which determines the overall 115

path toward the goal, and the time taken to take the first step (response time). We also 116

jointly modeled the choice and response time in trials with directly competing myopic 117

and future path advantages as a parallel, drift-diffusion process. 118

Methods 119

Ethics Statement. This study was approved by the Stanford University Institutional 120

Review Board under protocol No.7029. Participants on Amazon Mechanical Turk gave 121

written consent at the beginning of the experimental session. 122

Participants. The data from Experiment 1 comes from 100 US-based participants 123

recruited on Amazon Mechanical Turk. To ensure data quality, each participant must 124

have had over 92% HIT approval rate and must have completed more than 1000 approved 125

HITs to be eligible for the study. 126

Task design. Participants completed a single session consisting of a brief consent, 127

three practice trials, 184 experimental trials, and a short survey. Each trial consisted 128

of a shortest path search task on an 11×11 grid canvas with two internal walls (Fig 2). 129

Participants were instructed to move the blue block to the starred goal location using 130

the minimum number of up, down, left, or right steps. A step into the walls would 131

increase the step count but no actual movement. Participants received a base completion 132

compensation of $1.00 and a performance-based bonus on each trial ($0.03 if a trial was 133

solved with the minimum number of steps, $0.01 if the solution was only up to two steps 134

more than the shortest solution, and no bonus otherwise). 135

The experimental trials consisted of 92 base trials and 92 filler trials. We report 136
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results on the base trials in this paper. The starting location and the goal location 137

varied across the base trials but the locations of the two length-7 walls were fixed. Each 138

unique base trial layout was mirrored vertically, except for the neutral (NT) trial. Both 139

the original and the mirrored trials also appeared in all four orientations, including the 140

left-to-right orientation shown, as well as top-to-bottom, right-to-left, and bottom-to-top 141

orientations. The filler trials randomly sampled trial orientation and block locations. 142

The walls on the filler trials were of length- 3, 5, or 7 and were sometimes shifted from 143

the center, but wall locations on the filler trials were never identical to the wall locations 144

on the base trials. Each participant received the 184 experimental trials in a different 145

randomized order. 146

Path advantages. The location of the starting block and the goal block were 147

designed to vary the relative advantages of the candidate goal-reaching paths proximal to 148

the starting location and proximal to the goal. The myopic advantage near the starting 149

point refers to the side of the wall that the blue block can be moved toward to get out 150

from behind the wall with fewer steps. Similarly, the future advantage near the goal 151

refers to the side of the wall that the blue block can approach the goal from with fewer 152

steps. Quantitatively, the myopic and the future advantages can be computed as the 153

position offset of the starting block and the goal block relative to the center of the nearby 154

wall. For example, in the IA trial shown in the top panel of Fig 2, the myopic advantage 155

is 2 (towards the upper path), and the future advantage is −2 (towards the lower path). 156

The pairing of these two advantages establish four advantage types: neutral advantage 157

(NT), single advantage (SA), congruent advantage (CA), and incongruent advantage 158

(IA) (Table 1). We sometimes refer to the SA and IA trials by whether the myopic or the 159

future advantage was the larger advantage, denoted by the ”-m” or ”-f” tail. Note that 160

in the NT trial layout and two of the IA trial layouts, the two global path candidates 161

(equivalent to the upper and the lower paths in the left-to-right orientation) are equally 162

optimal. 163

Adv. Type Myopic Adv. Future Adv.
NT 0 0

SA-m
2 0
1 0

SA-f
0 2
0 1

CA 1 1

IA
1 -1
2 -2

IA-m
2 -1
3 -1

IA-f
1 -2
1 -3

Table 1. Myopic and future path advantage pairing. -m and -f indicates the
larger advantage. All trial layouts were vertically mirrored except for the NT trial.
NT=neutral advantage, SA=single advantage, CA=congruent advantage,
IA=incongruent advantage.

Exclusions. We excluded data from five participants who were not able to complete 164

the experiment due to technical reasons. Across all remaining 8740 observations (95 165

participants × 92 trials), we excluded trials where participants took longer than one 166

minute to execute the first move (six trials) or took five or more steps compared to the 167

longer canonical solution (ten trials; a canonical solution is equivalent to the upper or 168

lower path in the left-to-right orientation, without excessive steps). We also excluded 169

trials with ill-identified initial path direction, including trials where the first move 170
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was equivalent to going left in the left-to-right orientation, or where the initial steps 171

contradicted the overall path, e.g., an initial down action followed by a later upper path 172

(31 trials). 173

Drift-diffusion modeling. We modeled the decision process in the IA trials as a 174

noisy integration process, as these trials afford the opportunity to examine the influences 175

of the two constraints when they each deviate from neutral and contribute to the decision 176

outcome in opposite directions. We pooled data from all participants, first z-scoring 177

the raw first move response time (in seconds) within each participant, then shifting the 178

z-score distributions so that the minimum is 0.5 for each participant in order to ensure 179

positive response time and enough non-decision time buffer for modeling purposes. All 180

drift-diffusion model variants were fitted in a Monte-Carlo cross-validation procedure, 181

using the density function implemented in the rtdists package [20] and the nlminb 182

function in the stats package [21]. In each cross-validation fold, we held out data from 183

35 (out of 95) randomly sampled participants as the test data. Ten runs from random 184

initial parameter values were optimized to minimize the summed negative log-likelihood 185

(sNLL) of the training data, and the winning fit for the fold was selected based on 186

the best training data objective. Candidate models were fitted over the same 200 187

cross-validation folds, to control for fold-level variability. For model selection, we fitted a 188

linear mixed-effects model to the test objectives from all candidate model variants with 189

fold-level random intercepts, and compared which model achieved lower or comparable 190

test data objective with fewer free parameters. 191

For the winning model, we observed that some runs converged to what appeared to 192

be a local minimum value of the fold training data sNLL with near-zero starting point 193

variability (sz ). For five of the cross-validation folds, all ten runs with different initial 194

parameter values converged to this local minimum. In these cases, we ran 50 more runs 195

each using another random sample of initial parameter values, in an effort to find a set 196

that would avoid this local minimum. This was successful as the run with the smallest 197

training sNLL across all 60 runs in all five cases had a larger sz value within the same 198

range of values arising from the other 195 folds. The parameter estimates of the new 199

best-fitting runs for these five folds were reported below. 200

Results and Discussion 201

In Experiment 1, our goal was to characterize the decision dynamics in a goal-directed 202

task in which the optimal solution requires equal consideration of both immediate and 203

long-term, goal-proximal information. We presented participants with a maze navigation 204

task with different levels of congruent or competing advantages of the candidate goal- 205

reaching paths, and asked how the immediate (myopic) and the goal-proximal (future) 206

path advantages contributed to the decision leading to the selected path. 207

Not surprisingly, participants leveraged both the myopic and the future path ad- 208

vantages in deciding the shortest goal-reaching path. The selected initial direction was 209

often optimal, but trials with congruent advantages or a single advantage led to more 210

optimal and faster responses compared to trials with incongruent advantages: as shown 211

in Fig 3, both path choices and response times were clearly sensitive to the level of 212

advantage congruence, even when holding the total path difference (in steps) between 213

the candidate paths constant. Indeed, path selection differed significantly across the 214

nine unique advantage pairings where one of the initial directions was optimal (shown 215

in Fig 3B), as confirmed by a mixed-effects probit regression model of trial-level path 216

choices (with separate slopes for each advantage pairing and participant-level random 217

intercepts), χ2(8) = 301.76, p<0.001. Response times (shown in Fig 3C) also differed 218

significantly among all 12 advantage pairings based on a linear model of the medians of 219

individual z-scored first move response times, F (11, 1128)=22.80, p<0.001. Detailed 220

comparisons of the estimated marginal means (EMMs; with Bonferroni correction) of 221

October 12, 2021 7/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464177
http://creativecommons.org/licenses/by/4.0/


the choice model and the response time model (controlling for total path differences) 222

confirmed that responses in the IA trials were less optimal and slower than those in the 223

SA and CA trials (adjusted ps<0.01), although choice optimality rates in SA and CA 224

trials were both near-ceiling and the difference between the associated response times 225

was not statistically significant (adjusted ps>0.1 for both comparisons). 226
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Fig 3. Path choices and response times reflected integral considerations of immediate and goal-proximal
path advantages. A. Path choices in trials with equally optimal initial directions. The value for NT trials was defined
to be 0 since there was neither a myopic or a future advantage on these trials. B. Path choices in trials where one of the
initial directions was optimal. The proportion of optimal trials for each individual was converted into a probit score. If
the individual probit score was larger than 3 or smaller than -3, it was capped at 3 or -3 before averaging. C. First move
response times across all advantage pairings. The individual medians of zscored response times were projected back to the
raw time space using group average mean response times and group average standard deviations. NT=neutral advantage,
SA=single advantage, CA=congruent advantage, IA=incongruent advantage. mAdv=myopic advantage. -m and -f
indicates the larger advantage. Error bars indicate bootstrapped 95% confidence limits.

Although facilitation from advantage congruence suggested that participants took 227

both advantages into account in an integrative manner, responses from trials where 228

the myopic advantage was larger compared to the counterpart trials (where the future 229

advantage was larger) also indicated that the two constraints were not treated equally. 230

Trials where the myopic advantage was larger resulted in significantly higher choice 231

optimality rate (adjusted p<0.01, EMM comparison from the choice model) and shorter 232

response times (adjusted p<0.05, from the response time model) in IA and SA trials 233

combined. This myopic bias was seen not only at the group level (Fig 3), as the pattern 234

was observed in participants who made overall more accurate path choices and those who 235

made overall less accurate path choices (Fig S1). The overall myopic bias is exhibited 236

by a majority of the individual participants, though about 30% showed the opposite 237

tendency when the two advantages are of equal magnitude. 238

To understand the different role of the two path advantages in leading to the decision 239

outcome, we next turned to the IA trials in which the two initial path choices each satisfy 240

one of the competing advantages, using several variants of a drift-diffusion process model 241

to account jointly for the choice probabilities and response times from these trials. This 242

analysis suggested that the tendency to favor the path with the myopic advantage arose 243

from a stronger weighting of the myopic advantage compared to the future advantage (Fig 244

4A). Specifically, we considered whether a biased starting point or different weighting of 245

the two advantages served as the source of the myopic bias. We compared 16 candidate 246

models with different types of inter-trial variabilities and fit pooled choice and first 247

move response time data from all participants across 200 cross-validation folds. The 248
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model with different weighting for the two advantages was better than the model with 249

equal weighting and the model with both equal weighting and a starting bias (adjusted 250

p’s<0.001, pairwise EMM comparison based on a linear mixed-effects model of the test 251

objectives across all models, Bonferroni corrected). Accounting for additional starting 252

bias led to worse fit in the equal weighting case (adjusted p <0.05) and did not improve 253

fit in the unequal weighting case (adjusted p >0.5). Models with inter-trial variabilities 254

in both the starting point and the drift rate also consistently out-performed the others 255

(adjusted p’s<0.001). 256
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Fig 4. Simultaneous integration of myopic and future path advantages is marked by a slightly
strengthened weighting of the myopic advantage. A. Test data objective (summed negative log likelihood; sNLL)
of candidate drift-diffusion models across matched cross-validation folds. Asterisk marks the winning model. B.
Parameter estimates of the winning drift-diffusion model. t0, non-decision time. a, decision bound. md and fd, myopic
and future advantage weights. sz, inter-trial variability of the starting point. sd, inter-trial variability of the drift rate. C.
Predicted response time (RT) distributions (in red) sampled from the parameter estimates of the winning fit in the fold
with the best test objective, and the empirical RT distributions (in blue). The top two subpanels show the RT
distributions associated with choices favoring the myopic advantage on the top and those favoring the future advantage
on the bottom. The bottom four subpanels show the RT distributions for optimal responses on the top and suboptimal
responses on the bottom. mAdv, myopic advantage. fAdv, future advantage. All error bars indicate 95% bootstrapped
confidence limits.

The winning model estimated a ratio between the weights associated with the myopic 257

and the future advantage at 1.13 (SD=0.02, see Fig 4B). The model fitted the combined 258

choice and response time data fairly well, though it under-predicted fast correct responses 259

and over-predicted the occurrence of errors, particularly when the advantage difference 260

was plus or minus one (middle panels, Fig 4C). Fitting the model separately to data 261

from participants with higher overall choice accuracy revealed that more equal weighting 262

and larger weights assigned to the two advantages underlay more accurate path choices 263

(weight ratio estimated at 1.09, SD=0.02; see Fig S2 top panel). For the group with 264
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lower overall choice accuracy, the model fit suggested a larger weighting imbalance (ratio 265

estimated at 1.19, SD=0.05) and smaller advantage weights associated with the two 266

advantages, along with a higher drift rate variability (Fig S2 bottom panel). 267

Experiment 2 268

Experiment 1 showed that when achieving a goal, people indeed simultaneously process 269

relevant immediate and goal-proximal, future information, albeit showing a slight myopic 270

bias. Our main focus in Experiment 2 is to investigate how people approach the same 271

task when embedded as a subtask in a larger problem. Experiment 2 included the same 272

set of trials used in Experiment 1 (base trials) and an additional set of trials where 273

the goal location was placed inside a chamber that participants had to reach by way 274

of a bottleneck, creating a subgoal that must be visited prior to reaching the final goal 275

(subgoal trials; see Fig 2). 276

We were interested in whether people approached this task setup with a strictly 277

sequential approach, first extracting the key subgoal and then focusing exclusively on it, or 278

with a parallel approach, as might be revealed through a graded influence of the final goal 279

position on the decision, even when the final goal is irrelevant to optimal path selection. 280

Building on the characterization of the decision process in the base task in Experiment 281

1, we examined whether the decision process in the subgoal trials was unaffected beyond 282

a possible increase in non-decision time prior to engagement with the two relevant 283

advantages, or whether the integration of the relevant path advantages was biased with 284

contribution from the position of the optimality-irrelevant final goal. Experiment 2 was 285

pre-registered through the Open Science Framework (https://osf.io/w78hu). 286

Methods 287

Ethics Statement. This study was approved by the Stanford University Institutional 288

Review Board under protocol No.7029. Participants on Amazon Mechanical Turk gave 289

written consent at the beginning of the experimental session. 290

Participants. We recruited 100 participants on Amazon Mechanical Turk with an 291

identical set of eligibility criteria from Experiment 1 (see Experiment 1 methods), except 292

that participants who previously participated in Experiment 1 were not eligible. 293

Task design. Participants completed two practice trials and 158 experimental trials 294

in one session. Trial layouts were similar to that in Experiment 1, but the grid size was 295

either 11×11 or 11×13 depending on the trial type (Fig 2). We added boundary walls 296

to the grid canvas and removed the step count penalty for movements that resulted 297

in wall collision. Participants were randomly assigned to one of the two orientation 298

groups: group one (N=50) received trials with left-to-right and right-to-left orientations, 299

group two (N=50) received trials with bottom-to-top and top-to-bottom orientations. 300

Participants received a base completion compensation of $1.20 and a performance-based 301

bonus on each trial ($0.03 for executing the shortest solution, $0.01 for a solution up to 302

two steps longer than the shortest solution, and no bonus otherwise). 303

The experimental trials consisted of base trials (× 46), subgoal trials (× 92), multi- 304

subgoal trials (× 16), and multi-subgoal control trials (× 4). In this paper, we report 305

data from the base and the subgoal trials. The base trials contained the full set of 12 306

unique trial layouts used in Experiment 1 (see Table 1). The subgoal trials used the 307

same set of advantage pairings but replaced the goal block in the base trials with a cell 308

leading to a bottleneck (Fig 2). In the subgoal trials, the final goal block appeared on 309

both ends of the goal column. Similar to Experiment 1, all trials were mirrored vertically 310

except for the NT trials. 311

The multi-subgoal trials have two subgoal openings on the wall prior to the final 312

goal that were structured so that the candidate paths through the two subgoals were 313
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equally optimal. On these trials, the start and the goal locations were fixed, but the 314

subgoal locations varied and one of the subgoals was always closer to the goal. The 315

multi-subgoal control trials were introduced where we masked the subgoal further from 316

the goal. The layout of these control trials did not overlap with any subgoal trials. 317

Exclusions. All 100 participants successfully completed the experiment. At the trial 318

level, we implemented the same set of exclusion criteria used in Experiment 1, excluding 319

trials where participants took more than one minute to execute a first move (19 trials) 320

or solved with five steps or more than the longer canonical solution (ten trials), as well 321

as trials with ill-identified initial path direction (180 trials). The exclusions resulted in a 322

total of 13595 trial observations (98.5% of original dataset) for the reported analyses. 323

Drift diffusion modeling. We tested whether, compared to the base trials, the 324

path choices and response times associated with the first move in the subgoal trials can 325

be accounted for by a longer non-decision time (as might be predicted if participants first 326

zeroed in on the subgoal and then treated it as an isolated problem) or if the responses 327

reflected changes to the weights of two relevant constraints plus some influence from the 328

irrelevant final goal (as might be expected if participants engaged in a single weighted 329

constraint process). The base model capturing the decision process in the base trials was 330

the winning model from Experiment 1. Response variables, model fitting, and model 331

comparison were all handled identically compared to Experiment 1 (see Experiment 1 332

methods), except that we used a 60/40 split for sampling the training data and the test 333

data in the cross-validation folds. 334

Results and Discussion 335

In Experiment 2, We probed how participants approach a problem with a goal hierarchy, 336

in a situation where a key subgoal must be achieved first and the final goal information is 337

irrelevant to optimal initial path choice. We used drift-diffusion models to test whether 338

the decision process reflected an additional first stage of establishing the goal hierarchy 339

before solving the subgoal through the same initial path selection process that would 340

have occurred without the embedded structure, or whether instead the subgoal selection 341

process itself was affected by the final goal position. 342

Overall, there was both an accuracy cost and a response time cost in the subgoal 343

trials compared to the base trials, suggesting that performance degraded when the same 344

task was embedded in a larger task context with irrelevant final goal information outside 345

of the core subtask context. Participants selected the optimal direction more often in 346

the base trials (mean optimal rate 92.30%, range: 52.78%–100.0%) than in the subgoal 347

trials (mean optimal rate 88.03%, range: 51.43%–100.0%), t(99) = 6.61, p < 0.001. The 348

group-average median response time of the first move in the subgoal trials (mean: 1.91 349

sec, range: 0.55 sec–9.45 sec) was about 0.40 sec longer than that in the base trials 350

(mean: 1.53 sec, range: 0.58 sec–6.16 sec), t(99) = 5.86, p < 0.001. The accuracy and 351

response time costs were seen across different trial advantage types (Fig 5), and also 352

separately in groups of different overall accuracy (Fig S3). 353

The increased first move response times may reflect time taken to process the final 354

goal information as irrelevant and focus in on the subgoal, but the simultaneous change 355

in path choice accuracy suggested that participants did not deploy the exact same 356

computation to solve the core two-constraint problem that is identical across both trial 357

types. However, the benefit from congruent or single optimality-relevant constraints 358

(as opposed to incongruent ones) remained as path choices and response times showed 359

similar patterns across the different advantage pairings, suggesting that there was still 360

some shared treatment of the optimality-relevant path advantages across both trial types 361

(Fig 5). This is confirmed by extending the path choice model and the median zscore 362

response time model (used in Experiment 1) with trial type (base vs. subgoal) as a second 363

predictor and accounting for interaction effects. We observed no significant interaction 364
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Fig 5. Accuracy and time cost when faced with a subgoal task embedded in a goal hierarchy. A. Path
selection in the subgoal trials with equally optimal initial direction showed less myopic bias. As in Fig 3A, the value for
NT trials was defined to be 0. B. Path selection across advantage pairings was less optimal in the subgoal trials, but
sensitivity to the advantage pairings was preserved. As in Fig 3B, the proportion of optimal trials for each individual was
converted into a probit score, with individual probit scores larger than 3 or smaller than -3 capped at 3 or -3 before
averaging. C. Response times were overall longer in the subgoal trials. As in Fig 3C, the median zscore response times
were projected back to the second’s space.

in either the choice model (χ2(8) = 8.19, p=0.415, main-effects model as compared to 365

an interaction model) or the response time model (F (11, 2376)=1.23, p=0.26). 366

Again using data from the IA trials, we next tested whether the decision process in 367

the subgoal trials was accounted for by a lengthened non-decision time, as predicted by 368

an initial stage of processing the goal hierarchy, or by changes to the advantage weights, 369

as would be responsible for changes in decision outcome. As shown in Fig 6B, modeling 370

a separate non-decision time for the subgoal trials led to very little change in data 371

likelihood, indicating that the process of deciding between the path choices was initiated 372

after about equal time in both trial types. Instead, we found that a proportional decrease 373

in the weights associated with the optimality-relevant path advantages accounted for 374

both the decreased choice optimality and slowed response time in the subgoal trials 375

(adjusted p < 0.001, pairwise EMM comparisons based on a linear mixed-effects model fit 376

to the test objectives from all candidate models, Bonferroni corrected). A proportional 377

change accounted for the data better than an equal decrement in the two decision weights, 378

and accounted for the data as well as two independent weight changes with one less free 379

parameter (see Supporting Information). Modeling an additional separate non-decision 380

time in the subgoal trials for the proportional weight decrease model also did not lead 381

to significantly better test data likelihood (adjusted p = 0.16). 382

The winning model estimated about a 30% decrease to both advantage weights in 383

the subgoal trials, while the ratio between the advantage weights (1.22, SD=0.03) was 384

preserved (Fig 6C). This echoed the similarity in the response patterns across advantage 385

pairings shown in Fig 5, suggesting that the decreased choice optimality and lengthened 386

response times were a result of overall decision degradation, rather than more particular 387

changes in the treatment of the two optimality-relevant path advantages. Interestingly, 388

we found similar degrees of degradation in advantage weighting (∼30%) when fitting 389

the model separately to data from the group with overall higher accuracy and the 390

group with overall lower accuracy (Fig S5). Instead, the lower accuracy group showed 391

reduced myopic and future advantage weights and higher degrees of drift-rate variability, 392

consistent with that found in Experiment 1. 393
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Fig 6. Decision making in the presence of a goal hierarchy showed degraded weighting of
subgoal-relevant constraints and biasing influence from the irrelevant final goal, with no delayed onset
of evidence integration. A. Path choices in the IA trials. As in Fig 3 and Fig 5, the proportion of optimal trials for
each individual was converted into a probit score, with individual probit scores larger than 3 or smaller than -3 capped at
3 or -3 before averaging. B. Test data objective (summed negative log likelihood; sNLL) of the candidate drift-diffusion
models. For empirical and predicted response time distributions, see Fig S4. C. Parameter estimates from the winning
model. t0, non-decision time. a, decision bound. md and fd, myopic and future advantage weights. sz, inter-trial
variability of the starting point. sd, inter-trial variability of the drift rate. p, shared proportional change to md and fd in
the subgoal trials. D. Test data objective (summed negative log likelihood; sNLL) of the subgoal trials. Adding an
independent weight for the final goal led to lower sNLL compared to a model with no final goal weight included. For
empirical and predicted response time distributions, see Fig S6. Asterisks mark the winning models in B. and D.

Importantly, path choices were subject to biasing influence from the final goal even 394

though this information was strictly optimality-irrelevant and outside of the core subtask 395

context, indicating that participants did not completely cache away the final goal in 396

choosing the path to the subgoal (Fig 6A). To understand the role of the final goal in 397

biasing decision outcome, we modeled the final goal as a third source of influence on 398

the decision preference in the subgoal trials. For each cross-validation fold, we froze the 399

parameter estimates from the fit of the winning model and modeled the goal weight 400

as an additional free parameter. Because the upper decision threshold was modeled 401

as selecting the path that favored the myopic advantage, the goal weight encouraged 402

reaching the upper threshold when the goal was on the myopic advantage side, and 403

shifted the integration toward the lower threshold when the goal was on the future 404

advantage side. 405

Indeed, modeling the final goal as a third source of constraint confirmed that par- 406

ticipants engaged the final goal information in decision computation, as this further 407

helped accounting for changes in both path choices and response times in the subgoal 408

IA trials (Fig 6D, also see Supporting Information). The weight associated with the 409
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irrelevant final goal was estimated at 0.30 (SD=0.05) in the winning model, a much 410

smaller weight compared to the weights associated with the optimality-relevant path 411

advantages (shown in Fig 6C). Notably, the influence of the final goal was estimated 412

at markedly different levels across groups of different accuracy levels, even though the 413

degree of overall degradation in advantage weighting was highly similar (Fig S7). For 414

the group with higher overall accuracy, the goal carried a reliable, but very small weight 415

(M=0.11, SD=0.04). For the group with lower overall accuracy, however, the goal weight 416

was estimated at 0.52 (SD=0.07). 417

General Discussion 418

In this work, we have explored a parallel constraint satisfaction approach to goal-directed 419

decision making. Within this approach, we investigated how humans weight optimality- 420

relevant as well as optimality-irrelevant information as they decide which path to take 421

toward a goal. When confronted with our simpler, base task, participants approximated 422

an equal weighting of the starting-point proximal and goal-proximal constraints that are 423

equally relevant to optimal path selection, and participants who made more accurate 424

choices overall exhibited more nearly equal weighting. Yet participants in both accuracy 425

groups tended to place greater weight on the starting-point proximal constraint, exhibiting 426

a myopic bias. The base task then appeared as a subtask in a setting where reaching 427

the equivalent of the base task goal location was embedded in the overall task of finding 428

the path to the final goal. When confronted with this more complex task setting, 429

participants’ choices of paths to the subgoal were slowed, reduced in accuracy, and biased 430

by the final goal location. However, these influences were relatively subtle, allowing 431

the optimality-relevant factors to each receive more weight than the final goal that 432

is irrelevant to optimal path selection. Participants who made more accurate choices 433

overall placed greater and more equal weight on the subtask-relevant constraints. Yet 434

even for these participants, we still observed a slight bias to consider the position of 435

the irrelevant final goal in selecting the initial path. In both the simple and the more 436

complex task settings, then, participants generally adopted appropriate weightings, but 437

also exhibited some degree of deviation from what would be strictly optimal. 438

Based on these results, we suggest that parallel constraint satisfaction can serve as a 439

framework for implementing different levels of approximation to hierarchical planning 440

approaches in complex task settings. Rather than assuming that problem decomposition 441

and decision making are executed by different subprocesses or occur in separate stages, our 442

results suggest a role for parallel constraint weighting to both underlie the computation 443

of the decision outcome and give rise to a spotlight focus on important subtasks through 444

the strengthened weighting of relevant constraints and reduced weighting of irrelevant 445

ones. In our tasks, participants indeed showed situation-sensitive flexibility in the 446

weighting of the various factors when confronted with different task situations, as they 447

exhibited nearly balanced consideration of relevant immediate and future constraints, 448

and appropriately placed greater weight on subtask-relevant than subtask-irrelevant 449

information. Moreover, we found no difference in the initiation time of the decision 450

processes across the simple task and the more complex task, consistent with the idea 451

that the extraction of the task structure and decision computation can be supported 452

simultaneously through the weighting of the various factors and so do not necessarily 453

follow strictly separate, consecutive stages. 454

Parallel consideration of multiple constraints, especially including some that are not 455

relevant in a particular task context, can lead to suboptimal decision outcome when 456

considered under the constraints of a specific situation. Such a tendency, however, might 457

be viewed as a consequence of a more global, perhaps evolutionary, adaptation. Studies 458

of optimal problem decomposition and decision suboptimalities have suggested that both 459
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can result from optimizing meta-level planning, taking into consideration the cost and 460

efficiency of representation and computation [6,7,9,11,22,23]. Strictly serially-staged and 461

modular approaches to solving a task hierarchy may require first analyzing the problem 462

structure, then caching away the final goal or the global task context and deploying 463

an encapsulated subroutine to solve a subtask, which may incur an overall larger meta- 464

computational cost compared to the parallel and appropriately-weighted processing of 465

all exploitable factors that result in good-enough, approximate solutions. Concurrent 466

problem decomposition and problem solving also affords the flexibility for alternative 467

ways of decomposing the task to emerge at decision time, such that participants may 468

not be prematurely locked into a suboptimal task decomposition, consistent with the 469

suggestion that parallel mechanisms serve as a feature of the inherent flexibility of a 470

cognitive system [15, 24]. Similarly, the myopic bias that is suboptimal in our task 471

context may reflect a rational allocation of attention to the greater certainty of the 472

near than the distant future or the tendency to plan only partially as a result of the 473

sensitivity to meta-level planning costs [22, 23]. The suboptimal consideration of the 474

irrelevant final goal can also be seen as a rational or at least natural exploitation for its 475

possible computational values, considering that future-relevant considerations can often 476

be relevant to the choices we make in the early stages of complex task situations. 477

Our results echo the simultaneous consideration of immediate and future constraints 478

found in other cognitive domains (e.g., sequential action selection in typing and speech 479

production) where it has often seemed natural to suppose that the processing of succes- 480

sive items is strictly sequential. As similarly shown in our results, such simultaneous 481

consideration is revealed through both optimal and suboptimal aspects of detailed be- 482

havior in the corresponding task settings [13,16]. The models used to account for this 483

behavior generally weight considerations relevant to the immediate next action most 484

heavily, with successively less weight to items more remote in the sequence. Indeed, we 485

may understand the biases we have observed in our participants’ behavior in terms of 486

such a general tendency, in that we place the largest weight on the constraints most 487

relevant to the immediate action at hand (accounting for the myopic bias) while allo- 488

cating successively decreasing weight to future constraints (accounting for the reduced 489

weight to the relevant future constraint and even less weight of the irrelevant final 490

goal). Optimizing goal-directed decision making, then, can be thought of as eliciting a 491

context-sensitive re-weighting of the constraints from such baseline weighting toward 492

their optimal values in a given task situation. 493

Importantly, the finding that people’s actions early in an inherently sequential process 494

reflect future as well as immediate constraints may be relevant to planning and problem 495

solving beyond the navigational or other everyday task domains we have considered up 496

to this point. One such example is mathematical theorem proving, in which successful 497

reasoning depends on constraining search for a proof based both on the givens in a 498

problem and the statement-to-be-proven at the end of the proof sequence [25]. We 499

may therefore expect parallel mechanisms to also underlie more advanced forms of 500

reasoning, with immediate and long-range information (e.g., known conditions and the 501

goal statement) simultaneously used to construct the right path to achieve the overall 502

goal (e.g., prove the theorem) and facilitate the finding of important intermediate steps. 503

Within the global parallel constraint satisfaction process to solve a complex problem, 504

relatively strengthened weighting of the right subset of constraints can then allow a 505

temporary spotlight focus on important subgoals (e.g., proving a lemma). 506

It is important to note that some aspects of our findings may depend at least in part 507

on particular features of the experimental design. The interleaved nature of the base and 508

subgoal trials in our second experiment may have contributed to some of the details of 509

the performance we observed in the subgoal trials. On one hand, the repeated display of 510

similar problems across the two task conditions may have encouraged the realization that 511
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essentially the same two constraints were the only ones relevant to selecting the shortest 512

path in both task settings. This may have contributed to the equal non-decision time 513

cost found across both trial types. On the other hand, the final goal on the base trials 514

had a direct computational value because the future path advantage was defined around 515

it. Participants may therefore have learned to place considerable weight on the final goal 516

on the base trials, possibly increasing attention towards the final goal on the subgoal 517

trials. Another aspect of the current study is the visual accessibility of the problem 518

space and the consistency of the placement of the start and goal along opposite sides of 519

the environment. Finally, the visual salience of the goal block may have strengthened its 520

biasing influence when irrelevant. 521

An important next step will be to examine whether similar parallel weighting mecha- 522

nisms would also support the approximation to optimal representation and computation 523

when humans solve a wider range of structured problems, such as tasks that require 524

a larger number of intermediate steps, tasks in which optimally decomposing a task 525

hierarchy requires learning or relies on information stored in memory, or tasks requiring 526

more abstract forms of reasoning. As the problem becomes more abstract and its depth 527

and complexity grows, we may expect a greater degree of approximately sequential 528

processing, using shifts in the weighting of various factors to alternate between more 529

focused and more global considerations as we tackle more complex task settings. 530

Another important future direction is to consider the relation between the dynamic 531

weighting of explicit constraints in the problem space and alternative approaches to 532

capturing goal-directedness in humans, such as the reinforcement learning framework for 533

human action planning and reward maximization [26], in which hierarchical representation 534

and computation also play a key role [12,27]. To this end, the unification of deep neural 535

networks, a prominent parallel processing model, and reinforcement learning algorithms, 536

both having theoretical motivations rooted in psychology and neuroscience, have enabled 537

the successful learning of sophisticated planning and human-like behavior in complex 538

tasks [28, 29]. There is thus an exciting potential to use reinforcement learning as a 539

means for learning how to optimize parallel weighting mechanisms as an implementation 540

of human sequential planning and decision making [30]. 541

Conclusion 542

In summary, we propose that goal-directed decision making can be understood in a 543

weighted constraint satisfaction framework. In our experiments, simultaneous, weighted 544

consideration of graded constraints helped account for the detailed choices and response 545

times from human participants, both when a simple maze navigation task was presented 546

alone and when it was nested in a larger maze. Participants adapted their weighting of 547

relevant proximal and future constraints when faced with different task settings in the 548

direction of optimizing their choice of paths toward a goal or subgoal, but deviations 549

from optimality revealed gradations in the weighting of both optimality-relevant and 550

optimality-irrelevant factors that biased decision outcomes. These results support 551

the view that optimization in human choice behavior results from a context-sensitive 552

weighting of multiple constraints to facilitate co-exploitation of immediate and long-range 553

information as well as to allow an approximation to optimal focus on important subtasks. 554

Supporting Information 555

Experiment 2 model variants. We considered two additional model variants as 556

potential forms of degraded integration, modeling independent additive changes to each 557

advantage weight or a shared additive change to the two advantage weights. We added 558
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the proportional weight change model as a post-hoc variant after observing that the 559

independent change model was better than the shared change model (adjusted p < 0.001). 560

The proportional change model was significantly better than the shared change model 561

(adjusted p < 0.001) and on par with the independent change model (adjusted p > 0.9) 562

with one less free parameter. 563

We also considered variants of the final goal weight during evidence integration in 564

the subgoal trials. Modeling an independent weight for the final goal regardless of its 565

position resulted in better test data likelihood compared to two other models we tested: 566

the model with different additive weights depending on which side (the myopic or future 567

advantage side) the goal appeared was not better than the independent weight model 568

(adjusted p = 0.20, pairwise EMM comparisons with Bonferroni correction), and the 569

model in which the goal weight was dependent on the advantage weights was worse 570

(adjusted p < .001). 571

Analysis of individual difference. We conducted individual difference analyses 572

to investigate how the decision processes differed among participants with different levels 573

of overall accuracy. To do this, we first split all participants into two groups based on 574

the group median path choice accuracy, where individual accuracy scores were computed 575

on all trials with a unique optimal initial direction (see Fig 3B). For Experiment 1, 576

this resulted in N=51 in the higher accuracy group and N=44 in the lower accuracy 577

group. For Experiment 2, this resulted in N=50 in each of the higher and lower accuracy 578

group. The individual difference analyses were handled identically compared to the 579

group analyses (see Methods), but the test data were re-sampled within the subset of 580

participants in each group. For Experiment 1’s higher accuracy group, we used a 36/15 581

train/test split. For Experiment 1’s lower accuracy group, we used a 31/13 train/test 582

split. For both groups in Experiment 2, we used a 35/15 train/test split. 583

For data from Experiment 1’s higher accuracy group, we used 50 independent runs 584

(instead of 10) for each fold in order to robustly find large sz ’s, as in practice a large 585

sz always resulted in better data likelihood compared to a near-zero sz. Similar to the 586

group analysis (see Experiment 1 Methods), we conducted additional rounds of model 587

fitting (50 runs at a time) for the winning model in a few folds that converged to local 588

minima with near-zero sz’s (eight folds for Experiment 1’s higher accuracy group, three 589

folds for Experiment 1’s lower accuracy group), and plotted the parameter estimates 590

from the best-fitting run among these additional runs. As in Fig 4C, we used parameter 591

estimates from the fold-level model with the best test objective to show the model 592

predicted response time distribution against the empirical distribution, but all model 593

comparison and parameter estimate analyses were based on the full range of parameter 594

estimates across the 200 cross-validation folds. 595
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Fig S1. Experiment 1 path choices and response times for groups of higher and lower accuracy.
Visualization and notation as in Fig 3. The individual median zscore response times were projected to the second’s space
using the subgroup mean mean response time and mean standard deviation.
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Fig S2. Experiment 1 IA trial responses and drift-diffusion model fits among groups of higher and lower
accuracy. Visualization and notation as in Fig 4B, C.
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Fig S3. Experiment 2 path choices and response times for groups of higher and lower accuracy.
Visualization as in Fig 5. The individual median zscore response times were projected to the second’s space using the
subgroup mean mean response time and mean standard deviation.
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Fig S4. Experiment 2 model-predicted response times (in red) and empirical response times (in blue).
A. Base trials. B. Subgoal trials. Visualization and notations as in Fig 4C.
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Fig S5. Experiment 2 IA trial responses and drift-diffusion model fits for groups of higher and lower
accuracy. Left panel, model parameter estimates. Middle panel, base trials. Right panel, subgoal trials. Visualization
and notations as in Fig 6C and S4.
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Fig S7. Experiment 2 contribution of the final goal in decision making for groups of higher and lower
accuracy. Right panel, goal weight estimates for the higher accuracy group (top) were much smaller than goal weight
estimates for the lower accuracy group (bottom).
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Fig S8. Experiment 2 survey responses. Participants’ self-reported considerations of different task elements was in
line with the behavioral analyses presented above. In free-form responses, when asked how they came up with the route
to reach the goal, their responses consistently suggested that the reasoning process was rapid and intuitive. Likert scale:
1=never, 2=rarely, 3=sometimes, 4=often, 5=always. Sprite denotes the movable blue block. Error bars indicate
bootstrapped 95% confidence limits.
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