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Abstract 

Mean grain weight (MGW) is among the most frequently measured parameters in wheat 

breeding and physiology. Although in the recent decades, various wheat grain analyses (e.g. 

counting, and determining the size, color, or shape features) have been facilitated thanks to the 

automated image processing systems, MGW estimations has been limited to using few number of 

image-derived indices; i.e. mainly the linear or power models developed based on the projected area 

(Area). Following a preliminary observation which indicated the potential of grain width in 

improving the predictions, the present study was conducted to explore potentially more efficient 

indices for increasing the precision of image-based MGW estimations. For this purpose, an image 

archive of the grains was processed, which was harvested from a two-year field experiment carried 

out with 3 replicates under two irrigation conditions and included 15 cultivar mixture treatments (so 

the archive was consisted of 180 images taken from an overall number of more than 72000 grains). 

It was observed that among the more than 30 evaluated indices of grain size and shape, indicators of 

grain width (i.e. Minor & MinFeret) along with 8 other empirical indices had a higher correlation 

with MGW, compared with Area. The most precise MGW predictions were obtained using the 

Area×Circularity, Perimeter×Circularity, and Area/Perimeter indices. In general, two main 

common factors were detected in the structure of the major indices, i.e. either grain width or the 

Area/Perimeter ratio. Moreover, comparative efficiency of the superior indices almost remained 

stable across the 4 environmental conditions. Eventually, using the selected indices, ten simple 

linear models were developed and validated for MGW prediction, which indicated a relatively 

higher precision than the current Area-based models. The considerable effect of enhancing image 

resolution on the precision of the models has been also evidenced. It is expected that the findings of 
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the present study improve the precision of the image-based MGW estimations, and consequently 

facilitate wheat breeding and physiological assessments. 
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1. Introduction 

Although number of grains per unit of area is known to be the most important component of 

wheat yield (García et al., 2014; and Slafer et al., 2014), grain weight and its related features (e.g. 

size and shape) are still under consideration of the researchers for improving the yield capacity (e.g. 

see Ramya et al., 2010; Williams et al., 2013; Brinton et al., 2017; and Alemu et al., 2020). 

Accordingly, wheat grain has been well-explored visually in the last decades, either using 

uncomplicated methods and 2D indices (Braadbaart & van Bergen., 2005; Firatligil-Durmuş et al., 

2010; Gegas et al., 2010; Zapotoczny, 2011; Williams et al., 2013; and Whan et al., 2014) or 

employing more complex techniques of 3D reconstruction (Mabille & Abecassis, 2003; Strange et 

al., 2015; and Le et al., 2019). The techniques utilized for this purpose can be categorized under the 

term of high-throughput phenotyping (HTP), which has been emerged as an efficient paradigm in 

response to the need for keeping the feasibility of investigations in the current complex and large-

scale breeding programs. 

The most frequent sensors used in HTP are the efficient, inexpensive, and widely available RGB 

cameras (Araus et al., 2018). A simple processing of an RGB image of grains along with utilizing 

appropriate indices of size, color, and shape, can thoroughly and rapidly quantify the phenotype of 

grain samples. It seems most reasonable to select the projected area (Area) as the most relevant 

image-derived index for estimating grain weight; as this indicator provides a 2D representation of 

the 3D grain size (compared with the one-dimensional criteria e.g. grain width or length). 

Accordingly, studying the relationship between the area and weight of individual grains, Kim et al. 

(2021) introduced a single power model equation for estimating wheat grain weight, (i.e. 𝑤𝑒𝑖𝑔ℎ𝑡 =

𝑎𝑟𝑒𝑎1.32), which provided a higher precision compared with the linear model. 

In a preliminary analysis conducted with the aim of evaluating the variations of grain size and 

shape in wheat cultivar mixtures, it was observed accidentally that grain weight had a relatively 

higher correlation with grain width, compared with the well-assessed index of projected grain area. 

This observation encouraged a more comprehensive analysis for potentially improving the image-

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.10.13.464205doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464205
http://creativecommons.org/licenses/by/4.0/


3 
 

based estimation of wheat grain weight. Therefore, the purpose of the present study was (i) 

assessing and documenting the relative advantage of grain width, and also (ii) seeking more 

efficient image-derived indices for predicting grain weight. 

2. Materials and Methods 

2.1.  Field experiment 

The images of wheat grains were selected from an archive of a two-year field experiment 

conducted with the aim of studying the responses of cultivar mixtures with various ripening patterns 

to normal and post-anthesis water stress conditions (see Haghshenas et al., 2021). The experiment 

was conducted during 2014-15 and 2015-16 growing seasons at the research field of the School of 

Agriculture, Shiraz University, Iran (29°73´ N latitude and 52°59´ E longitude at an altitude of 

1,810 masl). Mixture treatments were 15 mixing ratios of four early- to middle-ripening wheat 

cultivars (Chamran, Sirvan, Pishtaz, and Shiraz, respectively) including the 4 monocultures and 

their every 11 possible mixtures, which were grown with 3 replicates under two well-irrigation and 

post-anthesis deficit-irrigation conditions. The experimental design was RCBD (Randomized 

Complete Block Design) in which all the 90 (2×2 meter) plots were arranged in a lattice 

configuration with 1 meter distances. Plant density was 450 plants/m2 and seeds were mixed in each 

year with equal ratios (i.e. 1:1, 1:1:1, and 1:1:1:1 for the 2-, 3-, and 4-component blends, 

respectively), considering their 1000-grain weights and germination percentages. The planting date 

in the first and second growing seasons were November 20 and November 5, respectively; and 

based on the soil test, 150 kg nitrogen/ha was applied (as urea) in three equal splits i.e. at planting, 

early tillering, and anthesis. No pesticide was used and weeding was done by hand once at stem 

elongation. 

Irrigation interval was 10 days based on local practices, and the amount of irrigation water was 

estimated using the Fao-56 Penman-Monteith model with local corrected coefficients which was 

reduced to 50% of evapo-transpirational demand from the first irrigation after anthesis. Late in the 

season, plants were harvested from the center of plots and yield components were estimated using a 

laboratory thresher and weighing. 

2.2.  Imaging 

Images were taken from the archive of an exclusively designed laboratory system (Visual Grain 

Analyzer, VGA), which was equipped with a Logitech HD Pro Webcam C920 mounted on an 

adjustable arm, a glass table with a 60×60 cm flicker-free white LED panel beneath it as the light 

source, and a professional software written in C# for real-time screening of the grains. Imaging was 
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carried out for other purposes, so the properties were not necessarily designed for the present study. 

Accordingly, images were taken under ambient light from 40 cm above the samples, and the image 

dimensions were 960×720 pixels (i.e. the original resolution was ≈ 7 MP). For each experimental 

plot, more than 400 grains were sampled randomly and arranged on the imaging table using a 

Vacuum Seed Counter, so that there was no contact between the grains. Therefore, the total dataset 

(including 90 images for each year) was consisted of the data of more than 72000 single grains. 

Immediately after imaging, the grains of each image were weighed using a A&D EK-610i (d=0.01 

g) weighing balance. Mean grain weights were calculated by dividing the sample weight by the 

number of grains. 

2.3.  Image processing 

Since the VGA system has not been commercialized or released yet, and also the analyses had to 

be kept reproducible, only the data of grain size (for conversion of pixel to mm) was taken from this 

system; and all of the image analyses were carried out using ImageJ version. 2.1.0/1.53c 

(Schindelin et al., 2012). First, the grains were segmented from the background using the Color 

thresholding tool (Image > Adjust > Color thresholding). The thresholding method and color space 

were set as “Default” and HSB, respectively. Thereafter, size and shape features of grains were 

calculated using the Analyze particles tool. For this purpose, the attended features were selected in 

the Set Measurements menu (Analyze > Set Measurement), and Analyze Particles was run. Before 

running, the “Show Ellipses” option was selected, and no size or circularity filtering was applied on 

the sample. The output tables were saved as .csv files and used for next analysis. As will be 

described later in the Results section, it was found out that enhancing the image resolution could 

improve the estimations. Therefore, in another analyses, before running the “Analyze Particles”, the 

resolution of images was enhanced using the Bicubic algorithm and by factor of 10 (i.e. both image 

dimensions were multiplied by 10, so the image resolution was increased 100 times). Resizing the 

images was carried out using the Batch processing tool (Process > Batch > Convert; and 

interpolation and scale factor were set to Bicubic & 10, respectively). 

Using the output of image processing, the averaged values of basic features of size and shape 

were calculated for each image, and the correlation of these visual indices with MGW were 

evaluated. The examples of basic indices included area, perimeter, the major and minor axes of the 

best fitted ellipses to the grains (Major & Minor; also see Williams et al., 2013), minimum 

(MinFeret) and maximum (Feret) caliper diameter, Circularity (a value between 0 to 1 for an 

infinitely elongated shape to a perfect circle), solidity (the ratio of area to the convex hull area), etc. 

Besides the basic features, the correlation of MGW with several synthesized indices were also 
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tested; which were the products or ratios of the basic indices. A1 and A2 were among the instances of 

synthesized indices which are the products of the 5 most efficient basic indices. The full list of the 

evaluated indices is represented in Table 1. Also for more detail of the definitions and formulae, see 

https://imagej.nih.gov/ij/docs/guide/146-30.html. Linear correlations of MGW with the visual 

indices were compared with those of the two control criteria i.e. 𝐴𝑟𝑒𝑎 and Kim index (𝐴𝑟𝑒𝑎1.32 ; 

taken from the paper of Kim et al., 2021), and the indices with a higher correlations than the 

controls were selected as the final indicators of MGW. Using each selected index, a linear model for 

prediction of MGW was developed and evaluated. Although the analyses were based on the number 

of pixels (as the unit of dimension), in order to generalize the model parameters, outputs were also 

converted into mm using the data of VGA system. Moreover, ten-fold cross-validation (K = 10) was 

used in Rapidminer (Version 9.9) to validate the results of datamining models, in which the default 

values and settings of the software were chosen. All other analyses, including correlating, Principal 

Component Analysis (PCA), and fitting the linear models were carried out using XLSTAT (Version 

2016.02.28451; Addinsoft). 

3. Results 

As shown in Fig. 1, enhancing the image resolution improved the quality of grain segmentation 

and ellipse fitting, considerably. This improvement was consequently reflected in the precision of 

the correlations and linear models developed for prediction of MGW (which will be discussed 

later). 

Principal component analysis (Fig. 2) indicated that in comparison with area (R=0.905), the 

grain width had a stronger relationship with MGW; regardless of which width indicator was used 

(R=0.0921& R=0.916 in the cases of using Minor and MinFeret, respectively). 

Besides the two control indices i.e. Area and Kim index, the correlation of MGW with 33 other 

preliminary indices were also tested; among which 10 indices with comparatively higher 

correlations than the two controls were selected for further analyses (Table 1). Figure 3 shows the 

correlations between MGW and the selected indices derived from the images with enhanced 

resolutions. The indices of Area×Circ., Perim.×Circ., and Area/Perim. had relatively stronger 

relationships with MGW. Table 2 also indicates the variations in the correlation coefficients (R) in 

various environmental conditions. It is obvious that almost in every conditions, the selected indices 

have a comparatively higher relationship with mean grain weight, compared with Area and Kim 

index. Again, the three indices mentioned before (i.e. Area×Circ., Perim.×Circ., and Area/Perim) 

had the highest R values, almost in every conditions. Moreover, in consistency with the fact shown 

in Fig. 1, the enhanced resolution improved the correlation considerably. 
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Preliminary indices Selected indices

Area Area 

Perimeter (Perim.) Minor

Major MinFeret

Minor Area/perim.

Circularity (Circ.) Area×Circ.

Feret Minor/Solidity

skewness (Skew) MinF/Solidity

kurtosis (Kurt) Area×Solodity

MinFeret (MinF) Perimeter×Circ.

Aspect ratio (AR) A1 (Area×Perim.×Circ.×Solidity×MinF)

Round A2 (Area×Perim.×Circ.×Solidity×Minor)

Solidity Kim index

Minor/Major

MinF/Feret

Area/MinF

Area/Minor

MinF/Minor

Area/prim.

Minor/Perim.

MinF/Perim.

Area/(Perim.^2)

MinF×Area/Perim.

Area/MinF

Area/Minor

Circ.×Solidity

Area×Circ.

MinF×Circ.

MinF/Solidity

Feret/Solidity

Area×Solodity

Feret×MinF×Solidity

Perimeter×Circ.

A1 (Area×Perim.×Circ.×Solidity×MinF)

A2 (Area×Perim.×Circ.×Solidity×Minor)

Kim index

Table 1. List of the empirical image-derived indices tested in the present study.

At the first step, the correlations between mean grain weight and the preliminary image-

derived indices were tested. Then, the indices with a higher correlation coefficients (R)

than those of the two control indices, i.e. "Area" and "Kim index", were selected for

further analyses. Kim index (i.e. Area
1.32

) was derived from the study of Kim et al., 2021.

For definition of the other basic indices, see the ImageJ user guide on "Analyze

particles..." at https://imagej.nih.gov/ij/docs/guide/146-30.html
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Figure 1. Output of image segmentation for extracting grains and fitting the best ellipses. (A) A single image 
from the archive with more than 400 wheat grains. As an example, the grains in the white frame are processed in 
the next parts of the figure. (B) Output of resolution enhancement; (C) Result of image segmentation. A same 
thresholding is used for both resolutions; (D) Fitting the best ellipses to the single grains.

A

B

C

D

Original resolution Enhanced resolution
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Figure 2. Principal Component Analysis (PCA) of mean grain weight (MGW) and basic image-derived indica-
tors of grain size, i.e. major and Feret (indices of grain length), minor and minimum Feret (indicators of grain 
width), and area. Obviously, the one-dimensional indicators of grain width reflect the variations of MGW more 
precisely than the two-dimensional factor of area.
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Correla�on matrix (Pearson)
Variables MGW Area Major Minor

MGW 1 0.905 0.646 0.921
Area 0.905 1 0.848 0.918
Major 0.646 0.848 1 0.569
Minor 0.921 0.918 0.569 1
Values in bold are different from 0 with a significance level alpha=0.05

Correla�on matrix (Pearson)
Variables MGW Area Feret MinFeret

MGW 1 0.905 0.623 0.916
Area 0.905 1 0.833 0.931
Feret 0.623 0.833 1 0.588
MinFeret 0.916 0.931 0.588 1
Values in bold are different from 0 with a significance level alpha=0.05
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Figure 3. The correlations between mean grain weight (MGW) and image-derived indices. Here, the 
images with enhanced-resolution were used.
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Resolution Indices Overall 1
st
 year 2

nd
 year

WI (two 

years)

DI (two 

years)
1

st
 Y. WI 1

st
 Y. DI 2

nd
 Y. WI 2

nd
 Y. DI

Area 0.8740 0.8382 0.8813 0.8092 0.8486 0.8117 0.7898 0.7805 0.8113

Minor 0.8790 0.9044 0.9034 0.7805 0.8549 0.8751 0.8621 0.7860 0.8310

MinFeret 0.8833 0.9030 0.9086 0.7930 0.8567 0.8664 0.8579 0.7897 0.8488

Area/perim. 0.8920 0.9034 0.9087 0.8083 0.8712 0.8737 0.8690 0.7972 0.8454

Area×Circ. 0.8921 0.9081 0.9088 0.8118 0.8688 0.8846 0.8704 0.8004 0.8467

Minor/Solidity 0.8863 0.9080 0.9044 0.7959 0.8627 0.8759 0.8666 0.7866 0.8373

MinF/Solidity 0.8852 0.8960 0.9062 0.8038 0.8541 0.8584 0.8425 0.7856 0.8498

Area×Solidity 0.8776 0.8478 0.8884 0.8085 0.8534 0.8222 0.8022 0.7869 0.8194

Perim.×Circ. 0.8902 0.9088 0.9087 0.8108 0.8646 0.8906 0.8702 0.8006 0.8438

A1 (Area×Perim.×Circ.×Solidity×MinF) 0.8942 0.8958 0.9074 0.8228 0.8706 0.8690 0.8525 0.8069 0.8515

A2 (Area×Perim.×Circ.×Solidity×Minor) 0.8946 0.8984 0.9076 0.8222 0.8714 0.8755 0.8546 0.8078 0.8498

Kim index 0.8743 0.8390 0.8815 0.8104 0.8489 0.8130 0.7902 0.7810 0.8129

Mean 0.8852 0.8876 0.9013 0.8064 0.8605 0.8597 0.8440 0.7924 0.8373

Area 0.9053 0.8688 0.8963 0.8617 0.8812 0.8468 0.8204 0.8163 0.8108

Minor 0.9208 0.9433 0.9257 0.8582 0.9069 0.9077 0.9255 0.8524 0.8434

MinFeret 0.9159 0.9367 0.9204 0.8456 0.9032 0.8878 0.9241 0.8416 0.8344

Area/perim. 0.9361 0.9421 0.9314 0.8889 0.9225 0.9115 0.9236 0.8642 0.8588

Area×Circ. 0.9373 0.9463 0.9334 0.8922 0.9228 0.9194 0.9280 0.8714 0.8615

Minor/Solidity 0.9149 0.9389 0.9150 0.8471 0.8991 0.8994 0.9212 0.8287 0.8261

MinF/Solidity 0.9088 0.9307 0.9084 0.8328 0.8935 0.8777 0.9171 0.8161 0.8148

Area×Solidity 0.9110 0.8754 0.9052 0.8674 0.8882 0.8527 0.8290 0.8297 0.8242

Perim.×Circ. 0.9362 0.9485 0.9335 0.8932 0.9198 0.9246 0.9304 0.8782 0.8582

A1 (Area×Perim.×Circ.×Solidity×MinF) 0.9323 0.9292 0.9279 0.8853 0.9170 0.8978 0.9057 0.8622 0.8568

A2 (Area×Perim.×Circ.×Solidity×Minor) 0.9353 0.9338 0.9310 0.8910 0.9201 0.9058 0.9106 0.8691 0.8614

Kim index 0.9055 0.8690 0.8969 0.8618 0.8819 0.8471 0.8208 0.8159 0.8129

Mean 0.9216 0.9219 0.9188 0.8688 0.9047 0.8898 0.8964 0.8455 0.8386

Original 

resolution

Enhanced 

resolution

Table 2. The correlation coefficients (R) of mean grain weight (MGW) and image-derived indices.

WI and DI: well- and deficit-irrigated, respectively.
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Analysis of variance (ANOVA; data not shown) also indicated that the effects of year, mixture 

treatments, and water stress were very significant on the values of MGW, as well as the two control 

and 10 selected indices (the total 12 evaluated indices; P<0.0001). As it was expected according to 

the high correlations between MGW and the image-derived indices, the variation of the indices 

followed completely the changes in MGW; i.e. the post-anthesis water stress reduced the values 

significantly (e.g. MGW reduced from 39.291 mg under well-irrigation to 36.157 mg under deficit-

irrigation conditions, averaged between two years). In average, MGW also reduced significantly 

from 39.264 mg in the 1st season to 36.184 mg in the 2nd season (noteworthy, the effect of season on 

grain yield and most agronomic features were significant. For more information, see Haghshenas et 

al., 2021). All of the 12 indices showed a similar trend. As a whole, values of MGW and the 

correlated visual indices were lower in the higher yielding treatments (or conditions) and vice versa; 

mainly due to the strong negative relationship between grains m-2 and MGW on one hand, and the 

high correlation between grain yield and grains m-2 at the other hand (see Haghshenas et al., 2021). 

The main implication of this observation for the present study was that the variations of the visual 

indices were highly consistent with those of MGW; regardless of the sources of variation, i.e. 

significantly different growing seasons, water stress, or mixture treatments. 

Figure 4 represents the performance of the linear models developed using the selected indices for 

predicting MGW (here the images with enhanced resolution were used). As it was expected based 

on the previous results, all of the ten linear models predicted MGW with a more accuracy compared 

with the two control indices (RMSE values ranged between 1.003 to 1.201, for the Area×Circ. and 

MinFeret/Solid. models, respectively). Results of cross-validation and also model parameters have 

been shown in Table 3. As expected, root mean square errors of cross-validation, followed the 

pattern of RMSEs reported earlier, i.e. errors of Area×Circ. < Perim.×Circ. <  Area/Perim. Table 3 

also represents the reduction percentages of RMSE due to the enhanced resolution by the factor of 

10. As a whole, the effect of resolution enhancement was more considerable on the precision of the 

indices which were based on shape properties (e.g. the products of circularity), rather than the size-

based features (Area, or MinFeret). 

4. Discussion 

The idea of the present study was exploring more efficient visual indices for wheat MGW, other 

than 2D grain area. For this purpose, various empirical indices of grain size and shape were 

evaluated using image processing. It was observed that among the size criteria, one-dimensional 

indices of grain width (i.e. Minor and MinFeret) had relatively higher correlations with MGW, 

compared with the two-dimensional indices of grain area or perimeter (the latter of which was 
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Figure 4. Performance of linear models developed for predicting mean grain weight (MGW) using the 
superior image-derived indices. The red and dashed lines show the linear trend and 1:1 line, respectively.
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Slope Intercept R
2 RMSE Slope Intercept R

2 RMSE Slope Intercept R
2 RMSE Overall RMSE Micro average RMSE

Area 0.6876076 -14.13069 0.7639 1.39916 0.007242 -11.96377 0.8197 1.22279 3.4546529 -10.50562 0.8197 1.22279 1.218 +/- 0.165 1.228 +/- 0.000 12.61

Minor 11.473872 -40.04071 0.7726 1.37308 1.206266 -38.92239 0.8478 1.12329 26.223532 -37.43548 0.8501 1.11472 1.117 +/- 0.121 1.123 +/- 0.000 18.19

MinFeret 11.479164 -47.28420 0.7802 1.34983 1.185451 -39.77784 0.8389 1.15583 25.751014 -38.21530 0.8409 1.14849 1.150 +/- 0.134 1.157 +/- 0.000 14.37

Area/perim. 43.088447 -56.75704 0.7957 1.30144 4.580449 -53.57889 0.8763 1.01287 98.930057 -51.22634 0.8759 1.01427 1.011 +/- 0.143 1.020 +/- 0.000 22.17

Area×Circ. 0.7810103 -9.19948 0.7958 1.30124 0.009157 -7.648741 0.8786 1.00327 4.3865946 -6.502854 0.8784 1.00403 1.001 +/- 0.135 1.009 +/- 0.000 22.90

Minor/Solidity 11.300208 -47.78814 0.7856 1.33331 1.189310 -40.20437 0.8371 1.16220 25.845173 -38.66377 0.8396 1.15317 1.157 +/- 0.126 1.163 +/- 0.000 12.83

MinF/Solidity 11.243958 -55.24627 0.7836 1.33950 1.166277 -40.90504 0.8259 1.20137 25.326662 -39.29586 0.8282 1.19332 1.196 +/- 0.139 1.203 +/- 0.000 10.31

Area×Solidity 0.7367298 -12.03813 0.7702 1.38042 0.007417 -11.62672 0.8298 1.18779 3.5390870 -10.18897 0.8295 1.18879 1.183 +/- 0.158 1.193 +/- 0.000 13.95

Perim.×Circ. 3.3790373 -54.79264 0.7925 1.31155 0.359924 -51.66935 0.8765 1.01190 7.7804528 -49.44107 0.8764 1.01215 1.011 +/- 0.121 1.017 +/- 0.000 22.85

A1 (Area×Perim.×Circ.×Solidity×MinF) 0.0017579 13.56291 0.7996 1.28896 2.1504E-07 14.393318 0.8691 1.04158 0.0505571 15.011033 0.8685 1.04405 1.038 +/- 0.149 1.047 +/- 0.000 19.19

A2 (Area×Perim.×Circ.×Solidity×Minor) 0.0018807 14.06366 0.8003 1.28685 2.2128E-07 14.390431 0.8748 1.01874 0.0520301 15.005713 0.8742 1.02147 1.016 +/- 0.143 1.025 +/- 0.000 20.83

Kim index 0.1306980 -1.60504 0.7644 1.39762 0.000325 0.0399900 0.8200 1.22159 1.1264207 1.1437907 0.8200 1.22156 1.216 +/- 0.164 1.226 +/- 0.000 12.59

MinF, Perim., and Circ. are minimum Feret diameter, perimeter, and circularity, respectively. Original resolution, enhanced resolution, and also SI are the various scales of the image dimension based on which the analyses have been carried out. The output slopes and intercepts of 

cross-validation were exactly the same as the SI parameters (noteworthy, the cross-validation was conducted using all of the 180 observations). The last column (Resolution-based RMSE improvement ), indicates the percentage of reductions in RMSE of grain weight prediction due 

to the resolution enhancement. 

RES-based RMSE 

improvement (%)

Table 3. Cross-validation and parameters of the linear models developed for estimation of mean grain weight (MGW; mg) using image-derived indices.

Cross-validation
Indices

Original resolution (pixel) Enhanced resolution (pixel) SI (mm/ or mm
2
)
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filtered out in the preliminary assessments; R=0.801 when the enhanced-resolution images were 

used, data not shown). This observation inspired that there might be also other unexplored indices 

for MGW, which originate from the exclusive physiology of wheat crop, e.g. the processes 

associated with the grain filling capacity. Therefore, the correlation of MGW with some of the 

conventional shape indices and also several empirical criteria were tested. 

Area×Circ., Perim.×Circ., and Area/Perim. were the superior indices in prediction of MGW 

using the linear models, and indicated a relatively consistent performance across the various 

conditions. Furthermore, almost under every of the 4 environmental conditions, other selected 

indices could predict MGW with a higher precision compared with area. Besides the applicable 

aspect of this finding, it is also an evidence for the possibility of improving wheat grain weight 

estimation by exploring new visual indicators.  

Based on the formula of the circularity index used in ImageJ (see 

https://imagej.nih.gov/ij/docs/guide/146-30.html), all of the three superior indices have a common 

factor i.e. the Area/Perim. ratio: 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4𝜋 × 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
                                                                                                                        (1) 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒: 

𝐴𝑟𝑒𝑎 × 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 𝐴𝑟𝑒𝑎 × (
4𝜋 × 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
) = 4𝜋 × (

𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
)

2

                                        (2) 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 × 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 × (
4𝜋 × 𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
) = 4𝜋 × (

𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
)                    (3) 

So, the formulae of the two other indices (i.e. Area×Circ.& Perim.×Circ.) might be slightly 

simplified, and consequently the computational cost could be reduced. Such conversions may be 

particularly important in high-throughput phenotyping; where a considerable number of grains 

should be analyzed in real-time e.g. using high-speed imaging systems. Besides, these observations 

imply that the majority of the efficient indices evaluated in the present study are based on two 

fundamental factors: (i) grain width (measured by Minor & MinFeret), and (ii) the Area/Perim. 

ratio. 

As described before, enhancing the image resolution by the factor of 10 improved the precision 

of the indices considerably. However, this improvement was not equal for all of the selected 

indices; as those which were independent of the grain shape, were less influenced (e.g. the size 

indicators such as Area or MinFeret, see Table 3). In contrast, the shape-depended indices showed 
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considerably higher degrees of improvement in MGW prediction (for instance, see the indices with 

the factor of Circularity, or even Minor, which is resulted from ellipse fitting; see Fig. 1). 

Therefore, it is necessary to ensure the desirable image resolutions (which is achievable either at the 

time of imaging/scanning, or using interpolation), before running the analyses. 

Noteworthy, since in the present study the analyses were designed and carried out based on the 

average values, generalization of the findings and models for estimating weight of individual grains 

might require further assessments. However, considering that each of the 180 samples was 

consisted of more than 400 grains, it is expected that both types of estimations (MGW and 

individual grain weight) should be highly correlated. As an evidence for this fact, it was observed 

that similar to the study of Kim et al. (2021), Kim index provided a more precise grain weight 

estimation than Area. More importantly, slopes of the corresponding linear models calculated in 

both studies were almost similar (see Table 3); despite the differences in the genotypes, treatments, 

imaging systems, lighting, and probably the image processing algorithms: 

Kim et al. (2021): {
𝑊𝑒𝑖𝑔ℎ𝑡 = (3.46 × 𝐴𝑟𝑒𝑎) − 15.99     

𝑊𝑒𝑖𝑔ℎ𝑡 = (27.02 × 𝑊𝑖𝑑𝑡ℎ) − 50.48
 

  

Present study: {

𝑊𝑒𝑖𝑔ℎ𝑡 = (3.45 × 𝐴𝑟𝑒𝑎) − 10.50            

𝑊𝑒𝑖𝑔ℎ𝑡 = (25.75 × 𝑀𝑖𝑛𝐹𝑒𝑟𝑒𝑡) − 38.21

𝑊𝑒𝑖𝑔ℎ𝑡 = (26.22 × 𝑀𝑖𝑛𝑜𝑟) − 37.43       

 

Besides the technical advantageous for developing phenotyping platforms, findings of the 

present study might also be readily used in wheat physiology and breeding approaches. For 

instance, the relatively stronger relationship between MGW and grain width (vs. length or even 

area) may provide valuable implications for the grain filling process; particularly despite the fact 

that (i) grain filling is an acropetal process and mainly occurs in the grain length direction, and (ii) 

the 2D grain area provides the information of 2 out of the 3 dimensions. The results also seem to be 

consistent with the findings of Gegas et al. (2010) who provided the genetic evidences for an 

emerging phenotypic model where wheat domestication has transformed a long thin primitive grain 

to a wider and shorter modern grain. Moreover, the superior visual indices introduced in the present 

study might be used as the selection criteria in breeding programs (e.g. see Alemu et al., 2020); 

before which the efficiency and stability of the indices should be tested using a more heterogeneous 

collection of genotypes grown under a broader environmental conditions. 
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5. Conclusion 

The present study was conducted to explore the potentially more efficient image-derived indices 

for predicting MGW of wheat. For this purpose, simple size and shape indices of cultivar mixtures 

grown under 4 environmental conditions (2 seasons × 2 water conditions) were analyzed. It was 

observed that MGW had a higher correlation with 10 out of the more than 30 evaluated empirical 

indices, compared with the well-assessed indicators of projected area (i.e. Area & Kim index). The 

best MGW predictions were obtained using the Area×Circ., Perim.×Circ., and Area/Perimeter 

indices. In general, two main common factors were detected in the majority of the superior indices, 

i.e. either grain width (evidenced as Minor & MinFeret) or the Area/Perimeter ratio (observed in 

the simplified forms of Area×Circ. & Perim.×Circ. indices). The comparative precision of the ten 

selected indices was stable under different environmental conditions. Moreover, it was observed 

that enhancing the image resolution by the factor of 10 could considerably improve the MGW 

predictions; particularly when the shape-based indices were used. In conclusion, it is expected that 

the simple predictive linear models developed and validated using the new image-derived indices, 

could increase the precision of MGW estimations, and also facilitate wheat physiological 

assessments. 
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