


The OFC is involved in encoding and updating affective expectations. We used a behavioral task
designed to study the neural mechanisms of how such expectations are encoded in the OFC of pri-
mates and how they may guide behavior under different conditions. The goal here was to determine
whether TRAKR could classify behaviorally relevant epochs from neural data, and whether it could
further distinguish different task conditions (Figure 4A; see also subsubsection 2.5.1 for more de-
tails).

A sample of the different neural epochs is shown for a single trial from a particular recording elec-
trode in Figure 4B. The three neural epochs are behaviorally meaningful in that they correspond to
rest, choice and instrumental reward seeking. We used TRAKR to classify the neural time series
recorded from different trials into these three epochs (see section 2 for more details).

We trained TRAKR on the neural time series corresponding to rest from a particular trial, and used
the other complete trials as test signals to obtain the error, E(t) as before. The error signal was
used as input to a classifier. We repeated this procedure for all trials in the dataset to obtain the
averaged classification performance. We also compared against other conventional approaches, as
before. In addition, we also calculated the Fast Fourier transform (FFT) of the signals and obtained
the magnitude (power) in the α (0 − 12Hz), β (13 − 35Hz), and γ (36 − 80Hz) bands within
the 3 epochs. We found that TRAKR outperformed all the other methods (Figure 4C), accurately
classifying the neural time-series patterns as belonging to either rest, choice, or instrumental reward
period (AUC = 91%; p < 0.001).

Additionally, we determined whether TRAKR was able to distinguish the neural time-series patterns
as belonging to either match or mismatch trials (as described in further detail in section 2). For
this purpose, we trained TRAKR on the neural time series corresponding to choice period from a
particular trial, and used the other complete trials as test signals to obtain the error, E(t) as before.
TRAKR, along with all the other methods, was not able to accurately classify the neural time-series
patterns as belonging to either match or mismatch trials (Figure 4D). Further investigations of signal
from individual electrodes or in specific frequency bands may be needed to detect such trial-wise
differences.

PC1

PC2

PC3

Electrode 1
Electrode 13

Electrode 76
Electrode 127

Figure 5: Single electrode recordings projected into the space spanned by the first three principal
components of reservoir activations. The four electrodes trace out different trajectories in reservoir
space, suggesting they capture potentially different neural dynamics.

We then used TRAKR to measure the classification performance over recording sessions (Fig-
ure 4E), for both classifying behaviorally relevant epochs in the neural signal (Figure 4C) and for
classifying trials into either match or mismatch (Figure 4D). We found that classification perfor-
mance for the behaviorally relevant epochs degrades over days (Figure 4E; blue & red solid lines),
while that for match/mismatch trials consistently performs around chance-level (Figure 4E; blue &
red dotted lines).

Lastly, we wanted to see if the activations of the units in the reservoir could be used to re-group
the electrodes (128-channel recordings) into functionally meaningful groups. For this purpose, we
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fitted the reservoir to the time series obtained from a particular electrode, froze the output weights,
and used the signal from the other electrodes as test inputs to obtain the error terms. In order to
visualize the recordings from the different electrodes in the reservoir space, we performed principal
component analysis (PCA) on the tensor of reservoir activities obtained from all the test electrodes.
We then projected the signal from every electrode onto the first three principal components of the
reservoir space in order to examine if electrodes traced out similar trajectories in this space. Figure 5
shows the result of visualizing four different electrodes in this reservoir space. The four electrodes
trace out different paths. Thus, in principle, TRAKR can be used to cluster the neural time series
obtained from different electrodes into functionally meaningful groupings, which may represent
coherent regions in the brain or interdigitated modules within single regions.

4 DISCUSSION

We have shown that TRAKR can accurately detect deviations from learned signals. TRAKR outper-
forms other approaches in classifying time-series data on a benchmark dataset, sequential MNIST,
and on differentiating behaviorally meaningful epochs in neural data from macaque OFC.

While TRAKR could accurately classify neural epochs, it could not classify neural time-series pat-
terns into either match or mismatch trials. It is possible that receiving a better or worse reward than
expected affects the neural signal in distinct/opposite ways, such that the effect is cancelled out on
average. It is also possible that the difference in neural time-series patterns is only discernible if
the reward is maximally different (better or worse) than expected. In the current task design, there
were 4 different levels of reward (flavors) that the macaque associated with different pictures (sub-
subsection 2.5.1). The number of trials in which the obtained reward was maximally different from
the expected was low and possibly not sufficient for accurate classification. Another possibility,
corroborated by several studies (Stalnaker et al. (2018); McDannald et al. (2014); Takahashi et al.
(2013); Kennerley et al. (2011)), is that OFC neural activity may signal reward values but not re-
ward prediction errors, which instead are mediated through the ventral tegmental area (VTA) in the
midbrain.

We found that the classification performance decreased over recording sessions. This could mean
that the difference between task epochs being classified decreased because of increased familiarity
with the task. That is less likely, however, because the subject was well-trained prior to recordings.
Instead, since the signal was recorded over a period of 35 days, the decrease in the classification
performance could be a result of degrading signal quality, perhaps due to electrode impedance issues
(Kozai et al. (2015a;b); Holson et al. (1998); Robinson & Camp (1991)).

TRAKR offers high classification accuracy at relatively low computational cost, outperforming a
commonly used approach such as dynamic time warping (DTW). While ensemble methods and deep
supervised approaches may yield high accuracy, they are more time-intensive than DTW (Fawaz
et al. (2019)). In particular, deep learning-based approaches, with a high number of parameters to
tune, come with high upfront computational cost during training. TRAKR avoids expensive rounds
of successive optimization during training by allowing only output weights to change and by fitting
a given time series directly using recursive least squares. Moreover, avoiding the need of training
on many samples, the error signal can be used directly to distinguish patterns in real-time. This
suggests TRAKR can be particularly useful for many real-time applications where available training
time is restricted and fast classification performance is desired when deployed.

5 CONCLUSION

There is a need for and renewed interest in tools for the analysis of time-series data (Bhatnagar
et al. (2021)). We show that TRAKR is a fast and accurate tool for the classification of time-series
patterns. It is suitable for real-time applications where fast classification of time-series patterns
is needed, such as in clinical settings. TRAKR is particularly suited for differentiating complex
nonlinear signals, such as those obtained from neural or behavioral data in neuroscience, which can
shed light on how complex neural dynamics are related to behavior.
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A TRAKR HYPERPARAMETERS

The recurrent weights Jij are weights from unit j to i. The recurrent weights are initially chosen
independently and randomly from a Gaussian distribution with mean of 0 and variance given by
g2/N . The input weightswin are also chosen independently and randomly from the standard normal
distribution.

An integration time constant τ = 1ms is used. We use gain g = 1.2 for all the networks.

The matrix P is not explicitly calculated but updated as follows:

P (t) = P (t− 1)− P (t− 1)φ(t)φ′(t)P (t− 1)

1 + φ′(t)P (t− 1)φ(t)

The learning rate η is given by
1

1 + φ′(t)P (t)φ(t)
.

The number of units used in the reservoir is generally N = 30.
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