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ABSTRACT: 

Animal models of human cancers are an important tool for the development and 

preclinical evaluation of therapeutics. Canine B-cell lymphoma (cBCL) is an appealing model for 

human mature B-cell neoplasms due to the high sequence similarity in cancer genes to humans 

and inactive telomerase in adult tissues. We performed targeted sequencing on 86 canine 

patients from the Canine Comparative Oncology Genomic Consortium, with 61 confirmed as B-

cell lymphomas. We confirmed a high frequency of mutations in TRAF3 (45%) and FBXW7 

(20%) as has been reported by our group and others. We also note a higher frequency of 

DDX3X (20%) and MYC (13%) mutations in our canine cohort. 

We compared the pattern and incidence of mutations in cBCL to human diffuse large B-

cell lymphoma (hDLBCL) and human Burkitt lymphoma (hBL). Canine MYC mutations displayed 

a focal pattern with 80% of mutations affecting the conserved phosphodegron sequence in MYC 

box 1, which are known to stabilize MYC protein. We also note that MYC and FBXW7 mutations 

do not co-occur in our cBCL cohort, leading to the hypothesis that these mutations represent 

alternative approaches to stabilize MYC in canine lymphoma. 

We observed striking differences in the pattern of DDX3X mutations in canine lymphoma 

as compared to hBL and uncovered a sex-specific pattern of DDX3X mutations in hBL that is 

not consistent with those identified in canine lymphomas. 

In sum, we describe key differences between cBCL and human mature B-cell 

lymphomas which may indicate differences in the biology of these cancers. This should be 

considered in future studies of cBCL as a model of human lymphomas. 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.14.464277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464277
http://creativecommons.org/licenses/by-nd/4.0/


Animal models of human cancers are an important tool for the development and 

preclinical evaluation of therapeutics. Canine B-cell lymphoma (cBCL) is an appealing 

alternative to murine preclinical models due to its frequent, spontaneous incidence and clinical 

and histological similarities to some human mature B-cell neoplasms.1,2 Dogs are particularly 

relevant for comparative oncology as they show a higher sequence similarity in cancer genes to 

humans relative to mice and telomerase is largely inactive in adult dog tissues, as in humans.3,4 

Current veterinary care for cBCL includes many of the same chemotherapeutic agents used for 

human B-cell lymphomas, and the accelerated lifespan of dogs and relative acceleration in 

cancer progression may allow more rapid observations of experimental treatments.5–7 

The most common form of cBCL resembles human diffuse large B-cell lymphoma 

(hDLBCL)3 with other subtypes, including Burkitt-like cBCL, less frequently diagnosed.8,9 

Genomic characterization of hDLBCL continues to reveal novel subtypes with different clinical 

features and responses to therapy.10 Given the mutation patterns that underlie molecular 

heterogeneity in hDLBCL, we hypothesized that the molecular heterogeneity of cBCL and its 

relationship to hDLBCL remains incomplete and is not adequately captured by current 

diagnostic methods.11 Moreover, the utility of cBCL as a veterinary model of human disease 

would be bolstered by an enhanced understanding of the genetic alterations that collectively 

underlie cBCL. 

We obtained fresh frozen and matched plasma/serum from 86 patients from the Canine 

Comparative Oncology Genomic Consortium (CCOGC), with 61 confirmed as B-cell lymphoma 

by immunophenotyping (Supplemental Table 1). We extracted total RNA and DNA from 29 

tumor samples and performed RNA-seq as previously described.12 Genomic DNA was extracted 

from the remaining tumors using either the AllPrep DNA/RNA Universal Kit or the DNeasy Blood 

and Tissue Kit (Qiagen). DNA was extracted from plasma or serum using the MagMAX Cell-free 

DNA Isolation Kit (Thermo Fisher, Waltham, MA).  
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We aligned RNA-seq reads to the canFam3 reference using STAR13 and identified SNVs 

and indels as described previously.12 After identifying genes with evidence for recurrent 

mutations, we performed targeted sequencing of candidate mutations using custom PCR 

primers. We produced custom capture baits by PCR amplification of each exon of interest using 

genomic DNA from a healthy dog as a template.14 Tumor DNA was prepared into libraries using 

the QIAseq FX DNA Library Kit (Qiagen). Plasma and serum DNA was prepared into libraries 

using the NebNext Ultra II DNA Library Prep Kit (New England BioLabs) followed by enrichment 

using our baits. We aligned reads to canFam3.1 and visually confirmed mutations using 

Geneious. Variants were annotated with Variant Effect Predictor and human-dog pairwise 

alignments were extracted from Ensembl to identify human positions for all canine variants.  

Using mutations identified in either tumor or circulating tumor DNA (ctDNA) (Figure S1), 

we confirmed 9 recurrently mutated genes in canine B-cell lymphoma (Figure 1A), including the 

previously noted high frequency of mutations in TRAF3 (45%) and FBXW7 (20%; Figure 

1A).12,15,16 DDX3X (20%) and MYC (13%) were mutated at a higher frequency than has been 

previously described in cBCL.15 These higher rates can be attributed, in part, to our prior 

observation of high levels of tumor DNA contaminating some of the normal samples.12 

We compared the pattern and incidence of mutations between cBCL, hDLBCL, and 

human Burkitt lymphoma (hBL), from a variety of in-house and published sources (Figure S2).17–

19 MYC is commonly deregulated by translocation in hDLBCL and hBL and these events are 

commonly associated with point mutations due to aberrant somatic hypermutation.20 We 

observed a low frequency of MYC mutations in our cBCL cohort with a more focal pattern that is 

not consistent with the pattern in hDLBCL (Figure 1B). Twelve mutations (80%) affect the MYC 

box I, located in a conserved Cdc4 phosphodegron (CPD) sequence (Figure 1C). In human 

MYC, these are known to stabilize the protein by rendering it resistant to FBXW7-mediated 

degradation.21,22  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.14.464277doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464277
http://creativecommons.org/licenses/by-nd/4.0/


FBXW7 mutations are of particular interest as we never observe both MYC and FBXW7 

mutations in cBCL (Figure 1D). The most recurrent FBXW7 mutation affected R470, 

corresponding to the human R465 codon, which is also a hot spot in hDLBCL (Figure 1E). 

These mutations are predicted to yield a dominant negative form of FBXW7 that is unable to 

effectively degrade target substrates including MYC and NOTCH1.23 We hypothesize that 

mutations in FBXW7 and the MYC CPD represent alternative approaches to stabilize MYC, 

possibly resulting in overexpression.  

DDX3X was one of the most frequently mutated genes in our cohort (20%) and is among 

the most frequently mutated genes in hBL (46%) but with a strikingly different pattern (Figure 

S2). Interestingly, only missense mutations are observed in cBCL whereas hBLs include a high 

proportion of truncating mutations (Figure 2A).24 We explored various clinical features of hBL 

patients to identify possible explanations for this difference. Separating DDX3X mutations from 

male and female hBLs resolved a similar pattern only in female hBL (Figure 2B) whereas 

stratification on Epstein-Barr viral status showed no clear pattern (Figure S3). In males, 

mutations were found across the entire length of the DDX3X coding region with a large 

proportion of truncating mutations including both nonsense and frameshift, whereas the pattern 

in females is predominantly missense mutations affecting the DEAD box and helicase domains. 

In contrast, though all DDX3X mutations in cBCL are missense, there is no sex bias observed in 

frequency or location (Figure 2C).  

A paralog of DDX3X, DDX3Y, is encoded on the Y chromosome. Based on high 

sequence similarity (Figure 2D) and functional evidence, DDX3X and DDX3Y proteins may have 

partially redundant functions in humans.24,25 We considered the possibility that DDX3Y may play 

a compensatory role in males with DDX3X mutations. We found a significantly higher 

expression of DDX3Y in males hBLs with DDX3X mutations when compared to males without 

these mutations (Figure 2E). A similar comparison was not possible for cBCL due to the small 
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sample size; however, our findings support the premise that these two proteins may have 

functional redundancy in the context of human lymphomagenesis but may not in canine 

lymphomagenesis. This represents an important difference between cBCL and human B-cell 

lymphomas. 

cBCL has value as an intermediate between rodent models and clinical trials; however, 

our data identifies two key factors, namely FBXW7 and DDX3X, that may impact the use of 

cBCL as a preclinical model for human mature B-cell lymphomas. In human cancers, FBXW7 is 

most commonly mutated in cholangiocarcinoma and T-cell acute lymphoblastic leukemia,23 but 

is rarely observed in the mature B-cell malignancies used in this study. We hypothesize that 

FBXW7 mutations in cBCL have a redundant function to the mutations affecting the MYC 

phosphodegron, which may be the cause of the apparent mutual exclusivity observed in this 

study. This redundancy should be considered in future studies of potential MYC-targeted 

therapies for canine lymphomas. We also describe a sex-specific pattern of mutations affecting 

DDX3X in hBL which is not recapitulated in cBCL. The discrepancy in mutation patterns 

between canine and human patients represents an important distinction that may indicate 

differences in the biology of these cancers  

This study has revealed key differences in the mutational profiles of canine and human 

B-cell lymphomas and provides an impetus for enhanced genomic characterization of canine 

lymphomas as a model for human NHL, particularly in clinical trial settings.  
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Figure legends 

Figure 1: Targeted sequencing of cBCL identifies frequent mutations affecting MYC 

stability. A. Frequently mutated genes identified in cBCL. Mutations observed across 86 canine 

BCL samples in 9 genes. After removing suspected germline variants, cBCLs had between zero 

and nine mutations (mean 2.02) in genes of interest. Mutation frequencies of POT1 (15%), 

TP53 (14%), and SETD2 (13%) are similar to those reported in previous studies. 15,16 MAP3K14 

mutations occur in 14% of cases; however, its frequency in other studies has not been 

reported.15 B. Spatial distribution of mutations observed in MYC, compared to human DLBCL. 

The odds ratio corresponding to the proportion of MYC hotspot mutations in cBCL versus 

hDLBCL is 30.79 (95% CI: 6.73-202.3, p = 1.21 x 10-7). C. The MYC phosphodegron sequence 

is highly conserved in vertebrates and the most common site of MYC mutations in cBCL (12/15 

mutations). D. MYC and FBXW7 mutations do not co-occur in cBCL. E. Spatial distribution of 

mutations observed in FBXW7, as compared to human DLBCL. The hotspot (present in both 

human and dog BCL) occurs in a WD40 repeat, which forms one of the blades of the beta-

propellor and affect a residue forming part of the substrate recognition domain. 

Figure 2: Sex-specific pattern of DDX3X mutations in hBL is not replicated in cBCL. A. 

Spatial distribution of mutations observed in DDX3X, compared to human BL. B. Spatial 

distribution of DDX3X mutations in human male and human female BL. The odds ratio 

corresponding to the presence of truncating mutations in male BL is infinite (95% CI: 1.44-Inf, p 

= 0.00918). C. Spatial distribution of DDX3X mutations in canine male and canine female BCL. 

D. Protein percent identity, calculated by Clustal Omega, is highly similar between human and 

canine DDX3X and the Y-linked paralog DDX3Y. E. Expression of DDX3Y mRNA is significantly 

higher in human male BL when a mutation in DDX3X is present. 
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