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Motivation 

scWGBS library preparation in a one-cell-per-library format presents practical and 

economical constraints to the number of cells that can be analyzed in a research project. 

In addition, most of the current scWGBS methods suffer from low read alignment rates. 

We present a scWGBS protocol which mitigates these issues, empowering single-cell 

DNA methylation analysis at an increased scale. 

   

Summary 

DNA methylation is a central epigenetic mark that has diverse roles in gene regulation, 

development, and maintenance of genome integrity. 5 methyl cytosine (5mC) can be 

interrogated at base resolution in single cells by using bisulfite sequencing (scWGBS). 

Several different scWGBS strategies have been described in recent years to study DNA 

methylation in single cells. However, there remain limitations with respect to cost-

efficiency and yield. Herein, we present a new development in the field of scWGBS 

library preparation; single cell Splinted Ligation Adapter Tagging (scSPLAT). scSPLAT 

employs a pooling strategy to facilitate sample preparation at a higher scale and 

throughput than previously possible. We demonstrate the accuracy and robustness of the 

method by generating data from 225 single K562 cells and from 309 single liver nuclei 

and compare scSPLAT against other scWGBS methods. 
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Introduction 

Cytosine DNA methylation is an epigenetic modification that plays a key role in the 

multilayered, regulatory connection between the genome and the transcriptional output 

in a cell. The role of DNA methylation is multifaceted and context dependent and it is 

known to be important for development, X-chromosome inactivation, imprinting and for 

genome stability. Whole Genome Bisulfite Sequencing (WGBS) methods can interrogate 

the methylation status of the majority of the cytosines in the genome, although DNA 

methylation in vertebrates occurs mostly in CpG-context (Lee et al., 2010). However, a 

limitation of ‘bulk’ WGBS is that DNA fragments derived from thousands of cells are 

randomly sampled and incorporated into the sequencing library. Consequently, with 

‘bulk’ methods any observed epigenetic heterogeneity within a given sample will be 

difficult to interpret. Current methods for analyzing whole genome DNA methylation in 

single cells (scWGBS) produce sparse data. At most, the methylation status of 20-40 % of 

the CpG sites per cell can be measured and frequently only 5-10 % of the sites are 

covered (1-2 million CpG sites in human cells) (Farlik et al., 2015; Hui et al., 2018; Luo 

et al., 2018; Smallwood et al., 2014). Nevertheless, this level of CpG coverage is often 

sufficient for cell type clustering and assessment of epigenetic heterogeneity across cells 

(Farlik et al., 2015; Hui et al., 2018; de Souza et al., 2020). Moreover, the advent of new 

laboratory methods for single-cell methylation analysis have sparked an active 

development of computational approaches to deal with the sparsity and to impute 

missing data (Kapourani and Sanguinetti, 2019; Kapourani et al., 2021; de Souza et al., 

2020; Tang et al., 2021). By combining scWGBS data from a handful of single cells it is 

possible to reconstitute near full methylomes for a cell population (Farlik et al., 2015; 

Hui et al., 2018) and this may prove to be especially useful when studying methylation 

signatures of rare cells, cells in complex tissue or clonal populations in cancer. 

A variety of protocols for scWGBS library preparation have been published in the 

recent years. The majority of those relies on FACS sorting of single cells into 96 or 384-

plates. The pioneering scWGBS method was built on the ‘post bisulfite adapter tagging’ 

(PBAT) method, which is used in combination with several rounds of pre-amplification of 

the bisulfite converted DNA prior to library preparation (Miura et al., 2012; Smallwood 

et al., 2014). Additional scWGBS protocols applying variations of the PBAT theme have 

since been published (Gravina et al., 2016; Hui et al., 2018). In a second category of 

scWGBS methods (Luo et al., 2017, 2018) the bisulfite converted template is subjected to 

a single round of strand copying and concomitant 5’-end adapter tagging. A low 

complexity sequence tag is then enzymatically appended to the 3-end of the DNA 
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fragment. Although the details of the commercial Adaptase method is not disclosed, the 

tag functions as a handle which enables ligation of the second adapter.  A third and 

technically distinct method for scWGBS library preparation uses a combinatorial 

indexing approach to barcode DNA fragments in single cells prior to bisulfite conversion. 

By using transposomes loaded with indexed adapter-sequences that are depleted in 

cytosines (thus not affected by bisulfite conversion), DNA fragments  are labelled in a 

cell-specific manner, sequenced as a pool of several hundreds of cells, and a low number 

of CpG sites per cell can be interrogated after cell demultiplexing (Mulqueen et al., 

2018). 

Regardless of the recent progress of methods for scWGBS, compared to scRNA-

seq there are few robust methods available for single cell DNA methylome analysis. The 

existing protocols present specific technical advantages and limitations in comparison to 

each other. For instance, PBAT based methods that employ several rounds of pre-

amplification can interrogate up to 40 % of CpG sites in a single cell when sequenced to 

near saturation (Smallwood et al., 2014). However, these methods frequently suffer from 

chimeric reads and unacceptably low mapping efficiencies that result in high sequencing 

costs, which has hampered widespread adoption. The snmC-Seq2 approach typically 

generates data with higher mappability than other methods, but it uses commercial 

Adaptase reagents which results in a significantly higher cost and lower flexibility. 

Hence further developments in the space of single cell methylation sequencing are 

warranted. 

We have previously developed Splinted Ligation Adapter Tagging (SPLAT), a low 

input method for ‘post bisulfite’ adapter tagging of single stranded DNA (Raine et al., 

2017). Herein we describe single cell SPLAT (scSPLAT), as a new solution for scWGBS 

library preparation. The scSPLAT protocol takes cells sorted into 384-plate wells as 

input and after cell-barcoding and pooling of cells, SPLAT-ligation is then carried out in 

a bulk reaction for scalable and cost-efficient library preparation. We demonstrate the 

method by sequencing the methylomes of several hundreds of single cells from the K562 

cell line and from a human liver sample. Our data show that scSPLAT is a robust 

method that compares well to existing methods and overcomes the frequent issue of low 

mappability of scWGBS reads. 

 

Results 

A SPLAT solution for single cell WGBS library preparation 
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Previously described scWGBS methods have used PBAT techniques or low complexity 

tailing of single stranded DNA 3’-ends to append Illumina adapters ‘post bisulfite 

conversion’ (Luo et al., 2018; Smallwood et al., 2014). We reasoned that splinted ligation 

could be employed in a similar manner, however with the advantage that splinted 

ligation applied to barcoded DNA fragments pooled from many cells could enable a more 

robust and cost efficient scWGBS library preparation approach. To demonstrate the 

scSPLAT protocol (Figure 1) we first isolated single cells or single nuclei by fluorescence-

activated cell sorting (FACS) into 384-plate wells containing lysis buffer. The lysed 

single cells were then subjected to low-volume bisulfite conversion in 384-plate format 

(Luo et al., 2018). Second-strand synthesis was then performed in each cell/well using a 

combination of oligos (comprised of a randomer at the 3’ end, an inline cell barcode, and 

26 bp of the Illumina P5 adapter at the 5’-end) and Klenow polymerase. We used random 

octamers of H-bases (A, C, and T) because omitting G nucleotides in the randomer was 

previously shown to reduce adapter dimer formation for the comparable snmC-Seq2.  

Exonuclease I was used to remove excess strand synthesis oligos. Thereafter, up to 32 5’-

tagged second-strand reactions from the single cell reactions were pooled and SPRI-bead 

purified. Next, heat denaturation was performed to separate the second strand from the 

original strand and 3’- end adapter ligation was performed in a bulk reaction using 

SPLAT (Raine et al., 2017).  In the SPLAT reaction, the 20 bp initial 3’ part of the P7 

Illumina sequence was ligated to the 3’- end of the previously tagged and barcoded single 

strand DNA molecules, using splinted dsDNA adapters with a protruding random 

hexamer the 3’-end of the bottom strand, which acts as a splint and hybridizes with the 

single stranded DNA, enabling ligation using T4 DNA ligase (Figure 1). Finally, the 

pooled and twice adapter tagged fragments were PCR amplified with unique dual index 

primers containing the remainder of the Illumina barcode sequences for 12-16 cycles, 

which generated > 2 nM of sequencing library, which was sufficient for quality control, 

pooling and sequencing on an Illumina NovaSeq sequencer (see Figure S1 for examples 

of library profiles). After sequencing, cell-demultiplexing was performed based on the 

inline cell barcode which is the first six bases of read 1. 

 

Single cell SPLAT applied to the leukemia K562 cell line 

To evaluate scSPLAT, we first prepared and sequenced 225 single K562 cells prepared in 

two separate batches. The scSPLAT libraries were prepared either as 8- or 16-single-cell 

pools. (Figure 2A). In addition, we prepared 16 single K562 cells (2x8-cell pools) using a 

comparable method (snmC-Seq2). We sequenced 2-60 M read pairs (PE150) per cell for 
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scSPLAT libraries and 7.5-20 M read pairs/cell for the snmC-Seq2 libraries. More than 

99% of reads in the pools could be assigned to cells based on the inline barcode.  We 

observed no apparent overrepresentation of specific cell barcodes in the pools and the 

fraction of reads assigned per cell were relatively even (Figure S2). 

Poor mappability is a common issue with PBAT derived scWGBS reads and 

frequently only as low as 20-40 % of the reads align to the reference (Gravina et al., 

2016; Hui et al., 2018; Smallwood et al., 2014). In contrast, other methods like e.g snmC-

Seq2 tend to perform better (> 50%) with respect to mapping efficiency. This is 

presumably due to the single round of strand copying, which likely reduces the likelihood 

for non-mappable chimeric and artificial sequences to be formed. Similar as for snmC-

Seq2, only one strand synthesis reaction is performed in the scSPLAT protocol and 

therefore high mappability of reads was expected. We applied a read mapping procedure 

wherein we: i) mapped the reads paired-end (pe), ii) re-mapped the unmapped fraction as 

single-reads (sr), and iii) combined the pe and sr mapped data. Indeed, using this 

strategy the mean percentage of reads mapping unambiguously to the GRCh38 reference 

was 71.6 +/- 3.01 for scSPLAT, thus approaching numbers normally observed for bulk 

WGBS (Figure 2B). Similarly, when using the same approach for the snmC-seq-2 data, 

the mean mapping efficiency was comparable at 70.5 +/-1.89 (Data S1).  

In total, 94 % of the scSPLAT K562 cells passed stringent quality filtering, in 

which we removed cells with lower than 50 % mapping rate, higher than 2% CHH 

methylation rate (indicative of inefficient bisulfite conversion), and cells with < 500,000 

CpG sites covered (by 1 sequencing read). The average methylation rates per cell in CpG 

and CHH context are shown in figure 2B.  The resulting 211 single cell methylomes were 

then used for the downstream analysis and clustering. 

The number of strand-merged CpG sites covered by ≥ 1 read ranged between 1-

11.5 Million/cell for the K562 cells prepared with scSPLAT, i.e up to 40% of all CpG sites 

in the human genome (Figure 2A). In the snmC-seq2 control libraries 5-12 Million CpG 

sites/cell were covered. As expected, the CpG site coverage was higher in cells with 

higher sequencing depth (Figure 2C). However, we also observed substantial variance in 

library complexity across pools, where library pools from the first batch of libraries 

generally reached saturation at lower sequencing depth compared to the second batch of 

libraries, as well as the snmC-Seq2 data (Figure 2D).    

To validate the methylation levels obtained with scSPLAT data against 

previously generated methylation data for the same cell type, we downloaded two bulk 

K562 WGBS data sets from ENCODE (average CpG-site coverage 30x and 35x) 
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(Dunham et al., 2012; Zhang et al., 2020). We then merged the quality-passed scSPLAT 

cell-libraries batch-wise into data sets with average CpG coverage of 20x and 30x (pe+sr 

mapped) for batch 1 and batch 2, respectively and computed pairwise correlations across 

all sets (including CpG sites 5 ≥ x coverage). The Pearson’s correlation was consistently 

high when comparing to ENCODE data (R =0.93-0.94) as well as for comparisons across 

the batches (R=0.97) (Figure 3A) indicating accurate methylation levels measured by 

scSPLAT.  

Next, we also investigated coverage bias by analyzing read coverage in regions of 

varying GC content for the two batch-wise merged scSPLAT K562 data sets. Similar to 

what has been shown for previous scWGBS methods (Farlik et al., 2015), coverage 

appears to be positively biased toward genomic regions with higher-than-average GC 

content. Notably, the GC-bias was more pronounced for the single end mapped reads 

suggesting that a higher fraction of those reads map to GC rich repeat regions (Figure 

3B).  

To explore underlying structures in the scSPLAT data we employed the 

Epiclomal framework (de Souza et al., 2020) for probabilistic clustering of cells according 

to their methylation profiles. As an additional control we downloaded a set of K562 

scWGBS data generated in a previous study (Farlik et al., 2015). Epiclomal Region 

applied across CpG-islands followed by UMAP-visualization grouped K562 cells prepared 

with different methods (scSPLAT cells, snmC-Seq2 cells and Farlik-scWGBS) into a 

single cluster as would be expected for a homogeneous cell-line sample (Figure 4A). 

Moreover, cells derived from the same library pool did not cluster together, although 

there was a tendency for cells from the two scSPLAT batches to separate within the 

cluster (Figure S3). This seeming batch effect is likely explained by a generally lower 

CpG site coverage in CpG islands (due to both shallower sequencing and lower library 

complexity) in batch 1 compared to batch 2 (Figure 2D, data S1). We also performed 

clustering based on CpG sites in transcription start site (TSS) regions and gene bodies 

(GB) resulting in the same single cluster (Figure S4). The visual batch effects in the TSS 

and GB based clustering appeared subtler compared to the CpG island clustering (Figure 

S4). Taken together, these data demonstrate that the scSPLAT method correctly and 

robustly assesses DNA methylation in single K562 cells.  

 

scSPLAT applied to 309 single nuclei from a human liver sample identifies two 

major clusters 
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To validate scSPLAT in a more complex sample type and to evaluate scSPLAT on nuclei, 

we next applied the method to 309 single nuclei isolated from a human liver sample 

(Diamanti et al., 2021). The library pools comprised either 4, 16 or 32 cells from the same 

specimen and were prepared on three different occasions (batches 1-3). Similar as in the 

previous experiments with K562 cells, demultiplexed reads were evenly distributed 

across cells in the pools (Figure S2).  Using the same computational approach for 

mapping the reads as for the previous K562 experiments, a mean value of 68 +/- 5.62 % 

of liver nuclei reads mapped unambiguously to the human reference genome (Data S1). 

After quality filtering, 276 nuclei remained for downstream clustering analysis and 0.6- 

4.7 million CpG sites/cell were detected by at least one read. The global CpG methylation 

rate for the liver nuclei ranged between 66-82% (Figure S5). 

The human liver represents a heterogeneous, but well-defined tissue where the 

cell population is dominated by hepatocytes. Other major cell types present in the liver 

are non-parenchymal cells such as e.g hepatic stellate cells and liver sinusoidal 

endothelial cells (Kmiec, 2001). Previous studies investigating transcriptomes of single 

nuclei obtained from the same specific liver sample used herein identified hepatocytes 

followed by hepatic stellate cells and endothelial cells as the most common cell 

populations in the sample (Cavalli et al., 2020; Diamanti et al., 2021). When applying 

the Epiclomal Region clustering method to the 273 liver nuclei, we observed two major 

clusters/cell populations (Figure 4B). Nearly identical cluster assignments were obtained 

irrespective of whether Epiclomal Region was applied with methylation values across 

CpG-islands, gene bodies or TSS regions (Data S2). Importantly, nuclei derived from 

different batches and pools were evenly distributed throughout the clusters implying 

little batch effect (Figure S3). 

For certain cell types, e.g neurons, there is a relatively well-defined association 

between gene activity and CH-context methylation in gene bodies (Liu et al., 2020; Uzun 

et al., 2021). However, for most other cell-types, gene body methylation in CH-context is 

very low and the relationship between CpG-methylation and gene activity is typically 

less clear, posing challenges to classification of cell-types based on marker-gene 

associated DNA methylation.  Nevertheless, we attempted to cell-type label the two 

clusters. First, we pooled the methylation information from nuclei cluster-wise and then 

performed differential methylation analysis across the two merged data sets. 

Differentially methylated regions (DMRs) were defined as comprising at least 10 CpG 

sites and having an absolute difference in mean methylation > 0.6 between cluster 1 and 

2. The DMRs were annotated to genomic regions and to the nearest gene (Data S3). This 
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resulted in a total of 5114 DMRs. The majority of DMRs were in introns or intergenic 

regions, 349 were located in annotated promoters and 1,246 were found within +/- 2000 

bp of a transcription start site (TSS). The number of annotated ‘nearest genes’ (hereafter 

denoted DMR-genes) were 3779, and 901 of the DMR-genes were annotated to two or 

more DMRs. A subset of the DMR-genes with cluster specific hypomethylated DMRs in 

or near promoters are shown in Figure 5. 

If a DMR was hypomethylated in one of the clusters and was in a promoter 

region, CpG island, or within 500 bp upstream or downstream of a TSS site, its DMR-

gene was included in a test for Gene Ontology (GO) biological pathway enrichment- This 

resulted in 182 and 385 DMR-genes for GO analysis of cluster 1 and cluster 2, 

respectively. The GO pathway analysis of cluster 2 resulted in a clear enrichment of 

hepatocyte-specific metabolic pathways for the genes with hypomethylated DMRs in the 

larger cluster, revealing that the identity of the 163 nuclei in cluster 2 is hepatocytes 

(Figure 5 and Data S4). To corroborate accurate classification of cluster 2, we next 

sought to investigate if genes known to be hepatocyte cell-markers were associated with 

the DMRs identified in this study. First, we selected genes with cell-specific expression 

in hepatocytes as determined by scRNA-seq analysis by the Human Protein Atlas (HPA) 

consortium (n=190 genes). (Karlsson et al., 2021). Second, we selected the genes used as 

hepatocyte markers from a previous study snRNA-seq study that included the same liver 

sample analyzed herein (n=76 genes) (Cavalli et al., 2020; Diamanti et al., 2021). Next, 

we interrogated the overlap between established hepatocyte-marker genes and the DMR-

genes identified by scSPLAT. We found that all of hepatocyte marker-genes identified by 

both HPA and Cavalli et al had at least one, sometimes several cluster-2 hypomethylated 

DMRs in their vicinity, supporting our annotation of cluster 2 as hepatocytes (Data S5). 

GO pathway analysis of the 182 cluster-1 hypomethylated DMR-genes displayed 

a less distinct profile, showing significant enrichment of pathways involved in signaling, 

cell communication and response to stimuli (Figure 5, Data S4). Previous snRNA-seq 

studies in the same liver sample analyzed herein identified hepatic stellate cells and 

endothelial cells next the two most abundant cell types after hepatocytes (Cavalli et al., 

2020; Diamanti et al., 2021). It was therefore our hypothesis that cluster 1 (n=111 cells) 

is comprised of hepatic stellate cells and/or endothelial cells. We attempted to clarify the 

identity of the cluster by repeating the aforementioned annotation procedure with 

hepatic stellate- and endothelial-marker genes. In this analysis, we used the genes listed 

as cell-specific and group-enriched by HPA (n=144 stellate  and n = 76 endothelial cell 

markers) (Karlsson et al., 2021). Twenty stellate cell markers overlapped with a DMR-
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gene, although the DMRs were not consistently hypomethylated in cluster 1 (n=11 hypo- 

and n= 9 hyper-methylated). Notably, four of the overlapping, hypomethylated stellate 

cell markers (DNASE1L3, EHD3, TBXA2R, LIFR,) were among the thirty genes that 

were classified as cell-specific by HPA i.e having > 4-fold higher expression level than 

any other cell type. Their corresponding DMRs were located in intergenic regions or 

introns. Only eleven endothelial-markers overlap with a cluster 1 DMR (n= 6 hypo and 

n= 5 hyper-methylated) none of those were endothelial cell-specific and thus only weakly 

suggest an endothelial cell contribution to Cluster 1. 

The cluster 1 DMR-genes overlapped with nineteen hepatic stellate markers 

(wherein only three DMRs were hypomethylated) and eleven endothelial markers (n= 6 

hypo and n= 5 hyper-methylated) identified in the study by Cavalli et al (data S5). Thus, 

the DMR-overlap with markers from that study did not further clarify the cell-type 

composition of cluster 1. 

To investigate if the resolution of clustering could be improved, we applied 

Epiclomal Region to the 111 cells in cluster 1. However, this did not result in any 

substructure that could clearly indicate whether there are one or two sub-populations in 

cluster 1. (Figure S6). In summary, we observed a number of DMRs associated with 

genes shown to specifically have increased expression in hepatic stellate cells  (Karlsson 

et al., 2021). However, it was not possible to conclusively label cluster 1 with a specific 

cell-type based on the DNA methylation profiles. The results herein demonstrate that 

cell types with very specialized functions, such as hepatocytes, are easier to annotate 

based on their DNA methylation profiles, while other cell types (such as hepatic stellate 

and endothelial cells) are more difficult to annotate on DNA methylation profiles alone.  

Discussion 

In recent years there has been a surge of experimental protocols for gene expression 

analysis and epigenetic features in single cells. scWGBS is a robust alternative for 

assessment of cell-to-cell epigenetic heterogeneity and may also be useful for discovery of 

previously unknown cell types/states. One advantage is that DNA methylation is less 

influenced by common confounders known to pose problems to single-cell RNA-seq 

analysis, such as stochastic expression, transcriptional bursts, and cell cycle effects.  

However, it is technically challenging to analyze DNA methylation at the single cell level, 

hence large-scale single cell methylome studies are still in their infancy. Nevertheless, one 

striking example of the utility of scWGBS is in a recent study that profiled the methylomes 

of > 100,000 mouse brain nuclei using the snmC-Seq2 method (Liu et al., 2021). To 
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facilitate single cell methylome analysis on a scale larger than a few hundred cells, easily 

implemented library preparation methods in combination with pooling strategies will be 

essential. Moreover, as sequencing costs continue to drop, inexpensive library preparation 

methods become more attractive. The scSPLAT approach presented herein is a robust and 

cost-efficient protocol which confers higher read map rates compared to most other 

scWGBS methods and allows for pooling of cells for higher throughput without the need 

of using a commercial kit. Furthermore, as an open protocol it is flexible, can be tailored 

for project needs and further optimized for improved performance. We herein performed 

pooling of up to 32 cells in a single library.  This number is by no means the upper limit 

for pooling, and larger pools will enable even lower library costs per cell. By scaling down 

the second strand reaction volume e.g using micro dispensing systems, we envision that 

full 384-plates reactions can be pooled in a single library.  

scSPLAT is in several respects similar to the previously described scnmC-seq2 

method, which is why we included in-house prepared scnmC-seq2 libraries as controls in 

the present study. In contrast to the Adaptase based scnmC-seq2 protocol, no artificial low 

complexity sequence is appended during adapter ligation in the scSPLAT workflow. The 

appendage of such low-complexity sequence tags both take up extra sequencing space and 

need to be carefully trimmed so as to not interfere with read mapping and methylation 

calling. In addition, for scnmC-Seq2 library preparation caution must be taken so that 

there is no carryover of free-nucleotides into the pool prior to the Adaptase reaction. It was 

previously shown that free nucleotides from the strand synthesis reaction could interfere 

with the low complexity tagging by producing artificial tag sequences of unexpected 

compositions. This may lead to inefficient tag trimming and in turn lower map rates and 

biased methylation calls. In contrast, scSPLAT adapter tagging is performed using splint 

ligation and carryover of free-nucleotides poses no risk for introduction of artificial 

sequences.  

From a technical point of view the scSPLAT method performed well when applied 

to both to a cell line and nuclei from primary tissue. Using our ad hoc DMR analysis 

approach we found distinct signatures in cluster 2 matching hepatocytes. The cluster 1 

cell population possibly comprises both hepatic stellate and endothelial cells, however 

our clustering approach did not separate the cell types and the DMR analysis did not 

yield a strong signature for either of them. Interestingly, a previous study analyzing 

scRNA-seq expression in various cell types showed that hepatic stellate and endothelial 

cells types had related RNA expression profiles (Karlsson et al., 2021) and it is therefore 

likely that they have similar DNA methylation landscapes. Our results corroborate the 
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fact that it can be challenging to annotate certain cell types based on DNA methylation 

alone. It is possible that the non-parenchymal cells were too few and that increasing the 

number of cells and/or alternative clustering approaches would increase the cluster 

resolution. Joint gene expression and methylation profiling in the same single cell will 

facilitate cell type annotation (Uzun et al., 2021) and our protocol presented here can be 

further developed to enable this.  

 

Limitations of the study 

Although scSPLAT confers robust measurement of DNA methylation levels (batch effects 

were low), there were quite some variances in library preparation efficiency across 

batches, observed as differences in complexity and duplication rates. There may be 

multiple causes for differences in library complexity; suboptimal cell lysis, low bisulfite 

conversion yields, strand synthesis efficiency and ligation efficiency. Further work will 

be required to pin-point and address the main causes of this variability. Meanwhile it 

might be worthwhile to perform library pool amplifications using real time PCR to avoid 

overamplification and to estimate library complexity based on initial low coverage 

sequencing and exclude low quality pools prior to deeper sequencing.  
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Figure Legends 

Figure 1. Schematic overview of the scSPLAT method. A) Cells are FACS sorted 

into 384 wells containing lysis buffer and bisulfite conversion is performed in 384-plate 

format. B) A random strand synthesis reaction is performed in each well using a 

randomer flagged with an inline cell barcode and 26 bp of the Illumina P5 adapter 

sequence. C) Reactions from multiple wells (up to 32) are then pooled and SPRI bead 

purified. D) Splinted ligation adapter tagging (SPLAT) is performed to ligate the adapter 

to the 3’-ends of the DNA fragments in a bulk reaction.  

Figure 2. Quality assessment of single cell K562 data. A) Violin plots showing the 

total number of covered CpG sites/cell in each library pool. B) The percentage of CHH 

methylation (indicative of bisulfite conversion efficiency), methylation levels in CpG-

context and read mapping efficiency per K562 cell. C) The number of CpG sites per cell 

covered ≥ 1x plotted as a function of the total number of (raw) reads generated per cell. 

D) Pool-wise library complexities plotted with the c-curve function in the preseq tool.  

Figure 3. Assessment of methylation levels and GC bias in pseudo-bulk scSPLAT 

K562 data. A) Single cell data were merged batch-wise to produce ‘pseudo’ bulk data 

sets. Pairwise methylation correlation was computed across the pseudo-bulk SPLAT 

data and two sets of K562 ENCODE bulk WGBS data. Pearson’s R values are shown for 

comparisons across ENCODE sets and pseudo-bulk SPLAT mapped in paired-end (pe) 

mode as well as in combined paired end and single read mode (pe+sr). B) GC bias 

profiles for batch-wise merged pe and sr mapped reads respectively. Coverage was 

shifted towards genomic regions of higher GC content, especially for the sr mapped data 

(reads that were unmappable in pe mode and subsequently mapped as single reads).  

Figure 4. Clustering of K562 and Liver nuclei based on single cell DNA 

methylation profiles. A) UMAP visualization of Epiclomal Region clustering of K562 
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cells based on CpG-island methylation. B) Heat map showing mean methylation of the 

regions (CpG-islands) used as input for Epiclomal Region clustering of K562 cells. Blue 

color indicates no methylation and red color high methylation, Greys boxes in the 

heatmap indicates missing values. C) UMAP visualization of Epiclomal Region 

clustering of liver nuclei based on CpG-island methylation. D) Heat map showing mean 

methylation of the regions (CpG-islands) used as input for Epiclomal Region clustering 

of liver nuclei. 

Figure 5. Cluster specific gene ontology pathway analysis. A) Genes associated 

with a hypomethylated DMR in cluster 1 or cluster 2 and located in a promoter and/or 

TSS region, were used as input for GO pathway analysis. The most significant biological 

pathways found for cluster 1 and cluster 2, respectively are shown. Metabolic pathways 

were identified in cluster 2, indicating hepatocytes (HCs). For cluster 1 the identified GO 

pathways did not reveal a specific cell type B) A subset of the genes with DMRs in 

promoter regions. The DNA methylation status of the DMRs in each respective cluster 

are shown (low methylation = blue, high methylation = red)  

Supplementary Information  

Figures S1-S6 

Data S1 Sample and read alignment information 

Data S2 Liver cluster assignments 

Data S3 DMR annotations 

Data S4 GO:BP intersections 

Data S5 DMR-marker overlaps 

Table S1 Oligo sequences 

 

Methods 

Cell sorting 

Live K562 cells were sorted into 384-well plates using a MoFlo™ Astrios EQ (Beckman 

Coulter) with 1x PBS as sheath fluid at a pressure of 25 psi and a 100 µm nozzle. Cells 

were stained with Hoechst 33342 and propidium iodide (PI) (both ThermoFisher 

Scientific) and sorted based on forward scatter, positive fluorescence for Hoechst 33342, 

and negative fluorescence for PI in stringent single sort mode with a drop envelope of 

0.5. Liver nuclei were sorted into 384-well plates using BD FACSMelody™ cell sorter 

with BD FACSChorus™ software. Nuclei were stained with 4′,6-diamidino-2-
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phenylindole (DAPI) and sorted using the “Single Cell” sort mode at a pressure of 23 psi 

using a 100 µm nozzle. 

 

scWGBS library preparation and sequencing 

Cells were FACS sorted into 384-plate wells containing 2 µl lysis buffer (Zymo M-

digestion buffer also containing proteinase K). 15 µl EZ Methylation Direct conversion 

reagent (Zymo Research) was added, and incubation was performed in a thermocycler 

according to the manufacturer’s instruction. The bisulfite conversion reaction was 

subsequently washed and desulfonated using reduced volumes in a 384-plate spin 

column (Zymo Research) essentially as described in (Luo et al., 2018) with minor 

modifications. Briefly; 60 µl binding buffer was first added to each well in the column 

plate. Then 20 µl binding buffer was added to each reaction in the 384-well plate using a 

multi-pipette, the reactions (37 µl) was transferred to the column plate and mixing was 

performed by pipetting. The spin plate was placed on top of a 96-, 2 ml deep well plate 

and centrifuged (5000 g, 5 min). 100 µl M-wash buffer was added and the centrifugation 

was repeated. 50 µl M-desulphonation buffer was then added to each well and incubated 

for 15 min at RT, whereafter the plate was centrifuged (5000 g, 5 min). Two washes were 

subsequently performed with 100 ul M-wash buffer (5000 g, 5 min). After the second 

wash the spin plate was placed on an empty collection plate and briefly spun to remove 

residual wash buffer. The spin plate was then placed on a new 384-well plate and 7 ul 

elution buffer containing 500 nM of the barcoded strand synthesis oligos (SSO_H_X, 

Table S1) was added and incubated at RT for 5 min, followed by centrifugation (5000 g, 5 

min) to elute the DNA. After a brief denaturation step at 95 °C (2 min) and cooling on 

ice, a strand synthesis reaction was performed by adding 5 µl of Klenow mastermix (2x 

Blue buffer, 1 mM dNTP, 2.5 units Klenow exo- (Enzymatics) to each well and 

incubating at 4°C for 5 min followed by 25° for 5 min and 37°C for 60 min. Then 0.5 µl of 

Exonuclease I was added to each well to digest excess oligos followed by incubation at 37 

°C for 30 min. After oligo digestion, up to 32 single cell reactions were pooled and 1.2x 

SPRI bead purified (AMPureX beads, Beckman Coulter). The DNA was eluted in 10 µl of 

10 mM Tris-Cl (pH8.5) and denatured at 95°C for 2 min in the presence of 50 ng of 

thermostable single stranded binding protein, ET-SSB (New England Biolabs) and then 

immediately cooled down on ice. SPLAT was performed in bulk by adding the SPLAT 3’ 

adapter at 5 µM final conc, 1 µl 10x T4 DNA ligase buffer, 1 µl PEG4000 (10x stock), 15 

units T4 DNA ligase (ThermoFisher Scientific) 10 units of T4 polynucleotide kinase 

(ThermoFisher Scientific)) and H20 to a final volume of 15 µl. The ligation mix was 
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incubated at 20 °C for 1 hr. A 1.0 x SPRI bead purification was then performed and the 

DNA was eluted in 10 µl. Libraries were amplified by adding 2.5 µl NEBNext dual index 

primers and 12.5 ul KAPA HiFi 2x PCR mastermix (Roche). PCR was carried out for 12-

16 cycles and thereafter the PCR reactions were purified twice with 0.8x SPRI beads and 

finally eluted in 10 µl elution buffer (10 mM Tris pH 8.0). The scSPLAT pools were 

quantified using Qubit or TapeStation and were then combined prior to final 

concentration determination using qPCR. The libraries were PE150 sequenced on either 

HiSeqX (Liver nuclei batch 1) or a NovaSeq 6000 (Illumina). scnmC-Seq2 libraries were 

prepared according to the previously published protocol (Luo et al., 2018) and sequenced 

in the same NovaSeq lane as the scSPLAT K562 batch1 libraries. The SPLAT adapter 

was prepared from oligo ss1a and ss2b (Table S1) by combining 100 µM of each oligo in 

50 ul, adding 1µl 20x TE buffer and 1µl of 5M NaCl and heating to 95 °C, followed by 

stepwise decrease to 4 °C.  

Cell demultiplexing and read mapping 

Pooled scSPLAT libraries were demultiplexed into single cell samples based 

on the six bases long inline barcode using the je software suite v.1.2 (Girardot et al., 

2016) with default arguments and specifying the barcode-presence on read 1. Prior to 

read alignment adapter sequences were trimmed using TrimGalore v.0.6.1 and an 

additional 15, resp 10 bases were clipped from the 5’- and 3’- prime end of reads for both 

scSPLAT and snmC-Seq2. Bismark (v.0.22.1 specifying parameters; –comprehensive, 

minimum alignment score function of L,0, -0.2 and maximum insert size = 800 bp), were 

then used to paired end align scWGBS reads to the human reference GRCh38 (Krueger 

and Andrews, 2011). Afterwards the unmapped fraction was re- mapped as single reads 

(SR) and the bam files from the respective PE and SR1 and SR2 mappings were first 

deduplicated and then methylation calling was performed using Bismark’s methylation 

extractor tool. The CpG methylation information from PE and SR mappings were 

combined and strand-merged using a custom R-script. Bisulfite conversion efficiency was 

assessed by global methylation levels in CHH context. Cells with a CHH methylation 

value > 2% were excluded from the analysis. 

  For complexity analysis the K562 pools were paired end aligned using 

Bismark before cell-demultiplexing. The plots were generated using the c-curve function 

from the Preseq software (Daley and Smith, 2013).   

Comparison of scSPLAT K562 methylation against ENCODE data and GC bias analysis 
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We downloaded the call sets from the ENCODE portal (Dunham et al., 2012) with the 

following identifiers ENCFF721JMB, ENCFF867JRG. scSPLAT bamfiles were merged 

using Picard MergeSamFiles and methylation levels extracted with Bismark. Common 

sets of CpG sites were extracted using custom R-scripts and Pairwise Pearson’s 

correlation coefficient were computed in R and including only CpG-site covered by at 

least 5x. 

 

GC bias analysis  

The paired end and single read mapped bam files for each cell were merged into ‘pseudo- 

bulk’ bam files as to obtain one paired-end-, one single-read 1- and one single read 2 bam 

file per K562 batch. GC biases were computed using the Picard CollectGCBiasMetrics 

tool and normalized coverage was plotted as a function of the GC content in the genome. 

Clustering and visualization 

The cells were clustered using the EpiclomalRegion tool as described by de Souza et al. 

The preprocessing pipeline provided by Epiclomal was used to construct an input matrix 

from the strand merged bismark .cov files and a file specifying the regions of interest. 

The regions selected herein were CpG islands, gene bodies and 1000 bp upstream and 

downstream of the transcription start sites. The region coordinates were downloaded 

from UCSC using custom scripts and the coordinates for the CpG sites within each 

region were extracted using the R package BSgenome.Hsapiens.UCSC.hg38 (v1.4.3). The 

preprocessing pipeline starts by obtaining the methylation levels for each CpG site 

within the regions from the coverage files. Non-redundant regions were identified by 

first filtering the regions with less than 5% coverage in 10% of cells and then inferring 

the interquartile range (IQR) and keeping the most variable regions. The matrix 

produced by the preprocessing pipeline was used as input for the EpiclomalRegion. The 

clustering pipeline starts by clustering the cells using four modes of non-probabilistic 

clustering. The results from this step are then used as a starting point together with a 

set of random values for the probabilistic clustering. The posterior probabilities 

outputted from Epiclomal were used to assign each cell a cluster. Heatmaps were plotted 

using the mean methylation levels across the selected regions and UMAP was used for 

dimensionality reduction and visualization of the cells.  

Differential methylation and GO pathway analysis 

Methylation information in strand-merged Bismark.cov-files were merged cluster-wise. 
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The R-package bsseq  (Hansen et al., 2012) was used to smooth methylation calls, 

segment data and call DMRs between clusters. To call a segment as a DMR a minimum 

of ten consecutive CpG sites and an average difference > 0.6 in the DNA methylation 

levels between cluster 1 and 2 was required yielding 5114 DMRs. Differentially 

methylated regions (DMRs) were annotated to genomic regions and to the nearest gene 

using Homer v 4.1 (Heinz et al., 2010). The nearest genes to DMRs within promoters, 

CpG Islands and 500 bp upstreams and downstreams of TSS were used as input for 

Gene Ontology biological pathway enrichment analysis using the gprofiler2 R package 

(Peterson et al., 2020). Cell type specific marker genes were obtained from (Cavalli et al., 

2020; Diamanti et al., 2021) and from the Human Protein Atlas; 

https://www.proteinatlas.org/humanproteome/celltype (Karlsson et al., 2021). 

 

 

References 

Cavalli, M., Diamanti, K., Pan, G., Spalinskas, R., Kumar, C., Deshmukh, A.S., Mann, 

M., Sahlén, P., Komorowski, J., and Wadelius, C. (2020). A Multi-Omics Approach to 

Liver Diseases: Integration of Single Nuclei Transcriptomics with Proteomics and HiCap 

Bulk Data in Human Liver. Omi. A J. Integr. Biol. 24, 180–194. 

Daley, T., and Smith, A.D. (2013). Predicting the molecular complexity of sequencing 

libraries. Nat. Methods 2013 104 10, 325–327. 

Diamanti, K., Inda Díaz, J.S., Raine, A., Pan, G., Wadelius, C., and Cavalli, M. (2021). 

Single nucleus transcriptomics data integration recapitulates the major cell types in 

human liver. Hepatol. Res. 51, 233–238. 

Dunham, I., Kundaje, A., Aldred, S.F., Collins, P.J., Davis, C.A., Doyle, F., Epstein, C.B., 

Frietze, S., Harrow, J., Kaul, R., et al. (2012). An integrated encyclopedia of DNA 

elements in the human genome. Nature 489, 57–74. 

Farlik, M., Sheffield, N.C., Nuzzo, A., Datlinger, P., Schönegger, A., Klughammer, J., 

and Bock, C. (2015). Single-Cell DNA Methylome Sequencing and Bioinformatic 

Inference of Epigenomic Cell-State Dynamics. Cell Rep. 10, 1386–1397. 

Girardot, C., Scholtalbers, J., Sauer, S., Su, S.Y., and Furlong, E.E.M. (2016). Je, a 

versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. 

BMC Bioinformatics 17. 

Gravina, S., Dong, X., Yu, B., and Vijg, J. (2016). Single-cell genome-wide bisulfite 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.14.464375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464375


18 
 

sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome 

Biol. 17. 

Hansen, K.D., Langmead, B., and Irizarry, R.A. (2012). BSmooth: from whole genome 

bisulfite sequencing reads to differentially methylated regions. Genome Biol. 13. 

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, 

C., Singh, H., and Glass, C.K. (2010). Simple Combinations of Lineage-Determining 

Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B 

Cell Identities. Mol. Cell 38, 576–589. 

Hui, T., Cao, Q., Wegrzyn-Woltosz, J., O’Neill, K., Hammond, C.A., Knapp, D.J.H.F., 

Laks, E., Moksa, M., Aparicio, S., Eaves, C.J., et al. (2018). High-Resolution Single-Cell 

DNA Methylation Measurements Reveal Epigenetically Distinct Hematopoietic Stem 

Cell Subpopulations. Stem Cell Reports 11, 578–592. 

Kapourani, C.-A., and Sanguinetti, G. (2019). Melissa: Bayesian clustering and 

imputation of single-cell methylomes. 

Kapourani, C.A., Argelaguet, R., Sanguinetti, G., and Vallejos, C.A. (2021). scMET: 

Bayesian modeling of DNA methylation heterogeneity at single-cell resolution. Genome 

Biol. 22. 

Karlsson, M., Zhang, C., Méar, L., Zhong, W., Digre, A., Katona, B., Sjöstedt, E., Butler, 

L., Odeberg, J., Dusart, P., et al. (2021). A single–cell type transcriptomics map of 

human tissues. Sci. Adv. 7. 

Kmiec, Z. (2001). Cooperation of liver cells in health and disease. Adv. Anat. Embryol. 

Cell Biol. 161. 

Krueger, F., and Andrews, S.R. (2011). Bismark: A flexible aligner and methylation 

caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572. 

Lee, T., Zhai, J., and Meyers, B.C. (2010). Conservation and divergence in eukaryotic 

DNA methylation. Proc. Natl. Acad. Sci. 107, 9027–9028. 

Liu, H., Zhou, J., Tian, W., Luo, C., Bartlett, A., Aldridge, A., Lucero, J., Osteen, J.K., 

Nery, J.R., Chen, H., et al. (2020). DNA Methylation Atlas of the Mouse Brain at Single-

Cell Resolution. BioRxiv. 

Liu, H., Zhou, J., Tian, W., Luo, C., Bartlett, A., Aldridge, A., Lucero, J., Osteen, J.K., 

Nery, J.R., Chen, H., et al. (2021). DNA methylation atlas of the mouse brain at single-

cell resolution. Nature 598, 120–128. 

Luo, C., Keown, C.L., Kurihara, L., Zhou, J., He, Y., Li, J., Castanon, R., Lucero, J., 

Nery, J.R., Sandoval, J.P., et al. (2017). Single-cell methylomes identify neuronal 

subtypes and regulatory elements in mammalian cortex. Science (80-. ). 357, 600–604. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.14.464375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464375


19 
 

Luo, C., Rivkin, A., Zhou, J., Sandoval, J.P., Kurihara, L., Lucero, J., Castanon, R., Nery, 

J.R., Pinto-Duarte, A., Bui, B., et al. (2018). Robust single-cell DNA methylome profiling 

with snmC-seq2. Nat. Commun. 9. 

Miura, F., Enomoto, Y., Dairiki, R., and Ito, T. (2012). Amplification-free whole-genome 

bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 40. 

Mulqueen, R.M., Pokholok, D., Norberg, S.J., Torkenczy, K.A., Fields, A.J., Sun, D., 

Sinnamon, J.R., Shendure, J., Trapnell, C., O’Roak, B.J., et al. (2018). Highly scalable 

generation of DNA methylation profiles in single cells. Nat. Biotechnol. 36, 428–431. 

Peterson, H., Kolberg, L., Raudvere, U., Kuzmin, I., and Vilo, J. (2020). gprofiler2 -- an R 

package for gene list functional enrichment analysis and namespace conversion toolset g: 

Profiler. F1000Research 9. 

Raine, A., Manlig, E., Wahlberg, P., Syvänen, A.C., and Nordlund, J. (2017). SPlinted 

Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole 

genome bisulphite sequencing. Nucleic Acids Res. 45. 

Smallwood, S.A., Lee, H.J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., 

Andrews, S.R., Stegle, O., Reik, W., and Kelsey, G. (2014). Single-cell genome-wide 

bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820. 

de Souza, C.P.E., Andronescu, M., Masud, T., Kabeer, F., Biele, J., Laks, E., Lai, D., Ye, 

P., Brimhall, J., Wang, B., et al. (2020). Epiclomal: Probabilistic clustering of sparse 

single-cell DNA methylation data. PLoS Comput. Biol. 16. 

Tang, J., Zou, J., Fan, M., Tian, Q., Zhang, J., and Fan, S. (2021). CaMelia: Imputation 

in single-cell methylomes based on local similarities between cells. Bioinformatics 37, 

1814–1820. 

Uzun, Y., Wu, H., and Tan, K. (2021). Predictive modeling of single-cell DNA methylome 

data enhances integration with transcriptome data. Genome Res. 31, 101–109. 

Zhang, J., Lee, D., Dhiman, V., Jiang, P., Xu, J., McGillivray, P., Yang, H., Liu, J., 

Meyerson, W., Clarke, D., et al. (2020). An integrative ENCODE resource for cancer 

genomics. Nat. Commun. 11. 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.14.464375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464375


 

FACS sort

bisulfite 
conversion

pool cells

splint ligation

Illu
m

ina
 a

da
pt

er
Ce

ll b
ar

co
de

ra
nd

om
 se

qu
en

ce

strand synthesis

Figure 1

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.14.464375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464375


●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●●●

●●

●●
●●

●

●●
●

●●●●●

●

●

●●●

●●●

●
●

●●●●●
●●●●●

●

●●●

●

●●●●
●●●●●●

●●

●●
●

●●●●●

●●●●●●●
●●

●●

●●●●●
●●●●●●●

●●

●●

●●●●

●●●●●
●●●●

●●

●

●

●●●

●●●

●●●
●●

●

●●

●

●●●●●
●●
●

●●●

●

●

●●

●●●●

●●

●

●●

●●●

●

●

●
●

●●●

●

●

●

●●

●

●●

●●

●

●●

●●●

●●●●●

●

●

●●
●

●

●●

●●●

●●
●●●●

●

●●

●

●●●

●●●

●●●

●

●
●●

●

0.0

2.5

5.0

7.5

10.0

12.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

●● ●● ● ●●●●
●

●
●

●

●

●
●●●

●

● ●●

●

●●● ●●

●

●
●

●●
●

●●
●

●

●

●

●

●
●●

●

●
●

●

●
● ●

●

● ●●
● ●●● ●

●
●●

●
●●

●
● ●

●●●●
●

●
● ●●●

●
●●●●

● ●●
●●

●
●

●

● ●●
●●

●
●

●● ●● ●●●● ● ● ●
●

●
●
● ●
●

● ●
● ●●

●
● ●●●

●●● ●
●● ● ●●

●
●● ● ●

●

●● ●● ●
●●

●

●

●
●●● ●
●

●●●
●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
● ●

● ●●●
●

● ●

●

●
● ● ●

●
●

●
●

●

● ●●
●

●
●

●
●●●●

●
● ●

●

●

●
●●

●
●

●●

●

●●
●
●●●

●
●●● ●
●● ●
●

●

●

● ●
●

●
●

● ● ●●
●

●
●●

● ●●

●

●

●●
●
●

● ●
●

● ●

●
● ●

●● ●●● ●

●
●●

● ●
●

●
● ●● ●●
●●

●●
●

●●●

●
●

●● ● ●

●
● ●● ●

●
●●●

●●
●●● ●
●

●
● ●
●

●

●

●●
●●●

● ● ●
●

●●

●
●

●
●

●
●

●
● ●● ●● ●●●
●

●
●

●
●● ●● ●

●

● ●●● ●●
●●● ●

●
●

●

●
●

● ●
● ●●●

●

●●
●

●●

●
●

●
●● ●

●
●

●

●
●

●●
●

●
● ●

●
●●

●
●● ●●

●
●

● ●
●●

●●

●●
●● ●

●

●
●

●●
●

●

●

●
●●

●●● ●●● ● ●● ●● ●●

●
● ●●● ●● ● ●●●●● ●● ●● ●●●● ● ●●●● ● ●●●● ●●●● ●●● ● ●● ●●●● ●●● ●● ●●● ●● ●●● ●●● ●●● ●● ●● ●● ●●

●
● ● ●● ● ●●● ●●● ●●● ● ●● ●● ●●●●● ●

●
●●●●●● ●● ● ●● ●●●●● ●● ●●●●● ●● ●●● ●

●
●●● ●● ●● ●● ●●●●● ●● ● ●●●● ●

●

● ●● ●●● ●● ●●●
●● ●● ●●● ●● ●●● ● ● ●●●●
●● ●
●●● ●●● ● ●●●● ●●●●● ●● ● ●0

25

50

75

100

CH
H 

m
et

h
Cp

G 
m

et
h

M
ap

 ra
te

●
●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●●

●
●●
●

●

●

●

●

●

●●●●●
●
●●

●

●

●

●

●
●

●

●
●
●●●

●

●

●

●
●

●

●

●

● ●●
●

●

●●
●

●

●●

●●

●

●●

●

●
●

●●

●
●●●●
●

●

●●●●

●

●
●●●

●

●
●

●

●
●●
●
●●●●●

●

●
●
●●●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●●

●

● ●

●●

●

●

● ●
●

●

●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

0

5

10

15

0 20 40 60

20

40

60

0 100 200
300

%
 m

et
hy

la
tio

n/
al

ig
ne

d 
re

ad
s

C
pG

 s
ite

s 
(M

)

C
pG

 s
ite

s 
(M

)

Total reads per cell (M) Total reads per pool (M)

Ex
pe

ct
ed

 d
is

tin
ct

 (M
)

snmC-Seq2

Batch2
Batch1

Figure 2

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.14.464375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464375


0.97

0.97

0.997

0.933

0.935

0.997

0.969

0.935

0.937

0.969

0.936

0.938

0.932

0.934 0.967

K562 Batch2 pe+sr

K562 Batch2 pe

K562 Batch1 pe+sr

ENCFF867JRG

ENCFF721JMB

K56
2 B

atc
h1

 pe

K56
2 B

atc
h2

 pe
+s

r

K56
2 B

atc
h2

 pe

K56
2 B

atc
h1

 pe
+s

r

ENCFF86
7J

RG

Pairwise pearsson correlation,
CpG−C coverage of at least 5x

 

0

1

2

3

4

0 25 50 75
GC content in 100 bp windows

N
or

m
al

iz
ed

 C
ov

er
ag

e

Batch1 pe
Batch1 sr1
Batch1 se2
Batch2 pe
Batch2 sr1
Batch2 sr2

A B

Figure 3

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.14.464375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464375


● ●

●

●
●●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●●

●

● ●

●●

●

●
●

●

●

●
●●

● ●
●● ●●

●

●
●

●●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

● ●

●

●●

●

●●

●●

●

●

●
●●

●
●

●
●

●

●

● ●●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

● ●
●●

●

●
●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●−2

−1

0

1

2

−3 −2 −1 0 1 2
umap 1

um
ap

 2

0

0.2

0.4

0.6

0.8

1

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●● ●

●

●

●

● ●

●
−3

−2

−1

0

1

2

3

−1 0 1
umap 1

um
ap

 2

0

0.2

0.4

0.6

0.8

1

Batch1
Batch2
snmSeq-2
Farlik et al

Batch1
Batch2
Batch3
Cluster1
Cluster2

AA

B

Figure 4

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.14.464375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464375


organic acid metabolic process

lipid metabolic process

oxoacid metabolic process

carboxylic acid metabolic process

small molecule metabolic process

monocarboxylic acid metabolic process

lipid transport

steroid metabolic process

cellular lipid metabolic process

response to cytokine

regulation of molecular function

signaling

cell migration

cell communication

signal transduction

regulation of cell migration

cellullar response to stimulus

localization of cell

0 20 40 60 80
Number of genes

Cluster1
Cluster2

Biological Pathways

ADI1
AKR1C1
ANKS4B

ANXA9
APCS

APOA1
ASGR1
C4BPB

CA5A
CCL16

CDHR5
CLDN14

CPN1
CPN2

CYP2B6
CYP3A5

DIO1
ELMO3

F12
FAAP20
FETUB

FRK
GPER1
GRB14
HGFAC
HKDC1
HNF4A

HSD17B13
HSD17B2

HSPB9
ITIH2
KLB

KNG1
KRTCAP3

MCRIP2
NFIB

NR0B2
NR1I3

PHLDB2
PROZ

PRR26
RAB17

RBP5
RCAN1

RGS3
SELENBP1

SEPTIN9
SERPINA1
SLC22A10
SLC25A34

SLC26A1
SLC28A1

SLC4A2
SLC5A9
SMLR1
SPHK2
THRSP

TM4SF4
TMED1
TMED6

XDH
ZBTB20

1 2
Cluster

AQP12A
ARHGDIB
ARHGEF2
ARHGEF3

ASAP3
ATOH8

CD63
CDHR2

CLN5
DDAH2
DEAF1

DENND4B
ELF1
ESR1
ETS1

FAAP20
FXYD7
GATA4
GLRX
GPAM
GSEC
HCST

HTATSF1P2
ITGB2

ITPRIPL1
KLHL6
LRRC4
LTC4S

MGAT1
MMP23B

MRTFA
MYCBPAP

MYO1G
NADK

NR2F2
NR5A2
NUDT1
PALM3

PIK3CG
PPAN
RCN3
RFFL
RINL

RIPOR2
RUSC1
SBNO2

SH3BP2
SHANK2
SIGIRR

SLC16A1
STAT5A

TC2N
TCF7L1

TMC8
TNFRSF25

TNFSF4
TNFSF8

TTC7A
TXLNB

ZC3H12D
ZNF532
ZNF75D

1 2
Cluster

Figure 5

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.10.14.464375doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464375


 

Supplementary Figure 1. Examples of TapeStation profiles for pooled scSPLAT libraries 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Demultiplexing profiles for A) K562 16-cell pools and B) liver 

nuclei 32-cell pools. The bars represent the proportion of reads assigned to each cell in the 

pool.  
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Supplementary Figure 3. K562 and liver nuclei EpiClomal Region clustering based on 

methylation in CpG islands. A) K562 cells colored by batch. B) K562 cells colored pool-wise. 

D) Liver nuclei colored by batch. B) Liver nuclei colored pool-wise. 

               

 

 

 

 

 

      

 

 

 

 

 

 

 

 

Supplementary Figure 4. EpiClomal Region assigned all K562 cells to a single cluster 

irrespective of whether the clustering was performed based on methylation in CpG islands, 

gene bodies or TSS regions. A) K562 EpiClomal Region clustering based on methylation in 

gene bodies. Cells colored by batch. Although it appears like a small number of cells form a 

‘subcluster’ in the UMAP plot, they were all assigned to one single cluster by EpiClomal. B) 

K562 EpiClomal Region clustering based on methylation in regions of 1000 bp +/- of TSS. 

Cells colored by batch.  
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Supplementary Figure 5. Liver nuclei QC metrics A) Number of detected CpG sites per 

cell vs sequencing depth B) Global methylation levels and read alignment efficiency per 

nuclei.  

                                              

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 6. Reclustering of liver nuclei cluster 1 based on: CpG island 

methylation, gene body methylation and methylation across TSS regions. With the two 

latter EpiClomal finds one cluster only. In contrast, with CpG-island methylation 

EpiClomal assigns the cells to two clusters that were were intermingled in the UMAP 

visualization. 
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