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Abstract 

Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial neoplasm and 
anatomical subtype of head and neck squamous cell carcinoma (HNSCC) with an average 5-
year survival rate of less than 50%. To improve the survival rate of OSCC, the discovery of 
novel anti-cancer drugs is urgently needed. In the present study, we performed metanalysis 
of 5 gene expression datasets (GSE23558, GSE25099, GSE30784, GSE37991 and TCGA-OSCC) 
that resulted in 1851 statistically significant DEGs in OSCC. The DEGs were involved in key 
biological pathways that drive the progression of OSCC. A comprehensive protein-protein 
interaction (PPI) network was constructed from the DEGs and the top protein clusters 
(modules) were extracted in Cytoscape. The DEGs from the top modules were searched for 
antineoplastic agents using L1000CDS2 server. The search resulted in a total of 37 perturbing 
agents from which 12 well-characterized antineoplastic agents were selected. The selected 
12 antineoplastic agents namely Teniposide, Palbociclib, Etoposide, Fedratinib, Tivozanib, 
Afatinib, Vemurafenib, Mitoxantrone, Idamycin, Canertinib, Dovitinib and Selumetinib. These 
drugs showed interactions with the over expressed hub genes that regulate cellular 
proliferation and growth in OSCC progression. These identified antineoplastic agents are 
candidates for their potential role in treating OSCC.   

Keywords: HNSCC, OSCC, Drug repositioning, Differential gene expression, antineoplastic 
agents 

 

Introduction 

Oral Squamous Cell Carcinoma (OSCC) is the most common oral malignancy which accounts 
for approximately 90% of all malignant neoplasms of the oral cavity [1, 2]. OSCC is a subtype 
of Head and Neck Squamous Cell Carcinoma (HNSCC) that arises in the squamous lining of 
several sites of oral cavity i.e. tongue, lip, gingiva, palate, floor of the mouth and buccal 
mucosa [3, 4]. OSCC is the 16th most common malignancy around the globe with nearly 1 
million prevalent cases in 2020 [5]. The risk factors that are increasing the prevalence of OSCC 
around the globe are tobacco smoking and chewing, betel quid, alcohol, poor oral hygiene 
and periodontitis [6]. The current available treatment modality of OSCC are surgical resection, 
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radiotherapy, chemotherapy and targeted therapy however, the 5-year survival rate of 
approximately 50% is still unchanged [7-10].  

The survival rate of OSCC patients can be improved through the development of novel drugs 
with the help of next-generation technologies and distinguished status of a tumor [11, 12]. 
However, the translation of the novel drugs into clinical practice have several challenges i.e. 
lower success rate in clinical trials, high cost and time scales that can span more than a decade 
[13, 14].To overcome some of these challenges, drug repositioning or repurposing uses an 
alternative strategy for identification of new uses i.e. the existing drugs that are outside scope 
of the original medical indication [15, 16]. The key advantage of drug repositioning is that the 
pharmacodynamic, pharmacokinetic and toxicity profiles of drugs have already been 
established in the original preclinical and Phase-I studies. These drugs could therefore be 
rapidly progressed into Phase-II and Phase-III clinical studies and the associated development 
cost and time could be significantly reduced [17, 18]. Drug repositioning has been made 
feasible with publicly accessible databases and repositories that store information of gene 
expression and biological pathways in cancer [19, 20] in human cell lines or model organisms 
exposed to perturbing agents or small molecules [21-23]. The application of biomarkers is not 
only restricted to therapeutic targeting but can also be used for diagnosis or prognosis of a 
cancer patient [24, 25]. The library of integrated network-based cellular signatures (LINCS) is 
one such project that generates response gene signatures induced by a diverse collection of 
perturbing agents in different model systems such as cell lines, differentiated cells and 
embryonic stem cells [23, 26]. The correlation of expression signatures induced by drugs or 
perturbing agents with the gene expression profile of a cancer offers an efficient strategy for 
repurposing existing drugs for new indications [27, 28]. The correlation of drugs and cancer 
can be established by deploying several computational methods such as systems biology, 
bioinformatics, machine learning and network biology for drug repositioning in complex 
diseases such as cancer and  in identification of new indications  existing drugs [29].   

The computational approach for drug repositioning mostly utilizes a “guilt by association” 
strategy of correlating small molecules or existing drugs with the disease due to regulation of 
similar biological pathways and gene expression [30]. These correlations between disease and 
drugs can be predicted based on similar chemical structures, genetic variations and gene 
expression profiles [31]. Currently, the interest in the use of transcriptomics-guided drug 
repositioning is expanding and so far, a number of studies have been conducted [32]. 
Transcriptomics-guided drug repositioning in cancer is more feasible because of limited 
background knowledge of cancer type and drugs is require [33, 34].  

Recently, transcriptomics-guided drug repositioning by targeting the overly expressed genes 
and enriched pathways have been conducted in different types of cancer such as breast 
cancer [35, 36], prostate cancer [37, 38], gastric cancer [39], HNSCC [40] and many others. 
However, there is still no such study available that explored drug repositioning for OSCC by 
using gene expression data. In the present study, we performed differential gene expression 
analysis of multiple OSCC datasets and identified a set of genes that were driving 
tumorigenesis and the progression of OSCC. The gene clusters were inversely correlated with 
the antineoplastic signatures retrieved from the L1000CDS2 server.   
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Materials and Methods 

Searching for gene expression datasets 

A comprehensive search for gene expression datasets was performed in Gene Expression 
Omnibus (GEO) – an online public repository hosted by NCBI for genomics and transcriptomics 
datasets (http://www.ncbi.nlm.nih.gov/geo/). The key searching terms for identification of 
datasets of interest in GEO database were “Oral squamous cell carcinoma”, “OSCC”, “Oral 
cancer” and “Oral cavity cancer” and the search was conducted in August of 2020. The results 
were further filtered by selecting terms such as “Homo sapiens” as a host and expression 
profiling by array and “expression profiling by high throughput sequencing” as a study type. 
From the resulting list, only those datasets were selected that resulted from the original 
experimental studies and also included the data of gene expression from OSCC samples as 
well as controls. In addition, OSCC samples were also extracted from The Cancer Genome 
Atlas (TCGA-HNSC) mRNA expression dataset accessed using the Broad GDAC Firehose 
(https://gdac.broadinstitute.org/).  

Preprocessing of the datasets  

The selected datasets were characterized by retrieving information such as GEO accession, 
GEO platform (GPL) ID, number of OSCC cases and controls, sample type and gene expression 
data were extracted. The differential expression analysis of datasets retrieved from the GEO 
and TCGA were performed by using the limma and DESeq2 package in R v3.6 respectively. 
From the individual datasets, the significant differentially expressed genes (DEGs) were 
detected by adjusting the p-value to correct the false positive results by using Benjamini & 
Hochberg false positive discovery rate method [41]. The volcano plot for each dataset was 
created by using “EnhancedVolcano” package in R. The DEGs were filtered on the basis of 
adjusted p-value (adj. P) < 0.01 and the probe set IDs in different datasets were reannotated 
into gene symbols by using the “biomartr” package in R. The number DEGs detected in each 
dataset were visualized as a Venn Diagram using InteractiVenn tool [42].  

The mean log2 fold change (log2FC) was estimated where more than one probe set IDs were 
representing the same gene symbol. By merging the DEGs from all datasets, the log2FC of the 
DEGs were estimated by taking the mean value of the DEGs that were already filtered on the 
basis of adj. P < 0.05.  

𝑙𝑜𝑔$𝐹𝐶(𝐷𝐸𝐺𝑥) =
𝛴𝑙𝑜𝑔$𝐹𝐶(𝐷𝐸𝐺𝑥)
𝑛𝑜. 𝑜𝑓	𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠  

 

Where log2FC of each DEG was estimated by taking mean of log2FC that was found in datasets 
after applying cutoff of adj. P > 0.05. The DEGs were further filtered based on mean log2FC > 
|1| and detection in at least 3 datasets (Supplementary Table 1).  
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Gene ontology and KEGG terms enrichment analysis 

The annotation, visualization and integrated discovery (DAVID) database 
(https://david.ncifcrf.gov/) was employed for enrichment analysis of gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) terms. The results from the submitted 
listed of DEGs were filtered using a cutoff of p-value < 0.05 and the background reference was 
set to the whole genome annotation for human genome. The significantly enriched top ten 
GO and KEGG terms were plotted as barplot by using the “ggplot2” package in R.  

Construction of PPI and the detection of modules 

The protein-protein interaction (PPI) network was built by submitting the list of DEGs in 
Search Tool for the Retrieval of Interacting Genes (STRING v11; “https://string-db.org/”). The 
PPI network was constructed by setting a cutoff criterion for confidence score of > 0.4 for the 
nodes and the data was imported into Cytoscape v3.7.1 for visualization. The network file was 
imported into Cytoscape and network components which had less than 5 nodes were 
removed. For further exploration of densely interacting modules in the network, the 
Molecular Complex Detection (MCODE) plugin in Cytoscape which detects modules or densely 
interacting nodes in the network. The default parameters such as degree cutoff = 2, node 
score cutoff = 0.2 and k-Core of 2 in MCODE were applied. For identification of enriched 
pathways regulated by the DEGs in top modules, the ClueGO app of Cytoscape was employed 
for identification of enriched KEGG pathways with P-value < 0.05 as a threshold. 

Correlation between DEGs of top modules and drugs.  

Drug repositioning was performed by targeting the DEGs in top 5 modules via L1000CDS2. 
L1000CDS2 is an online search tool that has knowledge about upregulated and downregulated 
genes perturbed in the cell lines after treated with drug or perturbagens. L1000CDS2 utilizes 
L1000 data from the Library of Integrated Network-based Cellular Signatures (LINCS) and 
return results of top 50 perturbations for the submitted query.  L1000CDS2 was employed by 
submitting the genes in modules that showed mean log2FC > 1 as upregulated and log2FC < -
1 as downregulated genes (Supplementary Table 2). The parameters were set to default and 
enabled the search for expressional signatures of small molecules that were in negative 
correlation (reversed) to the input. The submitted query resulted into a total of 50 chemical 
perturbations and their corresponding heatmap was constructed by using Pheatmap package 
in R.  

Screening for antineoplastic agents  

The resulting list of L1000CDS2 was screened for antineoplastic agents by retrieving 
information i.e. drug classification, mechanism of action (MoA), existing indication, targeting 
pathways and clinical trials from PubChem (https://pubchem.ncbi.nlm.nih.gov/). Only those 
antineoplastic agents were considered significant which are currently under investigation in 
phase-III of clinical trials or approved by FDA.  
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Construction of drug-gene interaction network 

The identified antineoplastic agents were searched for targeting genes by employing Drug 
Gene Interaction Database (DGIdb) and the list of genes were extracted. A network of drugs 
targeting genes was built and visualized in Cytoscape. In the drug-gene network, the 
overlapping genes from DGIdb and L1000CDS2 were also identified. Hub genes were identified 
by using network analysis tool in the Cytoscape and the nodes were filtered based on degree 
value ≥10. The role of hub genes in OSCC progression was explored by KEGG enrichment 
analysis using the DAVID server. The differential expression of hub genes was analyzed using 
the Gepia2 server [43].  

Results 

Five OSCC gene expression datasets with control samples were identified for the meta-
analysis.  

The gene expression datasets of OSCC were searched in GEO repository by using relevant 
keywords in search bar and the datasets were further filtered by selecting homo sapiens as a 
specie and gene expression studies either from microarray or high throughput technology. 
The search resulted into a total of 188 datasets which were further screened for studies that 
included OSCC samples along with healthy control and had sample size >30. From the filtered 
result list, only four datasets; GSE23558, GSE25099, GSE30784 and GSE37991 fulfilled the 
above-mentioned criteria. In addition, OSCC samples from TCGA-HNSC mRNA datasets were 
also extracted on the basis of anatomical sites of oral cavity that included oral tongue, floor 
of mouth, buccal mucosa, hard palate and alveolar ridge sites. The characteristics of the 
selected datasets have been summarized in Table 1 with a total of 575 samples (443 OSCC 
and 132 controls).     

Preliminary analysis found 1851 DEGs that were significantly dysregulated in OSCC. 

Significant DEGs were identified in the selected gene expression datasets by correlating OSCC 
with control samples. The differential expression of probe set ids in each dataset have been 
visualized as volcano plot in Figure 1. The probe set ids were converted into gene symbols and 
then filtered by setting a cutoff of adj. P <0.01. The screening of DEGs based on adj. P <0.05 
cutoff led to the detection of 3972, 9942, 11666, 9624 and 1762 DEGs in GSE23558, 
GSE25099, GSE30784, GSE37991 and TCGA-OSCC datasets respectively. The similarities of the 
DEGs in selected datasets have been illustrated as a Venn diagram as shown in Figure 2A. The 
DEGs in the datasets were merged on the basis of similar gene symbols and their mean log2FC 
was calculated. For further analysis, DEGs that showed mean log2FC > |1| and were detected 
in at least 3 datasets were considered (Supplementary Table 1). Finally, a total 1851 DEGs 
were detected which included 741 were upregulated and 1110 were downregulated DEGs. 

DEGs of OSCC were predominantly involved in cellular proliferation and tumor 
microenvironment.  

The enrichment of GO terms in biological process (BP), cellular component (CC) and molecular 
function (MF) as well as KEGG terms were searched for DEGs by using the DAVID webserver. 
For identification of statistically significant GO terms, a cutoff of P-value <0.05 was applied 
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which detected a total of 229 BP terms, 64 CC terms and 71 MF terms (Supplementary Table 
3). The top ten GO terms for each category have been shown in Figure 1C. The enriched BP 
terms included the extracellular matrix organization, collagen catabolic process, cell 
differentiation, cell adhesion, angiogenesis, inflammation response and regulation of cell 
proliferation. The CC terms included extracellular region, plasma membrane, cell surface and 
cellular organelles.  GO terms for MF included growth factor, monooxygenase and chemokine 
activity, heparin and metallic ions, collagen and receptor binding. In addition, the top KEGG 
pathway terms were enriched in PI3K-Akt signaling, cytokine-cytokine receptor interaction, 
ECM receptor interaction, focal adhesion, transcription misregulation in cancer and pathways 
in cancer.  The top ten enriched KEGG pathways are shown in Figure 1B.            

The PPI network of DEGs had a total of 1777 nodes and 324 nodes that were densely 
connected  

The resulting network from the STRING database showed enrichment p-value <1e-16 and a 
total of 55 disconnected nodes were removed from the network. The network was visualized 
in the Cytoscape as shown in Figure 3A. The PPI network showed a total of 1777 nodes and 
16958 edges in which 711 nodes were overexpressed and 1048 under-expressed while the 
expression of 18 nodes was unknown. After MCODE analysis in Cytoscape, the top five densely 
connected clusters or modules were extracted which are summarized in Table 2.    

The sub-network of the top modules comprised of 323 nodes and 6314 edges in which 224 
nodes were overexpressed and 96 under-expressed and 3 were unknown (Supplementary 
Table 4) and has been shown in Figure 3B. The enrichment analysis of KEGG pathways in the 
top modules was performed using ClueGO in Cytoscape and the results are as Figure 3C. The 
terms that were significantly enriched in the top modules include regulating focal adhesion, 
PI3K-Akt signaling pathway, ECM-receptor interaction, HPV infection, cell cycle, pathways in 
cancer, TNF signaling pathway, IL-17 signaling pathway, chemokine signaling pathway and 
cytokine-cytokine receptor interaction.   

Twelve FDA-approved anti-neoplastic agents were found for top DEGs in OSCC  

L1000CDS2 was used for the identification of candidate drugs by inversely correlating the 
expression of L1000 signatures in cell lines perturbed by chemical agents against the DEGs in 
the top modules. The search resulted in identification of top 50 perturbations by 37 candidate 
drugs. The perturbation of candidate drugs was identified in 11 cell line types i.e. A375, A549, 
BT20, HCC515, HEPG2, HME1, HT29, LNCAP, MCF7, MCF10A and VCAP. The primary source 
of these cell lines was breast cancer, lung adenocarcinoma, prostate cancer, hepatoblastoma, 
malignant melanoma and colon adenocarcinoma. The overlapping score for the perturbation 
was in the range of 0.19 to 0.23 which is estimated based on the cosine distance between the 
submitted list of DEGs and L1000 signatures [44]. The expression of L1000 signatures 
perturbed by the candidate drugs were mostly detected in the A375 and MCF7 cell lines. The 
dose concentration of the drugs in cell lines were in the range of 0.08 - 80.0 micromolar (uM) 
and the expression recording time was 24 hours. The expression of L1000 signatures detected 
in different cell lines that were perturbed by the candidate drugs have been shown as a 
clustergram in Figure 4. 
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The candidate drugs were characterized by retrieving information from the PubChem ChEMBL 
databases (Supplementary Table 5). Out of 37 drugs, 3 were not found in the PubChem and 7 
were poorly characterized in the database and therefore, they were removed from further 
analysis. The characterized list of 27 drugs had 23 antineoplastic agents and the remaining 4 
were classified as anti-inflammatory, anticoagulant and sun screening agents. The 23 
antineoplastic agents were further screened for identification of effective antineoplastic 
agent that are currently in the phase-III of trials or approved by FDA that resulted into 12 
drugs and have been characterized in Table 4. Nine antineoplastic agents; Teniposide, 
Palbociclib, Etoposide, Fedratinib, Tivozanib, Afatinib, Vemurafenib, Mitoxantrone and 
Idamycin have been approved while three (Canertinib, Dovitinib and Selumetinib) are still in 
Phase-III of clinical trials. 

The antineoplastic agents were further characterized by exploring their mechanism of action 
MoA) and indications from PubChem and DrugCentral 2021 database [45]. The MoA of 
selected candidates were involved in inhibition of cyclin dependent kinase 4 (CDK-4) and 6 
(CDK-6), DNA topoisomerase II, mitogen activated protein kinase (MAPK), serine/threonine 
kinase (STK) and blocking of receptor tyrosine kinases (RTK) such as epidermal growth factor 
receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), platelet derived 
growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR), stem cell growth 
factor receptor (SCGFR). These antineoplastic agents have been used in the treatment of 
breast cancer, prostate cancer, renal cell carcinoma, non-small and small cell lung cancer, 
myelofibrosis, acute myeloid and lymphoid leukemia and neurofibromatosis. 

Construction of a Drug-Gene Network using DGIdb data identified potential targets that 
regulate cellular proliferation and tumor growth.    

To further validate, the targeting genes by 12 antineoplastic agents were retrieved from 
DGIdb and the resulting list was imported and visualized in the Cytoscape. The network 
displayed antineoplastic agents showing 1119 interactions with 348 genes. The most 
interacting antineoplastic agents were Dovitinib, Palbociclib and Etoposide that showed 
interactions with 163, 117 and 112 genes respectively. The nodes of the network were 
labelled with the expression profile of the antineoplastic agents that resulted earlier from 
L1000CDS2 database as shown in Figure 5A. The integrated network displayed 93 over 
expressed and 14 under expressed genes in OSCC that were targeted by the antineoplastic 
agents. The expression of the OSCC genes was annotated from the expression of the genes in 
the top modules. In addition, the network also included 240 genes that showed interactions 
with the candidate drugs however, they were not matched with the expression of the genes 
in the top modules.    

Hub genes in the drug-gene network were identified by using a cutoff of ≥10 degree in the 
network which resulted in to a total of 53 genes (Supplementary Table 6). The 53 genes were 
overexpressed in OSCC and the enrichment analysis showed 14 genes that showed enriched 
KEGG terms of Cell cycle, DNA replication, p53 signaling pathway, oocyte meiosis and 
progesterone mediated oocyte maturation as shown in Figure 5B. The 14 hub genes were 
CCNB2, FEN1, CDC20, RFC4, RRM2, PLK1, CDC45, MCM4, CDK1, MCM2, GTSE1, BUB1, AURKA 
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and CDC6. The overexpression of these genes was verified from Gepia2 server HNSCC mRNA 
expression dataset from TCGA and genotype-tissue expression (GTEx) as shown in Figure 5C 

Discussion 

Drug repositioning is an alternative approach to the traditional drug development offering 
speed, cost effectiveness, and relative safety for patients going into trials  [46]. With the 
advent of transcriptomics technologies for quantification of gene expression in cancer as well 
as transcriptional response to small molecular treatment and the availability of the public 
databases has made the application of drug repositioning more feasible [47, 48]. Currently, 
the trend in deploying computational or in-silico methods for transcriptome-based drug 
repositioning is increasing and many novel agents have been identified by inverse correlating 
the gene expression profile of small molecular agents with the cancer [9, 49, 50]. In the 
present study, we utilized an in-silico approach for drug repositioning based on transcriptomic 
profile of OSCC retrieved from GEO and TCGA repositories.   

Several microarray gene expression datasets were found in GEO database that includes 
samples from OSCC as well as control however, in the case of GSE30784 that also included 17 
oral dysplasia samples which were removed from further analysis. For TCGA-HNSC gene 
expression dataset, the OSCC samples were extracted based on the anatomical site of the 
tumor. Several packages of R software i.e. MetaDE [51], MetaRE [52] and metaRNASeq [53] 
are available to perform meta-analysis of gene expression datasets. However due to the 
differences in the platform of the selected datasets, DEGs were initially filtered from each 
dataset based on adj. P value and then the lists were merged and mean log2FC for each gene 
was estimated. The DEGs were further filtered by considering mean log2FC >|1| and 
duplication in ≥3 datasets. The resulting list included a total of 2107 DEGs in which 821 were 
upregulated and 1286 downregulated.  

The enrichment analysis of the filtered DEGs revealed the regulation of pathways associating 
with cell communication and signaling pathways i.e. focal adhesion, PI3K-Akt signaling 
pathway, cytokine-cytokine receptor pathways, complement and coagulation cascades, 
transcriptional misregulation in cancer, pathways in cancer and ECM-receptor interaction. 
The overexpression of these pathways has been recently explored in OSCC patients [54-57] 
as well as in HNSCC [40, 58]. These enriched pathways have been linked with local invasion, 
lymph node metastasis, tumor growth and tumor microenvironment that drives 
tumorigenesis, cellular proliferation and OSCC progression [59-64].  

A PPI network from the list of DEGs was constructed using interaction from the STRING 
database for identification of highly interacting protein clusters or modules that are involved 
in molecular pathways necessary for tumor development in OSCC.  Within the network, the 
densely connected or highly interacting protein clusters were identified which resulted into a 
total of 323 proteins. These proteins were involved in the upregulation of pathways that are 
involve in tumor microenvironment, inflammatory response, HPV infection, cell proliferation, 
local invasion and metastasis in OSCC. The enrichment of these pathways in OSCC have been 
already described in the above paragraph and these pathways drive the main phenotype and 
progression of OSCC.  
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For targeting these molecular entities and inhibiting the activity of the key pathways, the list 
of proteins was selected for drug repositioning by identification of reversal expression form 
drug expression. The reversal expression of cell lines retrieved from LINCS data in L1000CDS2 
which utilizes the cosine distance for inverse correlation between submitted DEGs and stored 
signatures from drug perturbation. A total of 37 candidate drugs were identified which 
showed considerable overlap score. The perturbations were observed from 11 types of cell 
lines and various dose ranges and intervals. The list of drugs was further filtered based on 
their characterization in PubChem and only antineoplastic agents were selected that resulted 
in a total of 23 candidates. The selected candidates were screened for 12 well-characterized 
agents; Teniposide, Palbociclib, Etoposide, Fedratinib, Tivozanib, Afatinib, Vemurafenib, 
Mitoxantrone, Idamycin, Canertinib, Dovitinib and Selumetinib that were either approved by 
FDA or in phase-III of clinical trials. The MoA of the selected antineoplastic agents were 
inhibition of CDK proteins, DNA topoisomerase II, MAPK, STK, EGFR, VEGFR, FGFR and SCGFR 
which showed similarity with the biological pathways regulated by the DEGs in OSCC. 

Eight out of 12 selected anti-neoplastic agents have been already tested for efficiency and 
toxicity in treating small group of OSCC or HNSCC patients and xenograft models. Teniposide  
[65] and  Vemurafenib [66] have shown potential results in treating small group of OSCC 
patients. Afatinib [67] and Etoposide [68] also revealed significant out comes of the advanced 
or metastatic HNSCC patient treatment while Palbociclib [69], Dovitinib [70], Canertinib [71] 
and Idamycin [72] have also shown potential antitumor activity in HNSCC cell lines and 
xenograft models. Furthermore, Fedratinib has also been reviewed by Geiger et al. for HNSCC 
treatment that targets the janus kinase pathway  involving in the activation of transcriptional 
factors and up regulation of cellular division and proliferation [73].  However, no studies were 
found that evaluated the efficiency of the three antineoplastic agents; Tivozanib, 
Mitoxantrone, and Selumetinib either using HNSCC or OSCC cell lines or model ogranisms.   

The MoA of the well-characterized antineoplastic agents revealed inhibition of kinase 
proteins and signaling pathways involving in cell cycle and DNA replication. These candidates 
were indicated for a diverse range of cancers such as breast cancer, prostate cancer, acute 
lymphoid leukemia and renal cancer etc. The network analysis of antineoplastic agents and 
targeting genes resulted into 14 hub genes that were found enriched in the cellular 
proliferation, cell cycle and signaling. The enrichment of these pathways has been reported 
in several studies to involve in the tumorigenesis and progression of OSCC [55-57]. Five of the 
14 hub genes; CCNB2, PLK1, CDK1, AURKA and CDC6 have been already reported as 
oncogenes [74]. In addition, the over expression of hub genes in the network were validated 
from Gepia2 online server by using HNSCC dataset. Hence, the genes perturbed by the well-
characterized 12 antineoplastic agents showed significant inverse correlation with the DEGs 
in OSCC and could inhibit OSCC progression.  

Conclusion 

Drug repositioning can be an efficient way for identification of candidate drugs or 
antineoplastic agents against OSCC. In this study, we used a systemic approach for 
identification of significant DEGs from multiple gene expression datasets of OSCC that 
regulated the biological pathways involving in the cancer progression. The correlation of the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.14.464376doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464376
http://creativecommons.org/licenses/by-nc-nd/4.0/


significant DEGs in OSCC and drug perturbation information from LINCS data resulted in 12 
antineoplastic agents namely Teniposide, Palbociclib, Etoposide, Fedratinib, Tivozanib, 
Afatinib, Vemurafenib, Mitoxantrone, Idamycin, Canertinib, Dovitinib and Selumetinib. These 
antineoplastic agents are either FDA approved or are in advance clinical trial phases and have 
indications in various cancer types. The antineoplastic agents showed inhibitory interactions 
with the cluster of genes that were driving the phenotype of the OSCC. However, the 
efficiency of these antineoplastic agents in OSCC needs to be validated using in vitro and in 
vivo assays. 
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Figure 1. Volcano plots of the selected genes expression dataset using EnhancedVolcano 
package in R. The significant differentially expressed probes in dataset (A) The differential 
expression of 3972 probes in GSE23558, (B) 9942 in GSE25099, (C) 11666 in GSE30784, (D) 
9624 in GSE37991 and (E) 1762 in TCGA-OSCC after initial processing.   
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Figure 2. Functional annotation of filtered DEGs from OSCC datasets. (A) Venn diagram of the 
DEGs identified in each dataset of OSCC using adj. P <0.05 and log2FC >|1| as cutoff. (B) 
Enrichment analysis of KEGG terms in OSCC DEGs identified using the DAVID server. (C) GO 
terms enrichment analysis of OSCC DEGs using the DAVID server.   
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Figure 3. Protein-protein interaction (PPI) network of differentially expressed genes (DEGs) in 
OSCC. (A) A comprehensive PPI network of DEGs in OSCC. (B) Extracted top 5 modules from 
the OSCC network using MCODE in Cytoscape. (C) Enrichment of KEGG terms in DEGs from 
top modules using ClueGO in Cytoscape.  
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Figure 4. Clustergram of the candidate drugs identified in L1000CDS2 database. The reversal 
expression of the candidate drugs at the bottom row to the input DEGs at the right column 
have been shown as blue for downregulated and red for upregulated.     
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Figure 5. The integrative network of drug gene interaction with expressional signatures from 
L1000CDS2. (A) The 12 well-characterized antineoplastic agents and its targeting interactions 
with overly-expressed genes in OSCC. (B) The enrichment of the targeting genes and enriched 
KEGG terms identified from the DAVID server with p-value <0.05 cutoff. (C) The identified 
core genes from the integrative network and its over-expression in HNSCC datasets using the 
Gepia2 server.  
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Table 1. The selected gene expression datasets. 

Datasets ID GPL ID Platform Sample size 

OSCC Control 

GSE30784 GPL570 Affymetrix Human Genome U133 Plus 
2.0 Array 

167 45 

GSE23558 GPL6480 Agilent-014850 Whole Human Genome 
Microarray 4x44K 

27 5 

GSE25099 GPL5175 Affymetrix Human Exon 1.0 ST Array 57 22 

GSE37991 GPL6883 Illumina HumanRef-8 v3.0 expression 
beadchip 

40 40 

TCGA-OSCC NA Illumina HiSeq  152 20 

 

Table 2. DEGs summary of each dataset.  

DEGs from each dataset with cutoff of adj. P < 0.05 and log2FC > |1| 

Dataset DEGs uDEGs dDEGs 

GSE30784 2015 1028 987 

GSE23558 3355 1323 2032 

GSE25099 1023 521 502 

GSE37991 1850 736 1114 

TCGA-OSCC 1762 788 974 

 

Table 3. Characteristics of top 5 modules from the PPI network.  

Cluster Nodes Edges 
DEGs 

Score 
uDEGs dDEGs 

Module 1 74 2408 73 1 65.973 

Module 2 118 1879 95 23 32.120 

Module 3 75 503 32 43 13.595 

Module 4 37 194 25 12 10.778 

Module 5 19 78 2 17 8.667 
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Table 4. Characteristics of the antineoplastic agents. 

Drug Status MOA Indication 
Afatinib Approved RTK inhibitor; EGFR inhibitor  Non-small cell lung cancer; 

positive for EGFR expression 
Canertinib Phase-III EGFR inhibitor; RTK inhibitor NA 
Dovitinib Phase-III RTK inhibitor; PDGFR, VEGFR 

and FGFR3 inhibitor; Stem 
cell growth factor receptor 
inhibitor 

NA 

Etoposide Approved DNA topoisomerase II 
inhibitor 

Small cell lung cancer; Malignant 
tumor of testis 

Fedratinib Approved Tyrosine-protein kinase and 
receptor inhibitor 

Myelofibrosis 

Idamycin Approved DNA topoisomerase II alpha 
inhibitor 

Acute myeloid leukemia; Acute 
promyelocytic leukemia 

Mitoxantrone Approved DNA topoisomerase II alpha 
inhibitor 

Acute myeloid leukemia; 
Relapsing remitting multiple 
sclerosis; Metastatic prostate 
carcinoma  

Palbociclib Approved CDK4 and CDK6 inhibitor Hormone receptor positive 
malignant neoplasm of breast; 
Human EGF-2 negative 
carcinoma of breast 

Selumetinib Phase-III Dual specificity MAPK kinase 
1 inhibitor; Dual specificity 
MAPK kinase 2 inhibitor 

Neurofibromatosis type 1 

Teniposide  Approved DNA topoisomerase II 
inhibitor 

Acute lymphoid leukemia 

Tivozanib Approved VEGFR inhibitor Renal cell carcinoma 
Vemurafenib Approved Serine/threonine-protein 

kinase inhibitor 
Malignant melanoma with BRAF 
V600E mutation 
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