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ABSTRACT 

 

The neural underpinning of human fluid intelligence (Gf) has gathered a large interest in the 

scientific community. Nonetheless, previous research did not provide a full understanding of 

such intriguing topic. Here, we studied the structural (from diffusion tensor imaging, DTI) 

and functional (from magnetoencephalography (MEG) resting state) connectivity in 

individuals with high versus average Gf scores. Our findings showed greater values in the 

brain areas degree distribution and higher proportion of long-range anatomical connections 

for high versus average Gfs. Further, the two groups presented different community 

structures, highlighting the structural and functional integration of the cingulate within frontal 

subnetworks of the brain in high Gfs. These results were consistently observed for structural 

connectivity and functional connectivity of delta, theta and alpha. Notably, gamma presented 

an opposite pattern, showing more segregation and lower degree distribution and connectivity 

in high versus average Gfs. Our study confirmed and expanded previous perspectives and 

knowledge on the “small-worldness” of the brain. Further, it complemented the widely 

investigated structural brain network of highly intelligent individuals with analyses on fast-

scale functional networks in five frequency bands, highlighting key differences in the 

integration and segregation of information flow between slow and fast oscillations in groups 

with different Gf. 
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Introduction  

A fundamental characteristic of the human brain is the ability to compute high-level logical, 

abstract reasoning and manipulate complex information to flexibly adapt to the 

environmental demands 1–3. This requires a set of cognitive skills, also referred to as fluid 

intelligence (Gf), that are present across the population with measurable inter-individual 

differences 1,3. Indeed, Gf refers to the ability of reasoning and solving logical and visual-

spatial problems 4,5, involving a number of fine-grained cognitive abilities related to learning 

and memory. Due to their complex and fascinating nature, the investigation of Gf and 

cognitive abilities have captured the attention of a large body of psychological and 

neuroscientific research 6–14, aiming to understand what is in the human brain that allows 

some individuals to outperform others in complex cognitive tasks. Nonetheless, the neural 

underpinning of individual differences in intellectual abilities is still far from being fully 

understood. 

The human brain can be conceptualized as a complex system, whose efficiency arises from 

the balanced integration of activity coming from spatially segregated regions. In this 

framework, imbalances in brain network coordination have been linked to several psychiatric 

and neurological conditions 15 and modest network alterations have also been associated to 

the fine-grained differences in cognitive performances 16,17. Indeed, converging evidence 

suggests that human intelligence might depend on the organization of brain connectivity in a 

small-world network 18,19, a particular type of network where high connectivity between 

nodes is obtained with a relatively small number of connections 9,20–23, optimizing 

information flow across brain areas. This configuration implies a segregation of the network 

into independent, densely connected subnetworks (or modules) which are linked to other 

modules by a few, fundamental edges that allow to optimally integrate the information 24. 

Segregation properties of brain modules can be described by graph theory measures such as 

clustering coefficient and modularity. Conversely, we refer to integration as the property of 

the network to connect the non-overlapping modules through long-distance, crucial 

connections 25. In this case, cross-module functional integration properties can be described 

by characteristic path length, global efficiency, degree centrality and distribution and the 

presence of connector and provincial hubs 26. Thus, the key to fully understand the neural 

underpinning of fluid intelligence may relate to the configuration and flexibility of brain 

networks. 
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Nevertheless, classical studies on the neural basis of fluid intelligence provided evidence that 

has been organized within the framework of the Parieto-Frontal Integration Theory of 

intelligence (P-FIT) (Colom et al, 2010; Jung and Haier, 2007). According to this theory, 

cognitive performances arise from a chain of brain processes located in different regions such 

as occipital, temporal, parietal and frontal lobes. Indeed, incoming sensory information from 

temporal and occipital areas is first elaborated in parietal regions and subsequently integrated 

and abstracted in the frontal areas of the brain. The P-FIT theory is intriguing and coherent 

with several results described in years of research on intelligence. However, its approach 

tends to localise the main brain areas progressively involved in cognitive processes and did 

not directly considers the brain as a holistic dynamic system where integration and 

segregation are crucial to allow information flow and thus resolution of complex cognitive 

tasks. Along this line, other studies investigated the brain as a balanced network where 

integration and segregation of information play a crucial role. For instance, a growing body 

of evidence based on lesion 27–29 and functional magnetic resonance imaging (fMRI) studies 

pointed at a close link between fluid intelligence and a specific subset of brain regions that 

behave as brain hubs, which presumably mediate the information flow across different brain 

networks 12,30,31. This set of brain areas involves a widespread network comprising bilateral 

temporal, parietal and frontal regions, forming what is also referred to as “multiple demand” 

(MD) network 12,30,31. Furthermore, previous research studied the anatomical connectivity 

derived from fractional anisotropy (FA), a parameter commonly used to estimate the integrity 

of white matter tracts from diffusion tensor imaging (DTI) data 32. Studying such parameter is 

one of the main solutions to detect the strongest/weakest structural connections between brain 

areas as well as to estimate the network properties of the whole-brain. Remarkably, previous 

studies have associated enhanced FA in the superior longitudinal fasciculus, an association 

tract connecting frontal, parietal, temporal and occipital lobes, to greater scores in the 

Weschler Adult Scale of Intelligence (WAIS) for the fluid intelligence tasks 8,33,34. What is 

more, analysis of white matter network with graph theory reported higher global efficiency 

and shorter characteristic path length in participants with high versus average Gf scores 34,35. 

Taken together, these studies suggested that the understanding of the neural underpinning of 

Gf is progressively moving toward the network configuration of the whole-brain. However, 

the current available evidence did not return a clear picture of the brain organization of highly 

intelligent individuals. Further, there is not a full consensus about the most relevant 

properties of the brain networks to explain Gf. On top of this, while previous works mainly 

focused on anatomical or functional connectivity using DTI and fMRI, evidence of functional 
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connectivity based on electrophysiological methods is largely missing and needed. Indeed, 

although providing spatially accurate information, fMRI temporal resolution is extremely 

poor. In addition, it only provides an indirect measure of neural activity based on oxygen 

consumption and not on neuronal activity 36–38. In contrast, neurophysiological methods such 

as electroencephalography (EEG) and magnetoencephalography (MEG) detect direct brain 

activity with excellent temporal resolution, providing information at the milliseconds (ms) 

timescale 39,40. However, only a very limited number of studies explored the functional brain 

networks of Gf using graph theory and EEG 22,41. The results of these studies pointed toward 

a small-world network configuration in individuals with greater Gf scores and a main role of 

the parietal and frontal cortex for fluid intelligence, coherently with both the P-FIT and the 

MD network theories. Langer and colleagues 22 also reported that the clustering coefficient 

and characteristic path length of the functional brain network correlated to intelligence 

scores. Nonetheless, these studies relied on high-density EEG, and did not have an 

anatomical counterpart to confirm the results obtained from the neurophysiological results. 

Thus, in this study we used MEG to explore the fine-grained differences in the brain 

networks of high versus average Gf individuals as emerging from fast-scale whole-brain 

functional connectivity. Based on resting-state neural activity, we computed functional 

connectivity within five main frequency bands (delta: 0.1 – 2 Hz, theta: 2 – 8 Hz alpha: 8 – 

12 Hz, beta: 12 – 32 Hz, gamma: 32 – 75 Hz) and investigated the properties of the emerging 

fast-scale networks with graph theory measures. Using the same measures, we explored the 

organization of the anatomical network and searched if the network (graph) properties of the 

two groups could be confirmed by microstructural changes in white matter. 
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Results 

 

Experimental design and data analysis overview 

In this study we aimed to characterize the neural correlates of fluid intelligence by using 

graph theory measures on functional and structural connectivity. To this goal, we acquired 

structural DTI using MRI and we measured brain activity with MEG during 10 minutes of 

resting state. Next, we collected behavioural measures of intelligence using the Wechsler 

Adult Intelligence Scale IV (WAIS-IV). The experimental procedures involved a total of 71 

participants, but two participants had to be excluded since they did not perform the WAIS-IV 

tests. Our 69 WAIS-IV participants were divided into two groups based on their mean Gf and 

by considering at least one standard deviation (std; standardized WAIS-IV std = 15) apart, so 

that the distinction between the two groups was psychometrically meaningful, as widely 

suggested by previous literature on the topic 42. The resulting groups were labelled as high Gf 

(N = 38; mean Gf = 117.72 ± 4.66) and average Gf (N = 31; mean Gf = 102.98 ± 6.09). As 

expected, the difference between the two groups was largely significant on a statistical level 

(t-test: p < 1.0e-07, t(55) = 11.08) (See Methods for further background and statistical 

information on the two groups). Finally, since we had to discard a few participants due to 

technical problems during the acquisition of DTI and MEG data, our final sample for WAIS-

IV and DTI analysis consisted of 67 participants, while the one for the WAIS-IV and MEG 

analysis of 66 participants. 

Back to the analysis, based on the non-cerebellar parcels of the automated anatomical 

labelling (AAL) brain parcellation, we constructed functional and structural connectivity 

matrices for each participant. The structural connectivity matrix was created based on the 

probabilistic tractography computed across all the 90 AAL regions of interest (ROIs) of the 

DTI images. The functional connectivity matrix was realized by reconstructing the sources of 

the neurophysiological signal acquired with MEG (using a beamforming algorithm) and by 

parcellating it with AAL. Importantly, the functional brain data was reconstructed in five 

different frequency bands (delta: 0.1 – 2 Hz, theta: 2 – 8 Hz alpha: 8 – 12 Hz, beta: 12 – 32 

Hz, gamma: 32 – 75 Hz), returning a rather complete picture of the fast-scale information 

flow in the brain during resting state. Next, we computed graph theoretical measures of the 

individual brain structural and functional networks and compared them between the two 

groups of participants (high versus average Gf). 
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Specifically, we were interested in the brain organization in terms of ROIs degree, 

segregation in different subnetworks (communities) and intra- and inter-subnetworks 

connectivity. Moreover, we aimed to detect how the brains of high versus average Gf 

participants were organized in terms of structural connections and fast-scale information flow 

during resting state. Finally, we have complemented our network analysis with a comparison 

between high versus average Gf groups in terms of white-matter tracts obtained computing 

tract-based spatial statistics (TBSS). The overview of the analysis pipeline is illustrated in 

Figure 1. 

 

INSERT FIGURE 1 

 

 

Structural connectivity 

After pre-processing the DTI data, matrices of structural connectivity were constructed for 

every participant using the output of the probabilistic tractography, which was normalized for 

the size of the brain ROIs (see Methods for details). We constrained the structural matrices to 

the non-cerebellar parcels of AAL parcellation (where each of the 90 regions represented a 

node of the brain network), resulting in a 90x90 matrix. The average structural connectivity 

across participants is showed in Figure 2A. 

 

Functional connectivity 

Individual matrices of functional connectivity were constructed based on the pre-processed 

and source reconstructed MEG data, for each of the five frequency bands considered in the 

study: delta, theta, alpha, beta and gamma. As done for the DTI data, the reconstructed neural 

signal was constrained to the 90 non-cerebellar AAL parcellation. The resulting 90x90 matrix 

contained the information regarding the correlations between the 90 AAL brain regions, 

where each region represented a node of the brain network. The average functional 

connectivity across participants is shown in Figure 2B, independently for each frequency 

band. 

 

 

INSERT FIGURE 2 HERE 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.14.464389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464389
http://creativecommons.org/licenses/by-nd/4.0/


 8 

Graph theory measures 

We analysed the two types of connectivity using graph theory measures between participants 

who scored high versus average in the WAIS-IV. For this purpose, we compared the various 

measures of the two groups with Monte Carlo simulations (MCS) to test the statistical 

significance. 

 

Degree 

First, we investigated whether the distribution of the ROIs degree was different among the 

two Gf groups. Participants belonging to the high versus average Gf group showed 

significantly higher distribution of degree in both structural (p = .007) and functional 

networks for theta (p < .001), alpha (p < .001) and beta (p = .004) frequencies, indicating an 

overall stronger level of connectivity between ROIs for the high Gf participants. Remarkably, 

the main contributions to these values for structural connectivity and theta, alpha and beta 

frequency bands were provided bilaterally by a widespread network involving frontal 

(postcentral gyrus, superior frontal gyrus, postcentral gyrus, supplementary motor area), 

parietal (inferior and superior parietal lobule), occipital regions (inferior, middle and superior 

occipital gyrus) and temporal (middle and superior temporal gyrus) regions, as well as 

multiple subcortical areas (parahippocampal gyrus in the structural and in the functional, 

hippocampus, cingulum, thalamus in the functional). Conversely, individuals with average Gf 

scores showed a greater degree distribution across the whole-brain compared to the high Gf 

participants for the gamma frequency (p < .001). In this case, stronger degree centrality was 

observed in frontal, medio-temporal and subcortical areas, regions that greatly overlap to 

those that were more central for high versus average Gf scores. A detailed list of the most 

central regions and the correspondent degree coefficients in structural and functional brain 

networks in the two experimental groups can be found in Table ST1. No significant 

difference was found for the distribution of degree in the delta frequency band. 

 

Participation coefficient 

First, we estimated the optimal community structure and modularity (depicted in Figure 5 

and reported in Table ST2) using the modularity algorithm introduced by Newman 43. Here, 

using MCS we tested the modularity values of structural and functional connectivity matrices 

(for the five frequency bands independently) against chance, to detect whether the brain 

networks were more modulable (more divisible into subgroups) than random configurations 
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of the same original brain networks. The test was largely significant for both structural and 

functional connectivity matrices (p < .001). 

Then, we computed the participation coefficient and compared it between the Gf groups.  

This coefficient, ranging from zero to one, shows the level of connectivity of an ROI with the 

ROIs belonging to the same community when tending to one (provincial hub) or to ROIs of 

other communities when tending to zero (connector hub). Here, we studied the distribution of 

the participation coefficient in the high versus average Gf participants. The results showed 

that high versus average Gfs presented a higher distribution of connector than provincial hubs 

for both structural connectivity (p < .001) and delta (p < .001), theta (p < .001) and alpha (p < 

.001) bands of the functional networks. Main connector hubs for high Gf individuals in these 

frequencies were found bilaterally in parietal, temporal, cingulate and subcortical areas (see 

Table ST3). Conversely, more provincial hubs (and thus more intra- than inter-community 

connections) were found in participants with average versus high Gf for the gamma 

frequency band (p = .003) in frontal, temporal and subcortical regions (Table ST3). No 

differences were found between the two groups for the functional connectivity in the beta 

frequency band. 

 

Modularity, Density, Characteristic path length, Global and Local efficiency 

Modularity, density, characteristic path length, global and local efficiency were not 

significantly different between the two groups, neither in the structural nor in the functional 

networks. Nonetheless, before correcting for multiple comparisons, a significantly greater 

modularity distribution was found for the high versus average Gf group in the theta (p = .046) 

and alpha (p = .029) frequency bands. 

 

Tract-based spatial statistics (TBSS) 

Finally, to complement our network analyses, we performed TBSS to assess whether 

differential levels of fluid intelligence were associated to microstructural differences in white 

matter tracts. 

The high versus average Gf contrast revealed 38 clusters of significantly increased white 

matter, mostly located in frontal (postcentral gyrus, superior frontal gyrus, postcentral gyrus, 

supplementary motor area, precuneus, cingulum), temporal (temporal gyrus, 

parahippocampal gyrus,) and occipital (Calcarine fissure) regions.  (see Table ST1). Instead, 

the average versus high Gf contrast revealed 32 significant clusters in analogous regions to 

those found in the first contrast (Table ST2) but with smaller dimensions, suggesting an 
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overall modest, but noticeable, increase of white matter in high versus average Gf 

individuals. 
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Discussion 

In this study, we investigated the fine-grained structural (DTI) and functional differences 

(MEG resting state) in individuals with high versus average Gf scores. We found an overall 

increased degree in high compared to average Gf individuals. Further, the two groups 

presented different community structures. Overall, in both structural and functional graphs 

the frontal brain areas of high Gfs were grouped together in compact subnetworks including 

the cingulate gyrus and prefrontal regions. Conversely, frontal brain areas of average Gfs 

belonged to more extended subnetworks which also included occipital and parietal regions. 

On top of these community structures, we have computed the participation coefficient, telling 

us if a brain area was principally connected to its own community or presented a high 

connectivity to external communities. Notably, brain areas of high versus average Gfs were 

more connected to external communities, suggesting a stronger integration of brain 

subnetworks. Finally, microstructural analyses of white matter indicated a moderate but 

noticeable increase of white matter in high compared to average Gf group. 

 

Intelligence and small-worldness of the brain 

In this study, structural connectivity based on white matter tracts revealed an overall greater 

degree in the high versus average Gf groups, as well as a greater trend of the brain areas to be 

connector instead of provincial hubs. This evidence suggests that the brain network 

configuration of individuals scoring the highest in Gf tests is prevalently characterized by 

intermodular connections. Interestingly, although we computed analysis on the whole-brain 

distribution of degrees and participation coefficients, the brain regions that mainly 

contributed to such distribution were in frontal, hippocampal and cingulate areas, which were 

previously shown highly implicated in Gf and cognitive processes 12,16,33,44. A further 

difference between the brain structural network of high and average Gfs occurred in their 

community structure. Indeed, our modularity analyses grouped the frontal brain areas of high 

Gfs together in compact subnetworks, while average Gfs exhibited more extended 

subnetworks including at the same time frontal, parietal, and a few occipital regions. Notably, 

the medial cingulate gyrus of high Gf belonged to a frontal subnetwork, while was segregated 

out from the rest of the brain areas in average Gf. This finding suggests that the structural 

integration of the cingulate with frontal regions may be of key importance for fluid 

intelligence, coherent with several studies highlighting the role of the cingulate as a 

fundamental hub of the brain and its involvement in a plethora of cognitive processes 33,44,45. 
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In conclusion, the structural configuration of the brain of high Gfs present properties of 

small-world networks, coherent with previous studies 22,33–35,41. Furthermore, such 

organization may provide the ideal wiring for efficient, long-range functional connections, 

and communication and integration between brain areas. 

In line with this idea and differently from previous literature, we complemented our structural 

results with functional analyses of MEG resting state. Coherent with the structural 

organization that we have previously described, analyses of the functional graphs showed a 

higher functional degree across the whole-brain for three frequency bands: theta, alpha and 

beta. Additionally, we observed greater connector hub values in functional networks in delta, 

theta, and alpha power, reflecting the presence of more inter- than intra-module connections 

for the high Gf group compared to the average Gf group. In this case, the brain areas that 

mainly contributed to these results were sparser than in the structural graphs and belonged to 

temporal, frontal, parietal, and subcortical areas. Regarding the optimal community structure 

estimated for the two categories of participants, the results were compatible with the ones 

obtained for the structural graphs. Indeed, high Gfs presented an overall stronger functional 

integration of the cingulate gyrus within frontal subnetworks of the brain, especially for delta, 

alpha, and beta. These findings suggest that better performance in fluid intelligence tasks is 

associated to an overall increased brain connectivity, which might reflect a more efficient 

signal integration favoured by a better inter- rather than intra-module communication 

between brain areas. Furthermore, the integration of the cingulate within frontal subnetworks 

of the brain suggests that the network organization of the cingulate may be of critical 

importance for individual differences in cognitive abilities and fluid intelligence. 

Our results are overall coherent with previous literature. For instance, enhanced FA in long-

range white matter tracts such as the superior longitudinal fasciculus have been associated to 

greater scores in intelligence tests 8,34. Further, measures of integration, segregation and 

“small-worldness” of the brain network have been associated to intelligence. Although we 

did not find significant differences for these measures in our cohort, higher global efficiency 

and shorter characteristic path length were found in participants with high versus average Gf 

scores 34,35. Additional studies showed how modest network alterations were associated to the 

fine-grained differences in individual cognitive performances 16,17. 

Taken together, previous works and our findings point at the idea that human intelligence 

depends on the organization of brain connectivity in a small-world network. Particularly, the 

key for understanding human intelligence may reside in the optimization of information flow 

across brain areas, which is made possible by balanced levels of integration and segregation, 
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and short- and long-range connections in the human brain 9,20,23. In our study, on the one hand 

we further refined the understanding of such structural organization of the brain in relation to 

Gf. On the other hand, for the first time we showed that the fast-scale functional networks 

detected with MEG presented similar features. 

In contrast with previous studies 34,35, we did not find any significant difference regarding 

measures of modularity, characteristic path length, global and local efficiency. This might be 

due to the modest difference in the behavioural scores of Gf in the two groups or may suggest 

that such broad whole-graph measures are not ideal to characterize the fine-grained essence 

of the brain of high-level performers in cognitive tests. Indeed, degree and participation 

coefficients might be more sensitive measures of integration and segregation network 

properties, being able to capture subtle but critical individual differences. 

Finally, it is worth mentioning that microstructural analyses of white matter showed a 

moderate increase of white matter in the high compared to the average Gf group. This 

increase in white matter might contribute to the greater scores in cognitive tests and the 

increased ability to integrate information across spatially distant brain areas in the high Gf 

group. This finding would be coherent with studies showing a reduction of white matter 

integrity in ageing 46 and with declined cognitive abilities in clinical conditions 47,48. 

 

Network organization, intelligence and the role of cortical oscillations 

While our results on the brain structural network organization confirmed and expanded 

previous literature, the finding on the brain functional networks provided rather new evidence 

that needs a deeper discussion. Indeed, our results showed a solid correspondence between 

brain structural and functional organization for what concerns delta, theta, alpha and beta 

frequency bands. In these cases, we observed very similar patterns of connectivity in high 

versus average Gf individuals (e.g. enhanced degree and connector hub whole-brain 

distribution in high Gf participants). Interestingly, we found an inverse pattern for the gamma 

frequency, where the average compared to the high Gf group showed a greater degree 

distribution as well as a tendency of the brain nodes to be connector hubs.  

Our results can be framed within the literature on cortical oscillations, which are thought to 

coordinate neuronal activity favouring communication across different brain structures 49,50. 

Specifically, delta (0.1-3 Hz) theta (4-8 Hz), and alpha (8-12 Hz) frequency bands have been 

repeatedly associated to complex cognitive functions. Delta and theta waves have been linked 

to response inhibition during attentional tasks 51 and to memory encoding and recognition 

tasks, respectively. Notably, the frequency peak for the theta frequency was found in the 
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parietal cortex 50,52. Alpha frequency has been associated not only to sensory processes 53 but 

also to performance in academic results, memory and intelligence tests 22,52 In this respect, 

Langer and colleagues 22 reported an association between alpha power and psychometric 

intelligence scores, with strongest alpha activity in the right parietal cortex. Similarly, beta 

power has been reported to be positively associated to the strength of frontoparietal 

connectivity during visual search tasks 54. Although mostly based on task-related activity, 

previous evidence seems to point to a role for these frequency bands in cognitive functions 

contributing to fluid intelligence. In particular, the frequency peaks found in the frontal and 

parietal areas reported by these previous studies are coherent with the increased functional 

connectivity that we found in frontal, parietal, and temporal areas in our study. 

Spontaneously active brain regions are thought to reflect intrinsic properties of the brain, 

which in resting state may show the baseline functional organization of the information flow 

in the human brain. Notably, our results suggest that differences in terms of functional 

network organizations may represent a key to understanding human intelligence. Further, the 

nodes that we found to have significantly greater degree of connectivity and participation 

coefficient might well be important hubs for Gf and consequently greater for high Gf scores 

than for average ones. Thus, although our work points to a focus on integration and 

segregation of brain areas at the basis of fluid intelligence, our results are also coherent with 

the P-FIT theory, as well as the multiple demand network model for fluid intelligence that we 

have presented earlier. 

Interestingly, gamma band presented a different behaviour when comparing high versus 

average Gf people. Indeed, average compared to high Gf had a greater degree distribution as 

well as a tendency of the brain nodes to be functional connector hubs. These results are in 

contrast with the other frequency bands and show that the functional resting state network in 

the gamma frequency presents more segregation and less information flow across the whole-

brain in high versus average Gf. Our results show differences between slower and faster 

cortical oscillation and may suggest that the most efficient brains (i.e. brains of more 

intelligent people) rely on gamma band for segregation of information within local 

subnetworks, while long-range functional communication and integration of information is 

mainly related to slower frequencies. Such evidence is coherent with previous literature 

which proposed gamma band for local communication of brain areas and slower frequencies 

such as alpha and theta for long-range functional connections 55. Nonetheless, future studies 

are called to replicate these results and expand our understanding of information flow across 
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different frequency bands in relation to different levels of cognitive abilities and fluid 

intelligence. 

 

Conclusions  

Altogether, our findings pointed to a different whole-brain configuration of connectivity 

between individuals scoring high versus average in Gf tests. This was indicated by greater 

values in the brain areas degree distribution and by a higher proportion of long-range 

connections for the high versus average Gf group. Further, the two groups presented different 

community structure, highlighting the structural and functional integration of the cingulate 

within frontal subnetworks of the brain in high versus average Gfs. These results were 

consistently observed for structural connectivity and functional networks across slower 

frequency bands, especially delta, theta and alpha. Notably, only the faster frequency band, 

gamma, presented opposite results, showing more segregation and lower degree distribution 

and connectivity in high versus average Gfs. In conclusion, this study confirmed and 

expanded previous perspectives and knowledge on the “small-worldness” of the brain. 

Further, it complemented the widely investigated structural brain network with analyses on 

fast-scale functional networks of five frequency bands, highlighting key differences in the 

integration and segregation of information flow between slow and fast oscillations. 
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Methods 

 

Participants  

We recruited a total of 71 healthy volunteers, 35 females and 36 males (aged 18-42, mean 

age: 25.06 ± 4.11 years) of different nationalities. Two participants had to be excluded since 

they did not perform the WAIS-IV tests. Further, for the DTI data (Tract-Based Spatial 

Statistics (TBSS) and the brain structural connectivity analyses), two participants were 

excluded from the sample due to the poor quality of the data, after the computation of the 

pre-processing pipeline. Thus, the final sample for DTI consisted of 67 healthy volunteers (34 

females, 33 males, mean age: 24.94 ± 4.05 years). Regarding MEG, three participants were 

excluded because it was not possible to record their MEG resting state data. Thus, the final 

sample for the MEG functional connectivity analyses consisted of 66 healthy volunteers (34 

females, 32 males, 24.95 ± 4.24 years).  

All the experimental procedures were approved by the Ethics Committee of the Central 

Denmark Region (De Videnskabsetiske Komitéer for Region Midtjylland) (Ref 1-10-72-411-

17), in compliance with the declaration of Helsinki – Ethical Principles for Medical Research. 

 

Experimental design and Gf measures 

Participants underwent the acquisition of functional (magnetoencephalography, MEG) and 

structural (magnetic resonance imaging, MRI) data. We recorded resting-state 

neurophysiological activity throughout 10 minutes of MEG recordings, during which 

participants were not engaged in any task and kept their eyes open. Regarding MRI, we 

acquired T1-anatomical and diffusion-weighted (DTI) brain images.  

After acquiring the neuro-functional and -structural data, we collected behavioural measures 

to estimate the participants’ fluid intelligence measure (Gf) along the following main scales 

of the fourth edition of the Wechsler Adult Intelligence Scale (WAIS-IV)56: perceptual 

reasoning, working memory and speed processing. All the tests were carried out in English, 

which was spoken fluently as a second language by the participants.  

The mean Gf score across the 69 (WAIS-IV subsample), 67 (WAIS-IV and DTI subsample) 

or 66 (WAIS-IV and MEG subsample) participants was nearly identical (111.10 ± 9.09; 

111.45 ± 9.13 and 110.76 ± 9.05, respectively). Thus, the following numerical information 

about the two Gf groups that we have used in our experiment will be reported for the full 

sample of 69 participants who were administered the WAIS-IV. Indeed, our sample was 
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divided in two groups based on their mean Gf and by considering at least one standard 

deviation (standardized WAIS-IV std = 15) apart, so that the distinction between the two 

groups was psychometrically meaningful, as widely suggested by previous literature on the 

topic 42. This procedure yielded two groups: the high Gf group (N = 38; mean Gf = 117.72 ± 

4.66); the average Gf group (N = 31; mean Gf = 102.98 ± 6.09). As conceivable, the 

difference between the two groups was also statistically largely significant (p < 1.0e-07, t(55) 

= 11.08). Importantly, we controlled that the two groups were matched in terms of socio-

economical, demographic, and educational status. In both groups, participants were mainly of 

Danish nationality and all of them came from a Western cultural country. The High Gf group 

comprised 15 females and 23 males with an average age of 25.86 ± 4.89. The Average Gf 

group comprised 18 females and 13 males with an average age of 24.00 ± 2.69. The age 

difference was not significant (p = .05). Furthermore, the mean of the education years was 

14.73 ± 4.25 for the high Gf and 14.56 ± 5.87 for the average Gf. Neither this difference was 

significant (p = .37).  

Back to the analysis pipeline, for each participant, we reconstructed the sources of the MEG 

signal by combining the MEG with the structural T1 MRI data in automated anatomical 

labelling (AAL) 57 space and estimated the functional connectivity between each pair of non-

cerebellar brain areas of AAL. Similarly, we computed individual structural connectivity 

matrices based on the DTI images. Then, using graph theory measures, we analysed group 

differences for high versus average Gf values in both structural and functional brain 

networks. The next paragraphs provide details about these procedures. 

 

Data acquisition 

We acquired both MRI and MEG data at the Aarhus University Hospital (Denmark) in two 

independent sessions. MEG data were acquired with a 306-channel (204 planar gradiometers 

and 102 magnetometers) Elekta Neuroimag TRIUX system (Elekta Neuromag, Finland), with 

a sampling rate of 1000Hz and an analog filter of 0.1-330Hz. Prior to the measurements, the 

head shape and spatial coordinates of each participant were digitalizaed with a 3D digitizer 

(Polhemus FastrakColchester, VT - USA). The head localization was determined using four 

Head Position Indicator coils (cHPI) that were registered with respect to three anatomical 

landmarks (fiducials), namely the nasion, left and right preauricular areas. The cHPI allowed 

to continuously track the head position in respect to the MEG sensors and to correct for head 

movements. Furthermore, the digitalization of the participants’ head provided the information 
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for co-registering the functional data recorded by the MEG with the anatomical data acquired 

with the MRI.  

Whole-brain T1-weighted and diffusion-weighted images were acquired with a Siemens 

Magnetom Skyra 3T MRI scanner (20-channel head coils) located at Aarhus University 

Hospital, Denmark. T1 images were acquired with the following parameters: 1.0x1.0x1.0mm 

voxel size (1.0 mm3); 256x256 reconstructed matrix size; 2.96ms echo time (TE); 5000ms 

repetition time (TR); 240Hz/Px bandwidth. For the reconstruction of the MEG functional 

data, each T1-weighted scan was co-registered to the standard brain template from the 

Montreal Neurological Institute (MNI) using an affine transformation. Next, it was 

referenced to the MEG sensors space with the data about the head shape that was previously 

digitalized. 

Diffusion-weighted images were acquired using echo-planar imaging (EPI), with the 

following parameters: 2.0x2.0x2.0mm voxel size (2.0mm3); 104ms TE; 3300ms TR; 

100x100x72 matrix size; 221 volumes in anterior-posterior (AP) direction; 1 volume in 

posterior-anterior (PA) direction; 2500s/mm2 b-value; 29.41Hz/Px bandwidth. 

 

DTI data pre-processing 

We pre-processed the MRI diffusion data with the FMRIB’s Diffusion Toolbox (FDT) 

toolbox in the FMRIB Software Library (FSL) 58,59. First, we visually checked the data to 

assess the good quality of the scans. After converting the files into nifti format, we created a 

reference volume (b0) based on the first image of both the AP and PA files, which we used to 

correct for susceptibility-induced distortions. Next, based on the corrected b0, we generated a 

brain mask that we applied to correct for head motion and eddy currents. The pre-processed 

and corrected data were subsequently used for the analysis of microstructural changes in 

white matter composition with Tract-Based Spatial Statistics (TBSS) and for the estimation 

of the main white matter tracts with probabilistic tractography. 

 

Tract-Based Spatial Statistics (TBSS) 

We first computed the average fractional anisotropy (FA) images of each participant by 

fitting a tensor model to the pre-processed data. Next, we performed the analysis of 

microstructural changes in FA with TBSS 60, a series of functions of the FSL package that 

allow to compare the white FA values between groups of participants. The TBSS proceeds as 

follows. As a first step, likely outliers were removed by eliminating brain-edge artefacts and 

zeroing the end slices. Next, all the FA data were aligned into a common space, by means of 
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a nonlinear registration performed on the FMRIB58_FA standard template (the 

FMRIB58_FA was obtained from a high-resolution average of FA images with 2x2x2mm 

spatial resolution, from 58 participants 61. Then, a mean skeleton representing the centers of 

all tracts common to the experimental group was created and taken into standard space 

(MNI152, 1x1x1mm). Finally, the skeletonized map of all participants was projected into a 

mean FA skeleton, with a threshold of 0.2. This procedure resulted in a final image 

representing the thickness of the white matter tracts independently for each participant. To 

compare such white matter tracts across the two Gf groups, we computed t-tests for each 

white matter tracts voxel comparing values of high versus average Gf participants. To correct 

for multiple comparisons, we adopted a cluster-based Monte-Carlo simulation (MCS) 

approach 62,63. This procedure assumes that the false positive results outputted by the t-tests 

would occur randomly and would therefore not be arranged in spatial clusters, while true 

significant results would form such clusters. Thus, in our MCS procedure, we have extracted 

the cluster of neighbouring significant voxels (where the difference between high versus 

average Gf was significant), in the original data. Then, we computed 1000 permutations of 

the data. For each of the permutations, we have computed the clusters of significant values 

and extracted only the maximum cluster sizes. Such sizes gave rise to a reference distribution 

(built of the 1000 maximum cluster sizes extracted from the 1000 permutations) that we 

subsequently used to assess whether our original clusters were significant or not. Specifically, 

we have considered as significant the original clusters that were greater in size than 99.9% of 

the cluster sizes forming the permuted-based reference distribution. 

 

Tractography in AAL 

We modelled the whole-brain structural connectivity with the FSL probabilistic tractography 

for crossing fibres 64,65, using the AAL parcellation. Based on the pre-processed data and the 

corrected reference volume b0, we estimated the fibre orientations of every voxel for each 

participant. Subsequently, we created 90 seed masks - one for each AAL region – with voxels 

sized 2x2x2mm. Using a Markov Chain Monte Carlo algorithm, we estimated the probability 

distribution of fibre direction at each brain voxel, with 1000 fibres (streamlines) per voxel. 

Whole-brain tracts (structural connectivity between each pair of AAL brain regions) were 

estimated by considering the continuity between fibres of all the voxels contained in each 

AAL region and all the other AAL regions.  
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Structural connectivity network 

After the estimation of the probabilistic tractography, we have computed a few normalization 

steps to obtain a final structural connectivity matrix, one for each participant. 

In our brain networks, the nodes were defined according to the AAL parcellation, with each 

non-cerebellar AAL parcel representing a node of the network. The networks that we 

computed were undirected (i.e. a � b = b � a). However, the FSL probabilistic tractography 

estimates independently the two directions of the connectivity between two nodes (i.e. a � b 

= b � a means the same, but are estimated with slightly different values). Thus, as previously 

done 15, we averaged the two directions to obtain only one value of connectivity between any 

pair of brain areas and thus a truly symmetric undirected connectivity matrix. Finally, we 

have normalized each connection between AAL brain areas for the sizes of the same brain 

areas. This was done since larger AAL parcels may present more connections simply because 

they are larger and not because they are actually more densely connected. Thus, we have 

divided each connection between pairs of brain areas by the averaged size of those brain 

areas (e.g. a �� b / ((size of a+ size of b)/2)). The resulting 90x90 matrix represented an 

undirected, weighted brain structural network.  

 

MEG data pre-processing 

For the first pre-processing steps of the raw MEG data, we used MaxFilter 66. These steps 

consisted in applying signal space separation (SSS) to attenuate interferences originated 

outside the scalp, adjusting for head motion and down-sampling the signal from 1000Hz to 

250Hz. Next, we converted the data into the Statistical Parametric Mapping (SPM) format 

and further proceeded with the analyses using the Oxford Centre for Human Brain Activity 

Software Library (OSL), a freely available toolbox that combines in-house-built functions 

with existing tools from FSL 58, SPM 67 and Fieldtrip 68 working in the Matlab environment 

(MathWorks, Natick, Massachusetts, United States of America). The frequencies below 

0.1Hz, too low for being originated by brain activity, were removed with a high-pass filter. In 

addition, we applied a notch filter to correct for possible electric current-induced 

interferences and further down-sampled to 150Hz. After visually inspecting the data, we 

removed the parts of the signal that were altered by large artefacts. Then, we performed 

independent-component analysis (ICA) 69 to isolate and discard the artefacts generated by 

eyeblinks and heartbeat. 
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Source reconstruction 

The brain sources of the neural activity registered on the scalp by the MEG sensors were 

estimated by using the OSL implementation of the beamforming algorithm. Specifically, the 

forward solution was computed using an overlapping-spheres model in an 8-mm grid 

(comprising 3559 brain voxels). This solution represented a simplified geometric model of 

the MNI-co-registered anatomy of each participant, fitting a sphere separately for each MEG 

sensor 70. Then, we performed the inverse solution by using a beamforming algorithm. Such 

procedure utilized a different set of weights sequentially applied to the source locations for 

isolating the contribution of each source to the activity recorded by the MEG sensors at each 

time-point 45,47. Our beamforming computation was performed using both magnetometers and 

planar gradiometers. 

Importantly, the source reconstruction was computed for five different frequency bands that 

were estimated after the ICA computation and subsequently reconstructed: delta: 0.1 – 2 Hz, 

theta: 2 – 8 Hz alpha: 8 – 12 Hz, beta: 12 – 32 Hz, gamma: 32 – 75 Hz. 

 

Functional connectivity network 

After estimating the brain sources of the recorded MEG signal, we have computed one 

functional connectivity matrix for each participant, similarly to what we did for the structural 

connectivity based on the DTI data. First, the reconstructed functional data (3559 brain 

voxels) were constrained to the 90 non-cerebellar parcels defined by AAL. Next, we 

computed the envelope of the time-series from each brain region using the Hilbert transform. 

Finally, we estimated the functional connections between each pair of brain areas by 

computing Pearson’s correlations between the envelopes of the time-series of each pair of 

AAL brain regions. 

 

Graph theoretical measures 

Degree of connectivity 

The degree of connectivity describes how connected a node is to the other nodes of the 

network and can provide information about the functional integration properties of the 

network. We computed the degree (d(n)) of node n (here, an AAL ROI) as the sum of the 

strength of the connections of that node to all other nodes 26. This provided us with a value 

for each ROI indicating its degree of connectivity, and thus its centrality within the whole-

brain network. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.14.464389doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.14.464389
http://creativecommons.org/licenses/by-nd/4.0/


 22

We tested the difference between high versus average Gf participants using an MCS 

approach. Specifically, we computed the difference between the median of the degree of each 

ROI for high versus average Gf. If the distribution of the degree is similar/equal between the 

two groups, their difference would be approximately zero, with some ROIs slightly above 

zero and some others slightly below, by random chance. Thus, in our MCS, we tested 

whether the distribution of differences between high versus average Gf ROIs degree was 

significantly different from zero. First, we computed the number of ROIs whose difference 

degree was higher and lower than zero. Then we permuted the original data across 

experimental groups and computed the difference between the median of ROIs degree for the 

two permuted Gf groups and observed the distribution of the difference between the degrees 

with respect to zeros. We re-iterated this operation for 10000 times, building a reference 

distribution of the difference between the ROIs degree in the permuted scenarios. Finally, we 

compared the original distribution of differences between high versus average Gf ROIs 

degree with the permuted distribution. Since we tested the original distribution considering 

both tales of the permuted distribution (higher and lower than zero), the final MCS p-value 

was obtained by dividing the MCS α level by two (.05/2 = .025). Similarly, for the degree of 

functional connectivity, we performed 10 statistical tests: one for each of the two tales of the 

reference distributions and for each of the five frequency bands considered in the study. 

Thus, we corrected for multiple comparisons using the Bonferroni correction, by dividing the 

MCS α level (.05) by 10 (MCS p-value = .05/10 = .005). 

 

Modularity and optimal community structure 

Modularity is a value describing the optimal segregation of a network into discrete, non-

overlapping clusters (modules) which optimize the network efficiency for specialized 

processing. In other words, it quantifies the degree to which a network can be subdivided into 

clearly defined, non-overlapping sub-networks. According to this definition, we computed 

the optimal community structure by maximizing the intra-module connections within non-

overlapping sub-modules of the network and minimizing the inter-module connections. To 

calculate this measure, we used the undirected measure of modularity developed by Newman 

implemented in the Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010), relying 

on the eigenvector solution 43 and returning a discrete value of modularity and the 

corresponding optimal community structure, representing the division of the AAL ROIs into 

distinct, non-overlapping sub-networks of the brain. 
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We tested whether the modularity of the structural and functional brain data was significantly 

different by an equivalent network with connections placed randomly. To do so, we 

performed an MCS. First, we computed the modularity of the original data. Second, we 

performed 1000 permutations and extracted the modularity for the permuted data. This 

procedure yielded a reference distribution of permuted modularity values. Finally, we 

considered significant the original modularity value only if it was higher than the 99.9% of 

the permuted modularity values. This procedure was computed independently for the 

structural and functional data. A graphical depiction of the optimal community structure for 

structural and functional brain networks is provided in Figure 5 and reported in detail in 

Table ST2. 

 

Participation coefficient 

Based on the previously computed optimal community structure, we were interested to 

observe whether the ROIs of high and average Gf participants differed in terms of 

connectivity within and between the brain sub-networks. Specifically, we expected to find a 

tendency of high versus average Gf individuals to have more pronounced connectivity 

between brain sub-networks. Thus, we computed the participation coefficient, which 

indicates whether an ROI is mainly connected to the other ROIs of the same sub-network or 

is more connected to ROIs in other sub-networks. The coefficient is computed by dividing 

the degree of the ROI a with regards to the ROIs of the same sub-network by the degree 

computed for ROI a with regards to all other ROIs (so also the ones of other sub-networks of 

the brain). Therefore, the coefficient values range between one and zero: the closer the 

coefficient to zero, the more the ROI has connections outside the community, highlighting its 

relevance as connector hub. Conversely, the closer the value to one, the greater the within-

community degree, indicating that the ROI is mainly central within its own sub-network. 

To test the difference of the whole-brain distribution of the participation coefficient between 

high versus average Gf individuals, we have performed an MCS analogous to the one 

described for the paragraph on the Degree of connectivity. 

 

Characteristic path length  

The Characteristic path length represents the average shortest path length between all pairs 

of nodes composing the network (e.g. the minimum number of connections to connect two 

nodes on average), providing a good estimate of how easily information flows through the 

network (and therefore of the integration of the network).  
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Global and Local efficiency 

Local efficiency measures the average efficiency of integration within local clusters (e.g. 

between the neighbours of a given node). Global efficiency is the inverse of the characteristic 

path length and indicates how effectively the information flows across the network.  

 

Density 

Density represents the ratio between the number of actual edges of the network and the 

number of all possible edges of the network. 

 

Each one of the measures described above (characteristic path length, global and local 

efficiency, and density) were statistically compared between high versus average Gf groups 

by using two-sample t-tests. In this case, we corrected for multiple comparisons by using 

Bonferroni correction (i.e. dividing the α level of .05 by the total number of 24 comparisons 

(four measures x five frequency band of the functional networks plus one structural 

connectivity network), resulting in .05/24 = .002). 
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Data availability 

 

The codes are available at the following link: https://github.com/leonardob92/LBPD-1.0.git, 

while the multimodal neuroimaging data from the experiment are available upon reasonable 

request. 
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Figures 

 

 

 

 

Figure 1. Experimental design and analysis pipeline. 

A – Participants were divided into two experimental groups, namely average Gf and high Gf, based on their 

scoring to perceptual reasoning, working memory and speed processing indexed by WAIS-IV. B – For both 

groups, diffusion-tensor imaging (DTI) data were collected and pre-processed. Then, differences in white 

matter microstructure were assessed with tract-based spatial statistics and the white matter bundles were 

modelled using probabilistic tractography. C – For both groups, magnetoencephalographic (MEG) data were 

collected during a 10-minute session of resting state. The data were filtered to analyse five different frequency 

bands: 0.1-2Hz (delta), 2-8Hz (theta), 8-12Hz (alpha), 12-32Hz (beta), 32-74Hz (gamma). Next, they were 

source-reconstructed with the beamforming algorithm. D – Connectivity was computed for both DTI and MEG 

data for each subject. The connectivity matrix for the DTI data was created by computing the probabilistic 

tractography based on AAL parcellation. The connectivity matrix for MEG data was estimated by computing the 

Pearson’s correlations between the envelope of each pair of brain areas. E –Graph measures were used to 

investigate the structural and functional brain networks of each group. Degree, provincial and connector hubs 

and modularity provided the most insightful results.  
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Figure 2. Structural and functional whole-brain connectivity. A – Structural connectivity computed from DTI 

data. The circular connectogram and the connectivity matrix represent the connections between the 90 AAL 

nodes. The different connection strengths are represented by different colour shades. The whole-brain figures 

depict the whole-brain connections, with stronger connections being thicker. Colourbars indicate the 

normalized average number of streamlines connecting the brain areas. B – Similarly, functional connectivity 

computed from MEG data, for each of the five frequency bands analysed. Colourbars indicate the Pearson’s 

correlations, showing the functional connectivity between brain areas. 
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Figure 3. Degree of connectivity. A – Degree coefficients of structural and functional connectivity in 

participants with high Gf. B – Degree coefficients of structural and functional connectivity in participants with 

average Gf. C – Contrasts of the degree coefficients between the two groups. To be noted, high Gf individuals 

are represented in red, while average Gf ones in blue. In the contrast, the red colour indicates that high Gf 
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individuals had a stronger degree distribution, while the blue showed a stronger distribution for average Gf 

participants. D – Degree coefficient distribution of high, average and high versus average Gf. Here, each dot 

shows the degree of each of the 90 ROIs, independently for high and average Gf participants. Dashed lines 

indicate the standard deviation with reference to zero, helping to identify how the degree distribution varied for 

high versus average Gf participants. 
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Figure 4. Connector and provincial hubs. A – Participation coefficient distribution computed from structural 

and functional connectivity in participants with high Gf. B – Participation coefficient distribution computed 

from structural and functional connectivity in participants with average Gf. C – Contrasts related to the 
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Participation coefficient between the two groups. Positive results of the contrast indicate the presence of more 

intra- than inter-module in high versus average Gf participants. Conversely, the negative result of the contrast 

indicates more inter- than intra-module connections in high versus average Gf. To be noted, high Gf 

individuals are represented in red, while average Gf ones in blue. In the contrast, the red colour indicates that 

high Gf individuals had a more negative participation coefficient distribution, meaning that they presented a 

Participation coefficient more polarized toward the connector side. Conversely, the blue colour showed a 

stronger distribution of such coefficient for average versus high Gf participants.   d – Participation coefficient 

distribution of high, average and high versus average Gf. Here, each dot shows the participation coefficient of 

each of the 90 ROIs, independently for high and average Gf participants. Dashed lines indicate the standard 

deviation with reference to zero, helping to identify how the participation coefficient distribution varied for high 

versus average Gf participants. 
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Figure 5. Inter and Intra-module connectivity in high versus average Gf. A – Whole-brain structural 

and functional connectivity in all participants.  B – Circular connectogram representing inter- (in gray) and 
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intra-module (different colors) connections in high Gf participants. C – Brain modules and intra-module 

connections overlaid on a standard brain template, in individuals with high Gf. Different modules are 

represented with different colors. D – Inter-module connections in individuals with high Gf. Different modules 

are represented by dots in different colors. E – Circular connectogram representing inter- (in gray) and intra-

module (different colors) connections in average Gf participants. F – Brain modules and intra-module 

connections in individuals with average Gf. Different modules are represented with different colors. G – Inter-

module connections in individuals with average Gf. Different modules are represented by dots in different 

colors. 
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Supplementary Tables 
 
 
The supplementary tables can be found at the following link: 
https://drive.google.com/drive/folders/1OSdaAbNoCO5zpQJrCYRKiHWoYgiEI882?usp=sh
aring 
 
 
 
Table ST1. Degree distribution 

Brain areas (ROIs) one standard deviation above (or below, as depicted by dash line in Figure 3) the mean 
degree. These ROIs provided the strongest contribution to the degree distribution that we tested statistically. 
The ROIs with the strongest values are the ones that had the highest difference in terms of degree when 
comparing High versus Average Gf groups (i.e. highest values correspond to ROIs that had a stronger degree 
for High versus Average Gfs). These areas are depicted in Figure 3 in the brain templates. Table ST1 reports 
ROIs independently for DTI and the five frequency bands from MEG. 
 

 
Table ST2. Community structure 

Brain areas (ROIs) reported in the different communities (modules) outputted by the modularity algorithm that 
we used in the study (Newman, 2006). The community structures are reported independently for DTI and the 
five frequency bands from MEG. These community structures are depicted in brain templates in Figure 5. 
 
 
Table ST3. Participation coefficient distribution 

Brain areas (ROIs) one standard deviation above (or below, as depicted by dash line in Figure 4) the mean 
participation coefficient. These ROIs provided the strongest contribution to the participation coefficient 
distribution that we tested statistically. In this case, the ROIs with the smallest values are the ones that had the 
highest difference in terms of participation coefficient when comparing High versus Average Gf groups (i.e. 
smallest values correspond to ROIs that had many more inter- than intra-community connections for High 
versus Average Gfs). These areas are depicted in Figure 4 in the brain templates. Table ST3 reports ROIs 
independently for DTI and the five frequency bands from MEG. 
 
 
Table ST4. TBSS – High versus Average Gf groups 

Significant clusters of stronger FA voxels when contrasting High versus Average Gf groups. The table reports 
Hemisphere, t-stat and MNI coordinates of each of the FA voxel forming the significant clusters. 
 
 
Table ST5. TBSS – Average versus High Gf groups 

Significant clusters of stronger FA voxels when contrasting Average versus High Gf groups. The table reports 
Hemisphere, t-stat and MNI coordinates of each of the FA voxel forming the significant clusters. 
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