
Figure S9: Waves of neural activity observed across three animals following ingestion of
high-concentration caffeine. Thoracic cervical connectives from three animals. (A,D,G) ROIs
overlaid on top of standard-deviation time-projected images. (B,E,H) Neural activity over time for
each ROI (color-coded) normalized to the peak fluorescence during the wave of activity. Shown are
five waves from three animals. Time is aligned to the peak of the mean fluorescence across all ROIs.
(C,F,I) Pixel-wise time of peak activity (color-coded) relative to the peak of mean activity across
the entire neck connective.
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7 Supplementary Videos692

Video 1: Interactions among implanted and intact freely behaving animals. Two implanted693

animals—identifiable by visible thoracic windows—and one intact animal interact near a morsel of694

food. Video is real-time.695

https://www.dropbox.com/s/b5ui7z7uotrnoql/video_1.mov?dl=0696

Video 2: Protocol to prepare animals for long-term neural recordings. A step-by-step vi-697

sualization of how a fly is outfitted with an implant and window for long-term two-photon microscope698

recordings.699

https://www.dropbox.com/s/tpegdzdu80tno4x/video_2.mov?dl=0700

Video 3: Repeatedly recording VNC anatomy across one month. Two-photon z-stacks of an701

animal’s VNC at 1, 14, and 28 days post-implantation (dpi). This animal expressed GFP throughout702

the nervous system (GMR57C10-Gal4 ). Z-stack images progress from the dorsal to ventral VNC.703

https://www.dropbox.com/s/efntyidl1gnx5aw/video_3.mov?dl=0704

Video 4: Repeatedly recording VNC neural activity across ten days. Two-photon imaging705

of an animal’s VNC at 1, 5, and 10 days post-implantation (dpi). This animal expressed a genetically-706

encoded calcium indicator, GCaMP6s, throughout the nervous system (Act88F:Rpr; GMR57C10-707

Gal4; UAS-GCaMP6s). Neural data are averaged across three cumulatively acquired two-photon708

microscope images. Activity are related to foreleg-dependent grooming.709

https://www.dropbox.com/s/4z3bztl88rwm9sl/video_4.mov?dl=0710

Video 5: Optogenetically elicited backward walking in intact, sham implanted, and im-711

planted animals. Representative videos of three flies driven to walk backward through optogenetic712

activation of Moonwalker Descending Neurons. Columns are experimental dates (1, 14, and 28 dpi).713

Rows are experimental groups (Intact, Sham implanted, and Implanted). A light appears on the714

bottom-left of each arena, indicating times of orange light illumination and CsChrimson activation.715

Trajectories are shown for forward walking (cyan) and backward walking (purple).716

https://www.dropbox.com/s/05x5cekrut9gec5/video_5.mov?dl=0717

Video 6: Repeatedly recording the anatomy of proprioceptive inputs to the VNC for718

15 days before and after forelimb amputation. Two-photon z-stacks of two animals’ VNCs at719

1, 7, and 15 days-post-implantation (dpi). These animals expressed GFP in limb chordotonal organs720

(iav-Gal4 ). Z-stack images progress from the dorsal to ventral VNC. Top row shows data from an721

animal with an intact leg. Bottom row shows an animal whose front left leg was amputated at 2dpi.722

https://www.dropbox.com/s/lmxsl323qhprots/video_6.mov?dl=0723

Video 7: Repeatedly recording thoracic cervical connective neural activity before, dur-724

ing, right after, and long after feeding with a sucrose solution. Two-photon imaging of a725

cross-section of the thoracic cervical connective including neurons descending from and ascending to726

the brain. Columns are data acquired before (left), during (middle-left), right after (middle-right),727

and 25 minutes (right) after feeding with a sucrose solution. Rows are behavioral videography (top),728

∆F/F (middle) and motion-corrected raw (bottom) two-photon calcium imaging data. This animal729

expressed GCaMP6s and tdTomato, throughout the nervous system.730

https://www.dropbox.com/s/7zzb2n4570m6ris/video_7.mov?dl=0731

Video 8: Repeatedly recording thoracic cervical connective neural activity before, dur-732

ing, right after, and long after feeding with a low-concentration caffeine and sucrose733

solution. Two-photon imaging of a cross-section of the thoracic cervical connective including neu-734

rons descending from and ascending to the brain. Columns are data acquired before (left), during735

(middle-left), right after (middle-right), and 25 minutes (right) after feeding with a low-concentration736

caffeine and sucrose solution. Rows are behavioral videography (top), ∆F/F (middle) and motion-737

corrected raw (bottom) two-photon calcium imaging data. This animal expressed GCaMP6s and738

tdTomato, throughout the nervous system.739

https://www.dropbox.com/s/rn8cas5lxtnyzxs/video_8.mov?dl=0740
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Video 9: Repeatedly recording thoracic cervical connective neural activity before, dur-741

ing, right after, and long after feeding with a high-concentration caffeine and sucrose742

solution. Two-photon imaging of a cross-section of the thoracic cervical connective including neu-743

rons descending from and ascending to the brain. Columns are data acquired before (left), during744

(middle-left), right after (middle-right), and more than 25 minutes (right) after feeding with a high-745

concentration caffeine and sucrose solution. Rows are behavioral videography (top), ∆F/F (mid-746

dle) and motion-corrected raw (bottom) two-photon calcium imaging data. This animal expressed747

GCaMP6s and tdTomato, throughout the nervous system.748

https://www.dropbox.com/s/28qcd329mhykeu6/video_9.mov?dl=0749

Video 10: Neural activity waves following high-concentration caffeine ingestion. Two-750

photon imaging of a cross-section of the thoracic cervical connective including neurons descending751

from and ascending to the brain. Columns are different occurrences of neural activity waves observed752

across three animals more than 25 minutes after feeding with a high-concentration caffeine and sucrose753

solution. Rows are behavioral videography (top), ∆F/F (middle) and motion-corrected raw (bottom)754

two-photon calcium imaging data. These animals expressed GCaMP6s and tdTomato, throughout755

the nervous system.756

https://www.dropbox.com/s/84abk0emwsm4klz/video_10.mov?dl=0757

8 Code and data availability758

Code are available at: https://github.com/NeLy-EPFL/Long-Term-Imaging-VNC-Drosophila759

Data are available at: https://dataverse.harvard.edu/dataverse/long_term_imaging_vnc_drosophila760

761

9 Funding762

LH acknowledges support from an EU H2020 Marie Sk lodowska-Curie grant (754354). JB acknowl-763

edges support from a Boehringer Ingelheim Fonds PhD stipend. VLR acknowledges support from764

the Mexican National Council for Science and Technology, CONACYT, under the grant number765

709993. SG acknowledges support from an EPFL SV iPhD Grant. FA acknowledges support from a766

Boehringer Ingelheim Fonds PhD stipend. MSS acknowledges support from the European Research767

Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant768

agreement No. 714609). PR acknowledges support from an SNSF Project grant (175667) and an769

SNSF Eccellenza grant (181239).770

10 Acknowledgments771

We thank Adam Friedberg for help in testing earlier versions of the implant and the manipulation772

arm. We thank Alain Herzog for photos and videos of implanted animals.773

11 Competing interests774

The authors declare that no competing interests exist.775

12 Author Contributions776

L.H. - Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data777

acquisition, Data curation, Writing - Original Draft Preparation, Writing - Review & Editing, Visu-778

alization.779

M.K. - Methodology, Software, Validation, Formal analysis, Writing - Original Draft Preparation,780

Writing - Review & Editing, Visualization.781

J.B. - Methodology, Software, Formal analysis, Data curation, Writing - Review & Editing, Visual-782

ization.783

27

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.463778doi: bioRxiv preprint 

https://www.dropbox.com/s/28qcd329mhykeu6/video_9.mov?dl=0
https://www.dropbox.com/s/84abk0emwsm4klz/video_10.mov?dl=0
https://github.com/NeLy-EPFL/Long-Term-Imaging-VNC-Drosophila
https://dataverse.harvard.edu/dataverse/long_term_imaging_vnc_drosophila
https://doi.org/10.1101/2021.10.15.463778
http://creativecommons.org/licenses/by-nc/4.0/


V.L.R. - Methodology, Software, Formal analysis, Data curation, Writing - Review & Editing, Visu-784

alization.785

C.-L. C. - Data acquisition, Writing - Review & Editing786

S.G. - Methodology, Software, Data curation, Writing - Review & Editing.787

F.A. - Methodology, Software, Writing - Review & Editing.788

M.S.S. - Conceptualization, Methodology, Resources, Writing – Original Draft Preparation, Writing789

- Review & Editing, Supervision, Project Administration, Funding Acquisition.790

P.R. - Conceptualization, Methodology, Resources, Writing – Original Draft Preparation, Writing -791

Review & Editing, Supervision, Project Administration, Funding Acquisition.792

793

13 Competing interests794

The authors declare that no competing interests exist.795

References796

[1] Denk, W. et al. Anatomical and functional imaging of neurons using 2-photon laser scanning797

microscopy. Journal of neuroscience methods 54, 151–162 (1994).798

[2] Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity799

in adult cortex. Nature 420, 788–794 (2002).800

[3] Kim, T. H. et al. Long-term optical access to an estimated one million neurons in the live mouse801

cortex. Cell reports 17, 3385–3394 (2016).802

[4] Andermann, M. L. et al. Chronic cellular imaging of entire cortical columns in awake mice using803

microprisms. Neuron 80, 900–913 (2013).804

[5] Goldey, G. J. et al. Removable cranial windows for long-term imaging in awake mice. Nature805

protocols 9, 2515 (2014).806

[6] Huang, C. et al. Long-term optical brain imaging in live adult fruit flies. Nature Communications807

9, 872 (2018).808

[7] Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path809

integration. Nature 521, 186–191 (2015).810

[8] Pick, S. & Strauss, R. Goal-driven behavioral adaptations in gap-climbing drosophila. Current811

Biology 15, 1473–1478 (2005).812

[9] Asahina, K. Neuromodulation and strategic action choice in drosophila aggression. Annual813

review of neuroscience 40, 51–75 (2017).814

[10] Pavlou, H. J. & Goodwin, S. F. Courtship behavior in drosophila melanogaster: towards a815

‘courtship connectome’. Current opinion in neurobiology 23, 76–83 (2013).816

[11] Seelig, J. D. et al. Two-photon calcium imaging from head-fixed drosophila during optomotor817

walking behavior. Nature methods 7, 535–540 (2010).818

[12] Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion819

processing in drosophila. Nature neuroscience 13, 393–399 (2010).820

[13] Grover, D., Katsuki, T. & Greenspan, R. J. Flyception: imaging brain activity in freely walking821

fruit flies. Nature methods 13, 569–572 (2016).822

[14] Valle, A. F., Honnef, R. & Seelig, J. D. Automated long-term two-photon imaging in head-fixed823

walking drosophila. bioRxiv (2021).824

[15] Nelson, N. A., Wang, X., Cook, D., Carey, E. M. & Nimmerjahn, A. Imaging spinal cord activity825

in behaving animals. Experimental neurology 320, 112974 (2019).826

28

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.463778doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.463778
http://creativecommons.org/licenses/by-nc/4.0/


[16] Wu, W. et al. Long-term in vivo imaging of mouse spinal cord through an optically cleared827

intervertebral window. bioRxiv (2021).828

[17] Chen, C.-L. et al. Imaging neural activity in the ventral nerve cord of behaving adult drosophila.829

Nature communications 9, 1–10 (2018).830

[18] Tsubouchi, A. et al. Topological and modality-specific representation of somatosensory informa-831

tion in the fly brain. Science 358, 615–623 (2017).832

[19] Tuthill, J. C. & Azim, E. Proprioception. Current Biology 28, R194–R203 (2018).833
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