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Significance statement: Although there is behavioural evidence that pain is coded 
adaptively, the neural mechanisms serving this process are not well understood. 
This study used functional MRI to provide the first evidence that the left dorsal ante-
rior insula, an area associated with aversive learning, responds to pain in a manner 
consistent with the adaptive coding of pain prediction error. This study aids our un-
derstanding of the neural basis of subjective pain representation, and thus can con-
tribute to the advancement of analgesic treatments.    
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Abstract 

Background. Understanding the mechanisms behind the influence of expectation 

and context on pain perception is crucial for improving analgesic treatments. 

Prediction error (PE) signals how much a noxious stimulus deviates from expectation 

and is therefore crucial for our understanding of pain perception. It is thought that the 

brain engages in ‘adaptive coding’ of pain PE, such that sensitivity to unexpected 

outcomes is modulated by contextual information. While there is behavioural 

evidence that pain is coded adaptively, and evidence that reward PE signals are 

coded adaptively, controversy remains regarding the underlying neural mechanism 

of adaptively-coded pain PEs.  

Methods. A cued-pain task was performed by 19 healthy adults while undergoing 

FMRI scanning. BOLD responses to the task were tested using an axiomatic 

approach to identify areas that may code pain PE adaptively.  

Results. The left dorsal anterior insula demonstrated a pattern of response 

consistent with adaptively-coded pain PE. Signals from this area were sensitive to 

both predicted pain magnitudes on the instigation of expectation, and the 

unexpectedness of pain delivery. Crucially however, the response at pain delivery 

was consistent with the local context of the pain stimulation, rather than the absolute 

magnitude of delivered pain, a pattern suggestive of an adaptively-coded PE signal.  

Conclusions. The study advances our understanding of the neural basis of pain 

prediction. Alongside existing evidence that the periaqueductal grey codes pain PE 

and the posterior insula codes pain magnitude, the results highlight a distinct 

contribution of the left dorsal anterior insula in the processing of pain.   
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Introduction 

A major function of the nervous system is to learn the relationship between stimuli, 

and to identify, and respond accordingly, when expected relationships are 

confounded. According to the reinforcement learning framework (Sutton & Barto, 

1998), prediction error (PE) is a key part of this adaptive process. PEs reflect the 

difference between the expected and delivered stimuli. A neural signal that 

corresponds to PE is generated when an expected stimulus is not delivered, and 

functions as a form of feedback, updating the cognitive schema that governs 

subsequent predictions about the world.   

PE is typically computed according to reinforcement learning models (Sutton 

& Barto, 1998). A signal coding this “computational PE” should adhere to the 

following three axioms (Caplin & Dean, 2008; Rutledge et al., 2010):  

Axiom 1: The signal should differentiate the magnitude of outcomes in a 
consistent order, independent of their probability (e.g. higher signal for 
outcome delivery vs outcome omission).  

Axiom 2: The signal should reflect outcome likelihood consistently (e.g. lower 
signals for more expected outcomes).  

Axiom 3: The signal should not differentiate between fully-expected outcomes. 

Another, related function of the nervous system is to quickly identify the 

subjective value of stimuli. A problem with such a task is that the range of stimulus 

intensities is wide, while the processing range of neurons is limited. To reduce the 

computational demands of determining values, the brain is thought to engage in 

‘adaptive coding’, where the sensitivity of some neurons to value is modulated by 

contextual information (Seymour & McClure, 2008). A neural signal that satisfies the 

computational PE axioms (listed above) independent of context, is sensitive to the 

absolute magnitude of the delivered stimuli. In contrast, an ‘adaptively-coded’ PE 

signal would produce a signal that is scaled to the range of magnitudes that could 
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possibly be experienced in the local context, independent of the absolute magnitude 

of the delivered stimulus. Table 1 and Figure 1 illustrates how the adaptively-coded 

PE diverges from the computational PE.  

For rewarding stimuli, adaptive coding is implemented through dopaminergic 

neuronal firing (Tobler et al., 2005). Tobler and colleagues demonstrated adaptively-

coded PE in Macaques. In each trial of their experiment Macaques observed one of 

three cues that signalled a 50% chance of receiving reward, with each cue signalling 

one reward magnitude only (low, medium, or large). Cue onsets triggered a midbrain 

dopaminergic signal proportional to the magnitude of the reward it predicted, namely, 

it scaled to the size of the potential reward. On trials where the reward was 

delivered, higher-than-baseline response in the same neurons reflected reward PE. 

Crucially for an adaptive signal, this response to the reward outcome no longer 

distinguished reward magnitudes, remaining the same regardless of actual reward 

delivered. This pattern of responses reflects an adaptively-coded PE, as in each 

individual trial the delivery of the reward was the best outcome (compared to non-

reward), despite the reward magnitude being lower in some trails than in others.  

 

Table 1 

---- 

Figure 1 

---- 

 

In humans, evidence suggests that adaptively-coded reward prediction error 

is expressed in the ventral striatum (Park et al., 2012). As with reward, PEs triggered 

by the prediction or experience of aversive stimuli, such as pain, are also coded by 
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dopamine neurons (Lammel et al., 2011; Schultz, 2016). Computational pain PE 

correlates with activation in the human ventral striatum and insula (Geuter et al., 

2017; Seymour et al., 2004; Shih et al., 2019), although only in the periaqueductal 

grey does the signal adhere to all three axioms (Roy et al., 2014). As regards 

adaptive pain responses, there is ample evidence that local context influences 

behavioural responses to pain so that they scale with expectations (Atlas & Wager, 

2012; Tracey, 2010). Behavioural evidence specific for adaptive coding of pain is 

evident in that participants pay more for relief of moderate pain when the pain 

intensities they could receive range from low to moderate, compared when they 

range from moderate to high (Vlaev et al., 2009; Winston et al., 2014). There is 

however, controversy about the neural mechanism that enables adaptive coding of 

pain, with research implicating either the insula and ACC (Leknes et al., 2013), or the 

orbitofrontal cortex (Winston et al., 2014); while one study reported null neural 

effects (Bauch et al., 2017). As these previous studies have not focused specifically 

on whether a region represents pain PEs in an adaptively-coded manner, the current 

study was designed to examine whether neural evidence for adaptive coding of pain 

PEs can be acquired by closely following Tobler et al.’s design. To this end a 

paradigm was implemented where four cues predicted either high or low pain 

intensity with either high or low probability. Crucially, as with the Tobler study, the 

cues presented at trial onset only predicted the delivery (or omission) of one intensity 

of stimulation. Thus, in the local context of each trial, the delivery of the pain 

stimulation was the worst outcome (compared to the alternative, pain omission), 

regardless of the intensity of the actual stimulation. It was hypothesized, based on 

Tobler et al., that a brain area that records PE would, at the point during which 

expectations are set, produce a response that scales with the intensity of the 
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predicted stimulus. Given that we know that pain, especially when unexpected, 

increases the BOLD response, the activation of an area demonstrating an 

adaptively-coded pain PE would meet the following four requirements: 

1. At outcome, respond more to delivered stimulations versus omitted 

stimulations (reflecting Axiom 1 of the Computational PE) 

2. At outcome, respond more to unexpected (versus expected) stimulations 

(reflecting Axiom 2 of the Computational PE) 

3. At outcome the effect of expectancy, namely, the greater response to the 

unexpected stimulation compared to the expected stimulation (requirement 2) 

does not vary with the actual intensity of the delivered stimulus. This reflects 

the requirement of an adaptively-coded PE signal to be sensitive to the local 

context (Figure 1). 

4. At cue onset, respond more to the high pain cue than the low pain cue 

(reflecting Axiom 1 of the computational PE and following the findings of 

Tobler et al., where the area coding adaptively-scaled reward PE also 

responded to cued reward level).  

Note that with the experimental design utilised, it was not possible to test Axiom 3 of 

the computational PE. As pain delivery was necessarily probabilistic, no stimulation 

was ever fully expected.  
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Methodology 

Experimental design  

The experiment employed a 2X2 event-related design with pain magnitude (high vs. 

low) and pain probability (high vs. low) as the factors. The task resembled one  

previously employed to detect neural signature of pain and reward PEs on the scalp 

(Talmi et al., 2013). Participants viewed chance cues that predicted electric 

stimulation with a 33% or 67% probability. In each trial it was only possible to receive 

a stimulation of a single magnitude, with the cue colour indicating which magnitude 

this could be (Figure 2). Across the experiment two different magnitudes were used: 

a ‘high’ level, equivalent to the most intense level of stimulation participants had 

previously indicated they were willing to tolerate, and a ‘low’ level, equivalent to a 

stimulation level that participants had indicated was “just painful”.  An event-related 

design was used such that every block contained each of the 4 trials type (high and 

low probability and high and low pain). The trials were designed to permit the cue to 

adaptively scale the participants’ expectations, such that when the cue signalled a 

chance of low magnitude stimulation participants expected low (or no) pain, and 

when the cue signalled a chance of high stimulation they expected high (or no) pain.  

 

---- 

FIGURE 2 

---- 

 

Participants 
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Twenty participants took part in the experiment, although data collection was aborted 

for one participant as they could not tolerate being in the scanner, leaving a final 

sample of 19 participants (11 female) between the ages of 18-36 (M=25.16, 

SD=4.35). This sample size was based on Hoskin et al. (2019) where a similar 

sample size was sufficient to reveal effects of expectations on pain experience, and 

with the sample sizes used by previous studies on adaptive pain PE (Bauch et al., 

2017; Leknes et al., 2013; Winston et al., 2014). For two participants data was only 

collected for 3 (of the 4) blocks due to equipment failure. All participants were 

screened for any conditions that would prevent MR scanning, and for psychiatric and 

neurological history. Participants were proficient in English, had normal or corrected-

to-normal hearing and vision, and did not take centrally-acting medication. The study 

received ethical approval from the University of Manchester ethics committee.  

Further sample characteristics are described in Table 2. 

 

---- 

Table 2 

---- 

 

 

Apparatus 

Pain stimulation. The electrical stimulations were delivered to the back of the right 

hand via an in-house built ring electrode (Medical Physics, Salford Royal Hospital) 

attached to a Digitimer DS5 Isolated Bipolar Constant Current Stimulator 

(http://www.digitimer.com/). To counter the effect of the magnetic field of the MR 

scanner, the DS5 stimulator was placed within a custom-built Faraday cage (Medical 
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Physics, Salford Royal Hospital). For reasons of participant safety, this stimulator 

was limited to delivering a maximum of 10mA during the experiment. To ensure 

adequate conductance between the electrode and the skin, the back of each 

participant’s hand was prepared with Nuprep Skin Preparation Gel and Ten20 

Conductive Paste. The SCR electrodes were placed on the inside medial phalange 

of the second and fourth fingers of the participant’s left hand. The inputs to the DS5 

machine were controlled via 1401plus data acquisition interface connected to a 

laptop running the Spike2 software (Cambridge Electronic Designs, Cambridge, UK). 

During the calibration procedure, the input signal from the 1401plus interface to the 

DS5 started from 0.2V and incremented at levels of 0.2V, up to a maximum of 5V. 

Using our set current range of 10mA, this driving signal was converted to current 

using the following equation: Input voltage/5V x 10mA = Output Current, so current 

levels experienced ranged from 0.4mA to 10mA. Both the laptop and the 1401plus 

machine were kept inside the scan control room during data collection. The 1401plus 

machine was connected to the Faraday cage using a BNC cable. To avoid 

interference between the Faraday cage and the scanner, the Faraday cage was kept 

a minimum of 2m from the scanner. The experiment was delivered via Cogent2000 

on a Matlab platform (www.Mathworks.com).  

 

Neuroimaging. Participants were scanned using a 3T Philips Achieva scanner, fitted 

with a Philips 32-channel receive-only coil. Whole-brain functional images were 

collected using a single-shot dual-echo protocol (Halai et al., 2014), with TR=3s, 

TE=12ms & 35ms, FOV=240,240,132, flip angle=85. In each volume, 33 slices of 

voxel size 3x3x4mm were collected in ascending order. Volumes were sampled at a 

30-degree angle from the AC-PC line. Each functional scan included 145 whole brain 
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volumes. Prior to the functional scans, a whole-brain T1-weighted anatomical scan 

was acquired from each participant (TR=8.4s TE=3.8s, flip angle=8).   

 

Procedure 

Upon arrival participants read an information sheet and signed a consent 

form. Participants were then provided with comprehensive instructions outlining the 

task that was to be performed. Participants also filled out the following 

questionnaires (Table 2): Spielberger State-trait Anxiety Inventory (Spielberger et al., 

1983), BIS and BAS scales (Carver & White, 1994) and the Barratt Impulsivity Scale 

(Patton et al., 1985) as part of a wider study investigating the relationship between 

anxiety, impulsivity and the neural response to pain. Results relating to this 

questionnaire data are not therefore discussed further here.  

Prior to engaging in the main task, participants first completed a calibration 

procedure which was designed to identify the two levels of electrical stimulation to be 

used during the main task. An established calibration process (e.g. Brown et al., 

2014; Hird et al., 2018) was adopted, during which participants received a 

succession of 5ms square wave electric stimulations. These stimulations started at a 

very low, barely perceptible level, and the current level increased very gradually (by 

incrementing the driving signal by 0.2V at each time, see ‘Apparatus’ section). 

Participants rated each stimulation on a scale from 0 – 10 where a score of 0 

reflected not being able to feel the stimulation, 4 reflected a stimulation that was on 

the threshold of being painful, 7 related to a stimulation that was deemed ‘painful but 

still tolerable’ and 10 related to ‘unbearable pain’. The procedure was terminated 

once the participant reported the level of pain as being equivalent to ‘7’ on the scale. 
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The procedure was performed twice, both times with a one-step-up method, to allow 

for initial habituation/sensitisation to the stimulation. The voltage levels rated as ‘4’ 

and ‘7’ on the second scaling were used for the ‘low’ and ‘high’ pain stimulation 

magnitude levels during the main task. The calibration procedure ensured that the 

pain levels were psychologically equivalent across participants. 

Participants first completed 1 block of 60 trails outside the scanner to ensure 

that they understood the task. Inside the scanner participants completed a further 4 

blocks of 60 trials. Each block contained 15 trials of each of the 4 cues.  The trial 

structure is depicted in Figure 2. Each trial began with a 0.5s fixation cross before a 

‘chance’ cue appeared in the form of a two-segment pie chart, with one segment 

always being coloured grey. Each chance cue signalled two attributes of the 

outcome of the trial. The magnitude of the pain that could be administered in the trial 

was signalled through the colour of the non-grey segment, with (across the 

experiment) one colour signalling high pain and the other low pain (colours used 

were blue and yellow and their assignment to high and low were counterbalanced 

across participants). The grey segment was used to signal the possibility of receiving 

no stimulation. The probability of receiving pain in each trial was therefore signalled 

through the portion size of the coloured (non-grey) segment. A chart where 67% was 

coloured signalled a 67% chance of receiving the pain stimulation in the trial (high 

probability); whereas a chart where the 33% portion was coloured signalled a 33% 

chance of receiving the pain stimulation (low probability). The cues accurately 

signalled the probability of the stimulation being delivered both across the entire 

experiment and within each block (e.g. out of the 15 presentations of each 33% cue 

in a block, 5 would results in stimulations and 10 in no stimulations). While the 

delivery or omission of the outcome was probabilistic, the chance cue clarified that 
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only an outcome of a single magnitude (high in half the trials, low in the other half) 

was possible, with the only other possible outcome being the omission of the 

stimulation. Thus, a crucial feature of the task was that participants never needed to 

consider a possibility that they may get either high or low pain. By setting 

participants’ expectations in this way, the chance cue allowed the pain PE to be 

adaptively coded. 

After the cue, an interval of between 1 and 5s occurred before an ‘outcome indicator’ 

appeared, taking the form of a one-segment pie chart, coloured according to the 

outcome of the trial. In trials where stimulation was omitted, the outcome indicator 

was grey. In trials where stimulation was delivered, the outcome indicator was 

coloured according to the magnitude delivered, with the indicator appearing at the 

onset of the stimulation. Outcome indicators were included in all trials to provide 

certainty as to the outcome for trials in which no stimulation was delivered, thus 

avoiding introducing confounds around temporal uncertainty. A jittered inter-trial 

interval of between 2.5s and 7.5s then occurred before the start of the next trial.  

To ensure participants paid attention to the contingencies presented by the 

cues, they were asked to monitor the outcomes that followed each cue. At the end of 

each block participants were shown each chance cue again (order randomised) and 

asked whether they thought the cue accurately predicted the occurrence of the 

stimulations (possible responses: “yes” or “no”). Prior to starting the task, participants 

were informed of the nature of the chance cues and outcome indicators. To ensure 

they engaged with the monitoring task, participants were not informed that the 

probabilities represented on the chance cues were in fact accurate.  

Analysis 
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Pre-processing. MATLAB and SPM12 were used to pre-process the raw scans and 

complete analysis of the resulting data in the 1st and 2nd level GLM (general linear 

model). Raw PARREC files of the structural and functional MRI data were converted 

into file formats suitable for SPM12 (.img/.hdr & .nii files) in order to be pre-

processed using MATLAB code. A standard neuroimaging pipeline using a mass-

univariate approach was subsequently implemented on these data-files/scans. 

Realignment/motion-correction was applied first, followed by slice timing correction 

using the central slice for reference. Spatial normalisation was then applied, with the 

functional data being normalised into a standard stereotactic MNI (Montreal 

Neurological Institute) space resampled to 3 × 3 × 4mm³ voxels before being 

spatially smoothed using an 8-mm [8 8 8] full-width at half-maximum (FWHM) 

Gaussian kernel in order to optimise sensitivity (Ashburner et al., 2016). Following 

pre-processing the resulting data-files were specified in the 1st level GLM. A 128s 

high-pass filter was used to reduce the effects of MRI scanner drift. Inclusion of 

temporal derivatives in subject’s 1st-level analysis were considered, however, this 

was ultimately deemed counter-productive due to evidence (Della-Maggiore et al., 

2002; Sladky et al., 2011) that including temporal derivatives in paradigms centred 

on response latencies >1s can diminish power, thereby directly subverting the 

increase in sensitivity provided by slice-timing correction. The literature dedicated to 

onset latency and delays of the hemodynamic response function (hrf) in response to 

pain stimuli are quite limited (Cauda et al., 2014; Pomares et al., 2013) with only 

Cauda et al. reporting that the canonical hrf may not be well-suited to capturing the 

BOLD response of measured mechanical pain. As this paradigm used 

transcutaneous electric nerve stimulation, not mechanical pain, no derivatives were 
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included in the GLM, and the canonical hrf was used, as in the majority of published 

research on pain.  

Individual models. Individual GLMs were constructed for each participant, 

encompassing all completed runs. Each run was modelled with 9 regressors. Four 

regressors corresponded to chance cues, crossing the factors pain magnitude (high 

vs. low) and pain probability (high vs. low) and another 4 regressors corresponded to 

pain outcomes (i.e. the delivery of a stimulation), crossing the same factors. Note 

that when the chance cue indicated that pain probability was high, the subsequent 

delivery of pain was taken to correspond to ‘expected pain’, while when the chance 

cue indicated that the pain probability was low, the subsequent delivery of pain was 

taken to correspond to ‘unexpected pain’. The 9th regressor modelled all non-pain 

outcomes (i.e. the presentation of the outcome indicator that signalled that no pain 

would be delivered), following from previous work where non-pain outcomes did not 

trigger a pain PE (Geuter et al., 2017). Six motion parameters were also included for 

each run.  

Group analysis. Two second-level ANOVA tests were constructed. The ‘pain 

anticipation’ model analysed the response to chance cues and the ‘pain outcome’ 

model analysed the response to pain outcomes, each crossing the factors pain 

magnitude x pain probability. Main effects were examined using t-contrasts and 

interactions using f-contrasts, with p<.05 for initial voxel selection, and FWE <.05 to 

define statistically-significant voxels. The search volume for all group analyses was 

constrained to Regions Of Interest (ROIs) that were sensitive to pain. These ROIs 

were defined functionally through a one-sample t-test, which contrasted the 

response to pain outcomes (an average across all four pain outcome regressors) to 

responses to non-pain outcomes (the 9th regressor). A conservative threshold of 
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FWE<.05 was used to define the functional ROI mask. The mask was then used to 

constrain the search volume in all reported group analyses, unless otherwise stated.  
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Results 

The response to the monitoring question at the end of the block showed that 

participants were more likely to say they thought the cue accurately predicted the 

probability of pain. Across all cues, 64% of the responses to the monitoring question 

were “yes”, with the majority of responses also being “yes” to each cue individually.  

To identify areas that adhered to requirement 1 of the adaptive PE (and 

Axiom 1 of the computational PE) the ‘pain outcome’ model was used to identify 

regions that were sensitive to pain outcomes compared to non-pain outcomes. This 

contrast revealed that the anterior and posterior left insula, anterior right insula, 

middle and anterior cingulate cortex, as well as activations in the supramarginal 

gyrus, angular gyrus, supplementary motor cortex, and inferior frontal gyrus met this 

requirement. For completion, the opposite contrast (non-pain outcomes > pain 

outcomes) was also examined, a contrast which could involve psychological relief. 

This analysis did not identify any statistically significant voxels.  

As a manipulation check, we used the ‘pain outcome’ model to examine the 

main effect of pain magnitude (high vs low). The analysis identified peaks in the 

posterior insula bilaterally (Figure 3) corresponding to greater activation to high vs 

low pain. No areas showed greater activation for the delivery of the low pain 

stimulus. 

---- 

FIGURE 3 

---- 

Regarding the main analysis, figures 4A and 4B depict the key main effects: 

the effect of pain magnitude at anticipation, and the effect of pain probability at 

outcome (in a 2*2 factorial design, ‘main effects’ refer to the effect of one factor, 
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collapsing across the levels of the other factor). Figure 4C shows the parameter 

estimates for these main effects at both anticipation and at outcome for a peak insula 

voxel. Figure 4D depicts the key simple effects, which are discussed in more detail 

below (in a 2*2 factorial design, ‘simple effects’ refer to the effect of one factor within 

one level of the other factor). 

To test requirement 2 of the adaptive PE (Axiom 2 of the computational 

model), we examined the main effect of pain probability on the response to the 

delivery of pain, using the ‘pain outcome’ model. The analysis identified a single 

significant peak, in the left dorsal anterior insula (Chang et al., 2013), where 

response to unexpected pain was greater than response to expected pain (Table 3 

and Figure 4B). The effect of probability at outcome was in the same direction (low 

probability > high probability) for each pain magnitude, and that the 90% confidence 

interval excluded zero for both (Figure 4D). We verified this result by constructing 

two new flexible factorial models, one for each pain magnitude (high or low), and 

each with two vectors, one for high and one for low probability. Analysis was limited 

to the significant left dorsal anterior insula cluster. Paired t-tests suggested that the 

probability effect was significant there for high pain (peak X=-30, Y=23, Z=2) at an 

uncorrected p<.05 (FWE<.1), and for low pain (peak X=-30, Y=29, Z=6) at FWE<.05. 

Taken together these results suggest that this region adheres to both Axioms 1 and 

2 of the computational model of PE and requirements 1 and 2 of the adaptively-

coded PE. No area responded more to expected pain than unexpected pain.  

To test requirement 3 of the adaptive PE, the interaction between probability 

and magnitude within the pain outcome model was assessed. No areas exhibited a 

statistically significant interaction effect at outcome between pain magnitude and 

probability, thus suggesting that the left dorsal anterior insula also satisfies 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2021.10.15.464508doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464508
http://creativecommons.org/licenses/by-nc/4.0/


18 

 

Confidential 

requirement 3 of the adaptively-coded PE. A signal that corresponds to the 

computational PE pain signal should take the form of stronger response to 

unexpected pain when it is high magnitude, compared to when it is low (Figure 1). 

Figure 4D shows that in the left dorsal anterior insula peak, the pain magnitude 

contrast of the PE at outcome was (numerically) in the opposite direction. This 

suggests that the failure to find an interaction between the effects of pain magnitude 

and probability at outcome was unlikely to be due to a lack of power. 

Finally, to test requirement 4 we examined the effects of pain probability and 

pain magnitude on the response to chance cues (Table 3), using the ‘pain 

anticipation’ model. The only significant response to the main effect of pain 

magnitude was again observed in the left dorsal anterior insula, where activation was 

stronger for chance cues that signalled high pain, compared to those that signalled 

low pain (Figure 4A and 4C). Thus, this area also satisfied requirement 4 of the 

adaptively-coded PE. Neither the main effect of pain probability nor the interaction 

influenced pain anticipation significantly within the functional ROI mask.  

To summarise the findings in the dorsal anterior insula, Figure 4C illustrates 

that the pain magnitude contrast (light-shaded columns) was significant only during 

anticipation, and that the pain expectancy contrast (dark-shaded columns) was only 

significant during outcome (pain delivery). Figure 4D illustrates that the simple effect 

of pain expectancy at outcome was significant and similar in magnitude both when 

pain was high and when pain was low. This pattern suggests that a region in the 

dorsal anterior insula expresses adaptively-coded pain PE.   

---- 

FIGURE 4 

---- 
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---- 

Table 3 

---- 

 

For completion, we examined whether pain magnitude or probability in 

response to chance cues, or the pain outcomes, activated any additional regions 

outside of the functional ROI mask. For this purpose, we used a conservative 

FWE<.05 for whole-brain search. Anticipating high (vs low) pain activated the right 

hippocampus and the right inferior frontal gyrus. The whole-brain analysis of pain 

outcomes did not uncover any additional activations.  

 

Discussion 

Signal in the left dorsal anterior insula represented adaptively-coded prediction error 

(PE) of pain, defined according to an axiomatic approach such that it should satisfy 

the 4 requirements listed in the Introduction. As expected from a region sensitive to 

pain PE, upon cue presentation, the left dorsal anterior insula responded more 

strongly to the anticipation of high rather than low pain (requirement 4). Additionally, 

and again as to be expected from a region sensitive to pain PE, upon pain delivery, 

the signal in this region was stronger for low-probability (i.e. unexpected) pain 

compared to high-probability pain (requirement 2). Crucially, despite its sensitivity to 

pain magnitude when it was predicted, and pain probability when it was actually 

delivered, this region was insensitive to the magnitude of pain during delivery 

(requirement 3). The pain response signal was similar when either low or high pain 

were delivered, but significantly greater when the pain was unexpected. This result 

suggests that the chance cue scaled the subsequent response to pain PE, such that 
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the dorsal anterior insula responded similarly to the highest-possible pain in the local 

context of the trial. Taken together, this pattern corresponds to the pattern reported 

by Tobler et al. (2005) which established adaptive scaling of prediction error for 

reward. Here we show, for the first time, a similar pattern for pain PEs.  

While the dorsal anterior insula signalled adaptively-coded pain PEs, the 

posterior insula was sensitive to delivered pain intensity. Together, both results 

complement elegant results reported by Geuter and colleagues, where the signal in 

the anterior insula reflected the sum of cued pain expectations and pain PEs, while 

the posterior insula and parietal operculum coded for pain stimulation intensity 

(Geuter et al., 2017). PE is a signed quantity; either reward or pain delivery 

outcomes are considered to cause positive PE, and either omitted reward or omitted 

pain are considered to cause negative PE. In both our study and that of Geuter and 

colleagues, the focus was on positively-signed pain PE. Shih et al (2019) compared 

negative and positive PE for aversive stimuli and presented findings that suggest 

separate neural substrates for each. They found no areas that coded both negative 

and positive PE, but the anterior insula exhibited a higher BOLD response for 

positive PE, as in our study, and the anterior cingulate for negative PE.  Interestingly, 

although they did not observe regions that expressed both positive and negative 

computational PE signal, Shih et al. found that the connectivity of both the insula and 

the ACC with the PAG increased with respect to the PE regardless of its sign. This 

result aligns nicely with Roy et al.’s findings that the PAG expressed the 

computational pain PE, which corresponds to computational reinforcement learning 

models where it is insensitive to local context. 

This study advances understanding of the neural mechanism that serves the 

adaptive coding of pain, which is less comprehensive than our understanding of 
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adaptive coding of reward (Vlaev et al., 2009). Despite evidence that reward is 

coded adaptively, and for shared neural mechanism for adaptively coding monetary 

gain and loss (Nieuwenhuis et al., 2005), it is, in principle, possible that the brain 

does not need to represent pain in an adaptively-coded manner and can instead 

represent all biologically-feasible levels of pain, either because they span a more 

limited range than all possible rewards, or because the evolutionary significance of 

pain, compared to reward, has caused the brain to represent pain more accurately. 

Nevertheless, adaptive coding of pain reflects an influence of pain expectations, and 

there is ample evidence that pain perception is influenced by expectations (Atlas & 

Wager, 2012; Tracey, 2010), that expectations are clinically relevant (Buchel et al., 

2014), that they may exert a stronger impact on pain perception than the noxious 

stimulation itself (Lim et al., 2020) and that many of its detailed characteristics have 

unique influence on the experience of pain (Hoskin et al., 2019; Watkinson et al., 

2013). An understanding of the neural mechanisms of adaptively-coded pain PE is 

important as it can help us harness the cognitive system to decrease pain, as in 

cognitive therapy for chronic pain. 

There is also elegant behavioural evidence for adaptive coding of pain, 

reviewed in the introduction (Vlaev et al., 2009; Winston et al., 2014). The first study 

to examine the neural mechanism of adaptive coding of pain was conducted by 

Leknes et al. (2013). They presented participants with two cues, one that predicted a 

50% probability of either high or moderate thermal pain, and one that predicted a 

50% probability of either low or moderate pain. A comparison of the response to the 

moderate pain stimulation when it followed each cue revealed that activity in the 

insula and anterior cingulate cortex (ACC) was lower when the moderate stimulation 

had been preceded by the cue predicting high pain, suggesting that these regions 
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represented adaptively-coded pain response. However, Leknes et al presented the 

two cues in separate blocks, contrasting the response to the moderate pain across 

the blocks. It is not therefore clear to what extent the activation found might reflect a 

generalised response to the block context, rather than a PE signal specific to the 

presentation of the moderate stimuli. Using a similar procedure, Winston et al (2014) 

found that activity in the lateral OFC, but not the Insula or ACC, reflected an 

adaptively-coded pain response. Although each individual trial in the Winston study 

involved a single pain level, individual blocks only involved two levels of stimuli (to 

create the local context for the PE), again potentially introducing ‘block effects’ to the 

contrasts. Interestingly, when Bauch and colleagues utilised an event-related variant 

of Leknes (2013) block design, they were unable to find any area which produced a 

significant adaptively-coded pain response. Here we used a design that was closer 

to that employed by Tobler et al. (2005), with a specific focus on adaptive coding of 

pain prediction errors, rather than on the scaling of pain value by expectations more 

broadly. This perhaps accounts for why our results differ from those of Winston and 

colleagues. Importantly an event-related methodology was used in the current study, 

meaning that confidence can be taken that the results do not reflect generalisation 

effects. The human neuroimaging literature reports a number of brain regions that 

correlate with computational pain PE, computed according to reinforcement learning 

definitions (Sutton & Barto, 2015), including the ventral striatum, anterior insula, and 

the cingulate cortex (Geuter et al., 2017; Lim et al., 2020; Roy et al., 2014; Seymour 

et al., 2004; Shih et al., 2019). These studies have not used an axiomatic approach 

(Caplin & Dean, 2008), so it is not known whether signal in these regions 

corresponds with all three axioms (Roy et al., 2014), nor whether it expresses 

quantities that are correlated with PE, such as the expected value of pain, shown to 
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activate the ventral striatum and involve the anterior insula (Brooks et al., 2010; 

Palminteri et al., 2012). As in the current study, Geuter et al found activation 

consistent with Pain PE signals in the anterior insula, using heat rather than 

electrical pain stimulations. In that study the PE could not be adaptively coded 

because participants were informed that they could receive the least favourable, 

highest stimulation intensity in each trial, with the result that in the local context of 

each trial was always the same. This was avoided in the current study because while 

the cue signalled that the high stimulation intensity was the least favoured option in 

half the trials, in the other half, it signalled that the low pain stimulation was the least 

favoured option. The cue therefore created a local context, which ensured the 

ensuing PE signal could be adaptive scaled. Our results suggest that the PE found in 

the anterior insula by Geuter et al, may be subject to adaptive scaling. 

The left anterior insula has been long thought to be important for the 

representation of learning. It has been found to express levels of deviation from 

expectation (Fouragnan et al., 2018), and correlate with PE for motivationally neutral 

perceptual stimuli (Nazimek et al., 2013). In terms of aversive learning, Palminteri 

and colleagues (Palminteri et al., 2012) were able to establish, using patients with 

lesions in the anterior insula, that the area is involved in updating the value of loss-

predicting cues. The anterior insula is also associated with signalling the behavioural 

relevance of information, for example providing early responses to facial stimuli 

according to the relevance of the emotion expressed upon it (Frot et al., 2022). Since 

unexpected stimuli are likely to be more behaviourally relevant than expected ones, 

there is a natural overlap between signalling PE and behavioural relevance. 

Nevertheless, in the current study the response of the anterior insula was no 

different when unexpected pain was of low compared to high magnitude. As higher 
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pain is more behaviourally relevant, this suggests that the results of the current study 

cannot solely be attributed to the insula’s function in signalling behavioural 

relevance. 

One potential shortcoming of the experimental design is that it did not include 

a behavioural task that would allow responses to be recorded on each trial. This 

prevented an assessment of the behavioural impact of PE. Trial-by-trial pain ratings 

were not requested firstly because they were not necessary for the research 

question, and secondly to ensure that cognitive processes associated with the 

response to questions did not interact with the neural responses to outcomes. The 

prediction error signal is a computational quantity and its relevance to brain function 

is evidenced in a large number of electrophysiological and imaging studies (Rutledge 

et al., 2010; Schultz, 2016). Although PEs are essential for learning, whether they 

have any immediate behavioural impact is unclear. Indeed recent research has 

demonstrated that it is pain expectations, rather than PE, that influence pain 

perception during probabilistic processing (Nickel et al., 2022). Nevertheless, future 

studies may benefit from collection of further behavioural data, which could be useful 

for the purpose of manipulation check. For example, trial-by-trial pain ratings would 

help assess whether expectations that are purely focused on the likelihood of pain 

influence its experienced intensity. 

At the end of each block participants were required to signal whether they 

thought the probabilities reflected on the chance cues corresponded to the frequency 

of pain that was actually delivered. This task was included to ensure participants 

paid attention to the cue-outcome relationships, and thus engaged with the 

probabilistic nature of the paradigm. Only a modest majority of these reports 

confirmed belief that the cues represented outcome likelihood accurately. 
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Participants may have responded in this way because they believed that the 

frequency of outcome did not conform exactly with the probabilities shown, even 

though in reality, it did. Future studies would benefit from using a more focussed 

task, for example asking participants to estimate the frequency with which each cue 

was followed by a stimulation. It would be interesting to see whether participants’ 

responses reveal systematic bias, for example a belief that the frequency of 

unexpected pain was higher than 33%.  

Future research could also utilise a wider variety of probabilities. The current 

research only involved two levels of probability, High and Low. Although this was 

sufficient to test requirements 2 and 3 of the adaptively-coded PE, the use of more 

probability levels may increase the sensitivity of these tests. The use of more 

probability levels may also allow an assessment of the exact mathematical 

relationship between probability and PE and what difference in probability is required 

to produce a significant difference in PE. 

A shortcoming of the experimental design was the use of the outcome period 

for the no-pain conditions as a baseline for the identification of the pain-sensitive 

regions. Although this contrast satisfies the first axiom of the computational PE, it is 

potentially contaminated with relief that might have been experienced on the trials 

where no stimulation was delivered. However, the opposite contrast (no pain >pain) 

did not reveal any significant results, suggesting that relief was not strongly 

experienced in the regions of interest. Furthermore, the other contrasts performed in 

the analyses were not associated with relief, such as the main effects of pain 

probability or magnitude. Therefore, we do not believe this shortcoming impacts the 

results presented. The region identified here as important for adaptive pain PE, the 
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anterior insula, is widely considered to be involved in pain processing (Garcia-Larrea 

& Peyron, 2013).  

In summary the results of the current research suggest that while the left 

anterior insula is sensitive to many aspects of aversive learning, and to quantities 

associated with the computational PE signal for pain, it may better represent an 

adaptively-coded pain prediction error. 
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Figure 1. Theoretical levels for computational and adaptively-coded pain PE 

signals based on the current experimental design. 

The calculation of the values is given in Table 1. The left panel depicts the 

computational PE signal. All else held equal, computational PEs will be larger when 

pain is of high (vs low) magnitude and will also be larger when the pain is 

unexpected (vs expected). The right panel depicts the adaptively-coded PE signal. 

As with the computational PE, the adaptively-coded PE is higher when the pain is 

unexpected (vs expected). However, given the experimental design used here, the 

adaptively-coded PE will scale expectations from the cues such that either high or 

low pain are recoded as being the top of the pain magnitude range. Thus, a signal 

that expresses adaptively-coded PE will not be sensitive to pain magnitude in the 

current experiment.  

Figure 2. Graphical display of the timeline of a single trial.  

Participants saw a chance cue, where the non-grey portion signalled which pain 

magnitude could be delivered in the trial and with what probability (33% or 67%). 

Two non-grey colours (blue and yellow) were used to signal the high and low pain 

magnitudes. The figure depicts the cues one participant saw in the high pain 

condition (colours were counterbalanced across participants). Participants then saw 

an outcome indicator, where colours reflected whether the stimulation was, in fact, 

delivered. Fully coloured outcome indicators signalled pain delivery, while grey 

outcome indicators signalled pain omission.   

Figure 3. Response to pain magnitude, high > low pain.  
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The sagittal slices (right panel: X=-39, left panel: X=39) show that in the bilateral 

posterior insula, signal was larger when the pain delivered was of high magnitude, 

compared to when it was low, FWE<.05.  

Figure 4. Effects of pain probability and magnitude on pain anticipation and 

pain outcome in the left anterior insula.  

A. Effect of pain magnitude on pain anticipation, with those clusters surviving 

correction for multiple comparison (FWE<.05) circled. Analysis of the pain 

anticipation model shows that signal in the left dorsal anterior insula (X=-30, 

Y=29, Z = 2) was higher when the pain cue signalled high pain, compared to 

when it signalled low pain. 

A. Effect of pain expectancy on pain outcome, with those clusters surviving 

correction for multiple comparison (FWE<.05) circled.  Analysis of the pain 

outcome model shows that signal in left dorsal anterior insula (X=-30, Y=26, Z 

=2) was higher when delivered pain was unexpected (33% likely), compared 

to when it was expected (66% likely). 

B. Parameter estimates of the main effects of pain probability (dark bars) and 

pain magnitude (light bars) in response to the cue (anticipation: left) and pain 

delivery (outcome: right) in the left dorsal anterior insula (X=-30, Y=26, Z =2), 

FWE<.05. This region was responsive to the magnitude of pain when 

expectations were set at the time the chance cue was presented (high pain 

cue > low pain cue), but not to the magnitude of experienced pain at outcome 

(null main effect of pain magnitude at outcome). During pain delivery the 

same region was responsive to pain probability (unexpected pain > expected 

pain). Error bars represent the 90% confidence interval. 
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C. Simple effects of pain probability at cue (anticipation: left) and outcome (right) 

in the left insula (X=-30, Y=26, Z =2) when the pain magnitude was high (dark 

bars) or low (light bars). Error bars represent the 90% confidence interval.  

* 

p<.

05, 

** 

F

W

E<.

05 

in 

a 

pai

red t-test (see text). 

TABLES 
 

Table 1. Example of the calculation of computational and adaptively-coded PE. 

 
 
 

 Cue Outcome 
Trial type Cued 

pain 
magnitu

de 

Cued 
pain  

probabili
ty 

Expect
ed pain 

Delivere
d pain 

Computatio
nal PE 

Adaptivel
y-coded 

PE 

Low pain, 
low 

probabilit
y 

4 (low) 0.33 1.32 4 2.68 0.67X 

High pain, 
low 

probabilit
7 (high) 0.33 2.31 7 4.69 0.67X 
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Ta
ble 
1. 
sh
ow
s 
the 
pre
dic
tio

n error (PE) computation for trials where the stimulation is delivered. The pain 
magnitude was calibrated for each individual using a 1-10 scale where 4 was the 
pain threshold and 7 was the maximum pain tolerance level. Pain magnitude and 
pain probability were cued using visual symbols depicted in Figure 2. Expected pain 
was computed by multiplying magnitude and probability, according to the standard 
reinforcement learning procedure and following from expected utility theory. The 
computational PE was computed by subtracting expected pain from delivered pain 
magnitude. In the current experiment only one magnitude of pain could be delivered 
in each trial. This meant that, regardless of its magnitude, the pain stimulation was 
always the most adverse outcome possible within the context of each trial. Since the 
adaptively-coded PE is sensitive to the local context of the trial, the magnitude of the 
potential stimulation would not therefore impact the adaptively-coded PE in this 
paradigm. Instead, the adaptively-coded PE would be proportional to the probability 
of delivery for the sole pain level that was possible within the trial (computed as 1 – 
probability). This is multiplied by ‘X’, which signifies an unknown scalar representing 
the participant’s sensitivity to pain expectation. For the purposes of plotting the 
adaptively scaled PE in Figure 1, X has nominally been set to 5.5 (the average of the 
two pain levels delivered).  

  

y 

Low pain, 
high 

probabilit
y 

4 (low) 0.67 2.68 4 1.32 0.33X 

High pain, 
high 

probabilit
y 

7 (high) 0.67 4.69 7 2.31 0.33X 
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Table 2. Sample characteristics (‘Range’ shows the lowest and highest actual 
scores, ‘Possible Range’ shows the lowest and highest possible scores). 

 

Scale Mean 
Standard 
Deviation Range Possible Range 

State 
anxiety 36.74 10.93 20-59 20-80 
Trait 
anxiety 41.63 11.16 23-63 20-80 
Impulsivity  67.63 12.26 50-91 30-120 
BAS-Dr 12.16 1.46 10-16 4-16 
BAS-FS 13.00 2.31 7-16 4-16 
BAS-RR 17.26 2.54 9-20 5-20 
BIS 19.89 4.74 12-28 7-28 
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Table 3. Differences in BOLD signal change found in the main effects from the 
ANOVAs for the ‘anticipation’ and ‘outcome’ models. 

Contrast  p FWE K p 
uncorr 

T x y z Label 

Pain 
magnitude 
@outcome: 
high>low  

<0.001 86 <0.001 7.50 -36 -19 10 Posterio
r insula 
L 

<0.001 4 <0.001 5.63 -39 -7 -6 Posterio
r insula 
L 

<0.001 8 <0.001 5.53 39 2 -10 Posterio
r insula 
R 

Pain 
magnitude 
@anticipatio
n: high>low 

= .019 44 <0.001 3.92 -30 29 2 Anterior 
insula L 

Pain 
probability 
@outcome: 
low>high 

= .035 14 <0.001 3.69 -30 26 2 Anterior 
insula L 

Table 3. The table shows differences in BOLD signal change found in the main 
effects from the ANOVAs for the ‘anticipation’ and ‘outcome’ models, inclusively 
masked by the contrast pain delivered>pain omitted. Both models involved the 
factors of pain magnitude (high, low) and probability (high, low). Only activations that 
survived the family-wise error (FWE) threshold of <=.05 are included. We entered as 
dependent variables the T map for each subject, either during the outcome delivery 
or the chance cue, averaged across sessions. The activations relating to the first 
contrast (pain magnitude @ outcome) are also shown in Figure 3, while the 
activations in the second and third contrasts are shown in Figures 4a and b 
respectively. Note that a more lenient threshold was used for voxel detection in the 
figures, in comparison to the strict FWE threshold, which corrects for multiple 
comparisons, used in this table. Clusters therefore appear in the figure which do not 
appear in this table. 
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