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Abstract 15 

A persistent two-month long outbreak of Ranavirus in a natural community of amphibians contributed to 16 
a mass die-off of gopher frog tadpoles (Lithobates capito) and severe disease in striped newts 17 
(Notophthalmus perstriatus) in Florida. Ongoing mortality in L. capito and signs in N. perstriatus 18 
continued for five weeks after the first observation. Hemorrhagic disease and necrosis were diagnosed 19 
from pathological examination of L. capito tadpoles. We confirmed detection of a Frog Virus 3 (FV3)-20 
like Ranavirus via quantitative PCR in all species. Our findings highlight the susceptibility of these 21 
species to Rv and the need for long-term disease surveillance during epizootics.   22 

 23 

Introduction 24 

Emerging wildlife diseases are increasingly associated with amphibian mass mortalities and global 25 
amphibian declines (Rachowicz et al. 2006), and have led to heightened awareness and surveillance of 26 
amphibian pathogens. Iridoviruses in the genus Ranavirus (Rv) and the amphibian chytrid fungus 27 
Batrachochytrium dendrobatidis (Bd) are two emerging pathogens that are widely associated with 28 
amphibian mass mortality events (Miller et al. 2011; Fisher and Garner 2020). Outbreaks often result in 29 
high mortality of sensitive life stages or species, while tolerant species and life stages can serve as 30 
pathogen reservoirs (Gray et al. 2009; Schloegel et al. 2010). In the United States (US), pathogen-31 
mediated mass mortalities and declines have been primarily recorded in larval amphibians in the northern 32 
and western regions of the country (Green et al. 2002). The Southeastern Coastal Plain of the US harbors 33 
the highest diversity of amphibians in North America (Noss et al. 2015), and although Rv and Bd have 34 
been detected in the region, reports of mortality events and their effects are lacking.  35 

We report here the findings of a two-month long outbreak of Rv in a natural amphibian community using 36 
pathological examination of moribund tadpoles and confirmed pathogen presence via quantitative PCR 37 
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(qPCR). We present the first report of Rv-induced mass mortality and morbidity in two Coastal Plain 38 
endemic amphibians: the gopher frog (Lithobates capito) and the striped newt (Notophthalmus 39 
perstriatus). Both species have histories of range-wide declines (Jensen and Richter 2005; Farmer et al. 40 
2017), and are listed by the Florida Fish and Wildlife Conservation Commission (FWC) as species of 41 
greatest conservation need (FWC 2019).  42 

We first observed mass-mortality of L. capito tadpoles on 23 January 2021 at One Shot Pond, in Ordway-43 
Swisher Biological Station (OSBS), Putnam County, Florida. We observed ongoing die-offs during a 44 
second visit to the pond on 7 March 2021. One Shot Pond is a semi-permanent fishless wetland that 45 
provides important breeding habitat for 16 amphibian species, and is one of few wetlands at OSBS that 46 
supports both L. capito and N. perstriatus populations (LaClaire 1995; Johnson 2002).  47 

During both surveys, we captured amphibians by dipnet or hand and stored them in individual plastic 48 
bags for processing. Each amphibian was examined to confirm species identification and detect gross 49 
symptoms of disease. For pathogen sampling, we swabbed the oral disc and vent of tadpoles following 50 
procedures established by (Gray et al. 2012) and swabbed caudates and post-metamorphic anurans 51 
following standard protocols for amphibian disease sampling (Hyatt et al. 2007). We collected 19 dead 52 
and moribund L. capito tadpoles for histopathological analysis and fixed them in 70% ethanol. We 53 
estimated over 500 L. capito tadpoles at Gosner stages 28-31 (Gosner 1960) had died between the two 54 
events, and most living tadpoles of the same age class showed symptoms of Rv infection, such as edema 55 
and hemorrhage (Fig. 1A-B). We did not observe mortality in N. perstriatus, however all newts exhibited 56 
erythema, hemorrhage, or necrosis (Fig. 1C-D). L. capito tadpoles at Gosner stages 23-25 (hatchlings) 57 
were abundant and did not show any clinical signs of infection, nor did any southern cricket frogs (Acris 58 
gryllus) around the pond perimeter.  59 

All 19 ethanol-fixed tadpoles were briefly decalcified in 0.5 M ethylenediamine tetraacetate acid (EDTA), 60 
pH 8.0 for ~24 h before sagittal sectioning and routine histopathologic processing and staining. 61 
Microscopic findings included necrosis of the genal glomeruli and interstitium (16/19 tadpoles, Fig. 2A), 62 
spleen (3/19 tadpoles, Fig. 2B), and liver (2/19 tadpoles) with cutaneous and subcutaneous hemorrhage 63 
(4/19 tadpoles) and vascular inflammation (2/19 tadpoles). In a subset of tadpoles (8/19), there were 64 
basophilic to amphophilic, cytoplasmic viral inclusion bodies present in hepatocytes (Fig. 2C). Swab 65 
samples were tested for FV3-like Rv and Bd using qPCR assays following protocols established by 66 
(Allender et al. 2013) and (Boyle et al. 2004), respectively. We mostly detected severe Rv infections in L. 67 
capito tadpoles, paedomorphic and recently metamorphosed N. perstriatus, and low to moderate 68 
infections in adult A. gryllus from both sampling events (Fig. 3). Species with disease signs had a higher 69 
proportion of individuals with intense Rv infections (>105+). We detected Bd only in 10 A. gryllus, nine 70 
of which were also co-infected with Rv (Table 1).   71 

Rv outbreaks can impact amphibian population dynamics by dampening recruitment, and pathogen 72 
persistence in the environment can negate recruitment entirely (Petranka et al. 2007), facilitating the local 73 
extinction of rare species (Earl et al. 2016). To our knowledge, reports of Rv outbreaks in natural 74 
populations of L. capito have not been published, but experimental infections of L. capito resulted in 75 
>90% mortality of tadpoles (Hoverman et al. 2011). Our observations show similar susceptibility under 76 
natural conditions, providing support for disease-related declines. Ongoing die-offs of tadpoles suggest 77 
that older cohorts may serve as vectors to younger cohorts through viral shedding, direct contact, or 78 
necrophagy (Harp and Petranka 2006; Peace et al. 2019). 79 

As a multi-host pathogen of ectotherms, Rv outbreaks in amphibians can spread to the wider ectothermic 80 
community (Brenes et al. 2014). Many chelonians are susceptible to Rv, including federally protected 81 
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gopher tortoises (Gopherus polyphemus) (Johnson et al. 2008; Cozad et al. 2020), and Rv outbreaks in 82 
chelonians have been attributed to pathogen spillover from sympatric amphibians (Brunner et al. 2015). L. 83 
capito are closely associated with G. polyphemus and are one nine amphibians known to cohabitate in 84 
tortoise burrows (Jackson and Milstrey 1989). At One Shot Pond there are >10 G. polyphemus burrows 85 
within 30 meters of the pond, and we have observed L. capito calling from burrow entrances. It is 86 
possible that Rv outbreaks can spill over to G. polyphemus and other ectothermic commensals by adult L. 87 
capito moving between ponds and burrows during breeding.     88 

In contrast to L. capito, natural populations of N. perstriatus have not been extensively surveyed for 89 
disease, but Rv is a common pathogen of the closely related and sympatric eastern newt (N. viridescens) 90 
(Rothermel et al. 2016). N. perstriatus have experienced enigmatic declines and extirpations throughout 91 
their range in Florida and Georgia (Farmer et al. 2017), and repatriation efforts have been unsuccessful 92 
(Means et al. 2017). Experimental Rv exposure of captive reared N. perstriatus resulted in high mortality 93 
of aquatic and recently metamorphosed stages (Means et al. 2016). Our observations suggest that high 94 
pathogen pressure could result in N. perstriatus declines, and persistent disease may be inhibiting the 95 
recovery of the species. Our results provide evidence of disease-related risks in populations, a missing 96 
element that can strengthen the petition to list N. perstriatus under the Endangered Species Act (USFWS  97 
2011; 2016). 98 

In species with complex life histories, densities and life-stages fluctuate seasonally and can result in 99 
recurring epidemics and pathogen persistence through transmission between life stages (Brunner et al. 100 
2004). N. perstriatus have complex life history strategies that include facultatively paedomorphic and 101 
triphasic developmental routes, and spend three of five life stages in water (Johnson 2002). These 102 
findings support our ongoing studies where we have found that paedomorphic life stages are more 103 
susceptible to Rv and experience higher disease burdens than other life stages (Hartmann et al. in 104 
preparation). We hypothesize that pathogen pressure in aquatic stages is density-dependent. Sustained Rv 105 
infections in metamorphosing newts may allow them to act as intraspecific reservoirs when they return to 106 
ponds as adults to breed. Long-term Rv persistence may select against the paedomorphic developmental 107 
route in N. perstriatus, which would have profound effects on population structure and annual recruitment 108 
as paedomorphic stages undergo accelerated maturation and reproduction (Dodd 1993). 109 

Our findings also identify tolerant hosts that may act as reservoirs to more susceptible species (Brunner et 110 
al. 2004). A. gryllus are often the most abundant amphibian at ponds within OSBS (personal observation), 111 
occupy a variety of habitats, and can easily disperse between water bodies within OSBS (Dodd 1996). 112 
Because we did not find disease signs in A. gryllus, we hypothesize that high tolerance may allow Rv to 113 
persist in these hosts. Estimating dispersal rates for this species can help us predict pathogen spread 114 
across habitat types and amphibian assemblages.  115 

Despite the diversity of amphibians in Florida and history of recent declines, reports of amphibian die-116 
offs in the state are rare and few have been published (Landsberg et al. 2013). Although both Rv and Bd 117 
have been detected, prior reports of mass mortality events in Florida have been attributed to Perkinsea 118 
parasites (Isidoro-Ayza et al. 2017). Here we provide the first report of a mass mortality event attributed 119 
to Rv in L. capito. The confirmation of Rv infection, resulting disease, and mass mortality pose major 120 
concerns for Florida’s amphibian and reptile populations, particularly specialist species with limited 121 
ranges. Both L. capito and N. perstriatus are habitat specialists in Florida threatened by habitat loss (Enge 122 
et al. 2014), and it is in the interest of state and federal wildlife agencies to further explore the 123 
implications that emerging pathogens have on management strategies. Future work must consider the role 124 
of emerging pathogens in past and continued amphibian declines. Current conservation plans must 125 
include pathogen mitigation strategies to ensure population survival and success of repatriation programs.  126 
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Figure 1. Gross symptoms of disease in Ranavirus-infected amphibians at One Shot Pond. (A-B) 242 
Moribund gopher frog (Lithobates capito) tadpoles showing hemorrhages (arrows) and discoloration 243 
(triangles). (C-D) Paedomorphic striped newts (Notopthalmus perstriatus) showing hemorrhage and 244 
necrosis (arrows), and erythema (triangle) of the mouth.  245 
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Figure 2. Histologic evidence of Ranavirus infection in gopher frogs (Lithobates capito). (A) Renal 256 
glomerular necrosis [Bar = 50 microns]. (B) Splenic necrosis [Bar = 50 microns]. (C) Cytoplasmic 257 
ranaviral inclusions highlighted by black arrows [Bar = 20 microns]. 258 
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Figure 3. Prevalence and intensity of Ranavirus infections in three amphibian species during two 266 
sampling events at One Shot Pond at the Ordway-Swisher Biological Station.  267 
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 270 
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 272 

 273 

Table 1. Species, life stage (A = adult, L = larva, P = paedomorph, MP = metamorphosing paedomorph) and 
prevalence of infection by Rv and Bd and the average Rv intensity combined from the two sampling events. 
Species Life 

Stages 
Detected 

Number 
sampled 

Rv+ (Prev.) 
 

Bd+ (Prev.) 
 

Bd+/Rv+ 
(Prev.) 

Avg. Rv 
intensity (viral 
copies) 

Acris gryllus A 22 17 (77.2%) 10 (45.5%) 9 (40.9%) 844.15 
Lithobates capito L 26 26 (100%) 0 (0%) 0 (0%) 2.3 x 106 
Notophthalmus perstriatus P, MP 13 13 (100%) 0 (0%) 0 (0%) 1.2 x 106 

       
Total  61 54/61 (88.5%) 10/61 (16.4%) 9/61 (14.8%) 1.3 x 106 
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