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Abstract 

The functional and molecular sources of behavioral variability in mice are not fully understood. As a 

consequence, the predominant use of male mice has become a standard in animal research, under the assumption 

that males are less variable than females. Similarly, to homogenize genetic background, neuroscience studies have 

almost exclusively used the C57BL/6 (B6) strain. Here, we examined individual differences in performance in the 

context of associative learning. We performed delayed eyeblink conditioning while recording locomotor activity in 

mice from both sexes in two strains (B6 and B6CBAF1). Further, we used a C-FOS immunostaining approach to 

explore brain areas involved in eyeblink conditioning across subjects and correlate them with behavioral 

performance. We found that B6 male and female mice show comparable variability in this task and that females 

reach higher learning scores. We found a strong positive correlation across sexes between learning scores and 

voluntary locomotion. C-FOS immunostainings revealed positive correlations between C-FOS positive cell density 

and learning in the cerebellar cortex as well as multiple, previously unreported extra-cerebellar areas. We found 

consistent and comparable correlations in eyeblink performance and C-fos expression in B6 and B6CBAF1 females 

and males. Taken together, we show that differences in motor behavior and activity across brain areas correlate with 

learning scores during eyeblink conditioning across strains and sexes. 
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Introduction  

Individuality is continuously shaped throughout life by interactions between our genes and the environment. 

Our behaviors, emotions and cognitive functions are distinct and unique characteristics that differentiate ourselves 

from the rest of the population. In humans, these are known as personality traits and have been extensively studied 

in the field of psychology. Although some components of animal behavioral variability have been described, 

questions regarding other sources that could evoke differences in behavior are still unanswered (Pfaff, 2001; Bucán 

and Abel, 2002; Tye et al., 2011; Leung and Jia, 2016).  

For example, female mice have been considerably under-investigated in neuroscience due to the 

presumption that hormonal fluctuations caused by the estrous cycle might introduce non-comparable variability 

across sexes (Meziane et al., 2007). However, the underrepresentation of female rodents in research has gained 

attention in recent years. Meta-analysis in rats and mice show that females and males exhibit comparable variability 

across behavioral, morphological and physiological traits, and that for most traits, female estrous cycle does not 

need to be considered (Simpson and Kelly, 2012; Becker et al., 2016). Studies have also shown that, although 

variability is comparable between sexes, there are differences when it comes to performance during certain 

behaviors and learning paradigms. Female and male mice show sex-specific strategies in locomotion adaptation, 

reward learning and spatial orientation and learning (Konhilas et al., 2004; Bettis and Jacobs, 2009; Hendershott et 

al., 2016; Grissom et al., 2018; Prawira, 2019). 

In addition, the development of inbred mouse strains was initially intended to homogenize the genetic 

background in order to increase comparability between animals and increase the power of studies (Festing, 1999). 

However, the current golden standard to keep mice exclusively on a C57BL/6 background (further referred to as 

B6) limits the generalization of findings (Rivera and Tessarollo, 2008; Sittig et al., 2016). When it comes to inter-

strain variability, behavioral differences have been reported, yet, it has not been systematically investigated across 

commonly used paradigms (Faure et al., 2017; Arnold and Newland, 2018).  

Together, the limited knowledge on the sources of behavioral heterogeneity might lead to assumptions, 

which introduce experimental design bias (Åhlgren and Voikar, 2019). Hence, gaining a deeper understanding of 

the sources of behavioral variability could give us indications on how to interpret data and ensure better 

reproducibility across laboratories. 

In order to study how sex and strain influence mouse behavior and brain activity, a reliable and controlled 

paradigm is needed. We investigated this in the context of delayed eyeblink conditioning. Eyeblink conditioning is 

a cerebellar-dependent associative learning paradigm, in which an initially neutral, conditioned stimulus (CS, a 

flashing light), becomes predictive of an unconditioned stimulus (US, an air-puff to the cornea), which elicits a 

blink. The paradigm consists of pairing the CS with the US; over time an association is formed where blinking is 

triggered by the CS alone. The newly learned association is called conditioned response (CR) (Gormezano et al., 
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1962).(Fig. 1A, B). There is limited knowledge on performance differences due to sex in eyeblink conditioning. 

Studies suggest that, in humans, children show differences in learning delayed eyeblink conditioning that persist 

throughout adulthood. Girls show more CRs in the first five days of learning compared to boys, and women show 

a continuous increase in CRs compared to men (Löwgren et al., 2017). In rodents, the literature presents 

contradictory findings and sex differences in eyeblink conditioning remain to be further studied. For example, in 

rats, stress seems to enhance eyeblink conditioning in males but hinders learning in females (Wood and Shors, 

1998). However, in rabbits, males and females show similar conditioning profiles but females seem to adapt faster 

to stress (Schreurs et al., 2018). Finally, in mice, females show increased CRs compared to males in the first five 

days of learning trace conditioning, a different form of eyeblink training where the CS and US are separated from 

each other by a delay period (Rapp et al., 2021).  

 Studies have shown that this form of associative learning most likely relies on Purkinje cell capacity to 

precisely time the CS signals coming from the pons via parallel fibers and the CS information from the inferior 

olive via climbing fibers (Heiney et al., 2014a; ten Brinke et al., 2015). The CR signal leaves the cerebellum via the 

interposed nucleus, which ultimately connects to the muscles controlling the eyeblink reflex (Gao et al., 2016; ten 

Brinke et al., 2017). Several cerebellar areas modulating eyeblink conditioning have been identified in mice; lobule 

VI in the vermal region and crus I and simplex in the hemispheric region (Heiney, Kim, et al., 2014; Gao et al., 

2016). Inactivation of lobule VI and crus I during development causes deficits in learning, indicating a crucial role 

in eyeblink conditioning (Badura et al., 2018). Beyond the pontocerebellar and olivocerebellar systems, little is 

known about the potential involvement of other brain areas in eyeblink conditioning (Boele et al., 2010; Ruigrok, 

2011; D’Angelo et al., 2016; Kratochwil et al., 2017). The amygdala has been proposed to have a role in associative 

learning, given its implication in fear conditioning and arousal (Lee and Kim, 2004). Specifically, lesions in the 

amygdala during the first days of training highly impair learning, while lesions in later stages do not appear to affect 

learning (Lee and Kim, 2004).  

Although learning is modulated by analogous brain circuits across mice, animals that deviate from the group 

mean and do not reach proficient learning scores are commonly classified as outliers (Osborne and Overbay, 2004; 

Rousselet and Pernet, 2012; Fonnesu and Kuczewski, 2019). This severely limits our understanding of behavioral 

variability. Possible mechanisms underlying learning differences could be arousal levels and locomotor activity, 

which both influence cortical function (McGinley et al., 2015; Vinck et al., 2015; Williamson et al., 2015), or stress 

levels which can affect neuronal firing in the deep cerebellar nuclei (DCN) and hippocampus (Joëls, 2009; 

Schneider et al., 2013). In the cerebellum, although locomotion modulates activity in the cortex, the relevance of 

this modulation is still not fully understood (Ozden et al., 2012; Hoogland et al., 2015; Powell et al., 2015). During 

eyeblink conditioning, imposed locomotor activity enhances learning by increased activation of the mossy fiber 

pathway to the cerebellar cortex (Albergaria et al., 2018). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.15.464518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464518
http://creativecommons.org/licenses/by-nc/4.0/


 

5 
 

In this study we investigate the effect of sex in behavioral variability by employing eyeblink conditioning 

and voluntary locomotion to quantify behavioral differences in B6 mice. We explore brain regions that may have a 

modulatory role in eyeblink conditioning by utilizing C-fos expression as a proxy for neural activity during learning. 

Finally, we examine eyeblink learning profiles and C-fos expression in B6CBAF1 mice. 

 

Results 

B6 female and male mice show comparable variability in eyeblink conditioning and  females reach higher learning 

scores  

To study differences in learning profiles between sexes, we performed delayed eyeblink conditioning 

experiments with B6 females (n = 14) and males (n = 14). First, we habituated the animals to the set-up for 

increasing periods of time over five days to decrease anxiety levels and optimize training. Next, we subjected mice 

to a 5-day training paradigm in order to capture behavioral variability in the first stages of learning. This training 

length was selected considering that animals show the most variability within the first days of acquisition, start 

showing reliable CRs in day four/five and eventually plateau during the last 5 days of training (Heiney et al., 2014b; 

Giovannucci et al., 2017). Our aim was to compare variability between males and females at the beginning of 

learning and to use C-FOS immunostainings as a proxy for neural activity to identify possible eyeblink-related 

areas. Evidence suggests that C-FOS protein greatly increases after exposure to novel objects, surroundings or 

stimuli, while continuous, long-term exposure to persistent stimuli returns C-fos expression to basal levels (Joo et 

al., 2015; Gallo et al., 2018; Bernstein et al., 2019). Therefore, we performed a 5-day training paradigm instead of 

the standard 10-day acquisition training. 

The blue LED light (conditioned stimulus, CS) was triggered 250 ms prior to the puff to the cornea 

(unconditioned stimulus, US) in paired trials and the two stimuli co-terminated (Fig. 1A). Sessions consisted of 20 

blocks of 12 trails each (1 US only, 11 paired and 1 CS only). Eyelid movements were recorded with a high-speed 

camera. Mice learned the association between the stimuli progressively and developed a gradually increasing 

conditioned response (CR) (Fig 1A, 1B). Males and females had comparable learning profiles, and the variances 

during training sessions were not significantly different between sexes (F-test for two sample variances in CR 

amplitude of paired trials, F = 3.66, p = 0.11). In CS only trials, females showed a slight increase in CR percentage 

on session four that culminated with a 60% CR responses in session five opposed to 40% in males (two-way 

ANOVA repeated measures for sex and sessions: sex effect: F(1,26) = 1.461, p = 0.237, interaction sex and session: 

F(4,104) = 4.01, p  = 0.02, Cohen’s d session five: 0.88 ) (Fig. 1C). The CR amplitude (measured as the response 

normalized to UR max amplitude = 1) during CS trials was significantly higher in females compared to males (two-

way ANOVA repeated measures for sex and sessions: sex effect: F(1,26) = 6.109, p = 0.0203, interaction sex and 
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session: F(4,104) = 5.12, p = 0.0008, Cohen’s d session five: 0.93) (Fig. 1D). On the last session of training, females 

reached an average amplitude of 0.55 while males reached an average of 0.33 (Fig. 1E). Overall, these results show 

that male and female mice show comparable variance in eyeblink conditioning, but females reach higher learning 

scores in a 5-day training paradigm. 

 

Learning scores correlate with spontaneous locomotor activity 

 

We next asked whether mice show behavioral differences in voluntary locomotor activity during training. 

We investigated whether higher learning scores would correlate with higher spontaneous locomotor activity. For 

this purpose, we added infrared cameras to the eyeblink setups to record mice body movements during eyeblink 

sessions. The cameras were placed at the right back corner of the box, allowing a wide recording angle to capture 

Figure 1: B6 female and male mice show comparable variability in eyeblink conditioning and females reach higher learning 

scores. A) Experimental setup. Mouse with implanted headplate is head-fixed on top of a freely rotating wheel. A blue light 

(conditioned stimulus, CS) is presented 250 ms before a puff (unconditioned stimulus, US) to the same eye. In a trained mouse, 

the CS produces an anticipatory eyelid closure (conditioned response, CR) followed by a blink reflex triggered by the US 

(unconditioned response, UR). B) Paired trails average traces in females and males over training sessions. The CR progressively 

develops due to the CS-US paring. C) CR percentage in CS only trials over training sessions. Purple: females, green: males. 

Shaded area: sem. D) CR amplitude in CS only trials over training sessions (two-way ANOVA for sex and sessions: sex effect: 

F(1,26) = 6.109, p = 0.0203) Shaded area: sem. E) Average response in CS only trials in the last session of training. Purple: 

females (n=14), green: males (n=14). Shaded area: std. 
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whole body movements (Fig. 2A). We recorded videos of full training sessions for each mouse, which were later 

analyzed offline.  

To track different body parts and get a meaningful movement output, we used DeepLabCut (DLC), a 

software for automated animal pose tracking (Mathis et al., 2018) (Materials and Methods; Movement analysis). 

This approach allows movement tracking without utilizing physical markers on the body that can hinder natural 

movement. We tracked 5 body parts: tail base, hip, knee, right back paw and nose (Fig. 2A). After training and 

refining the deep neural network, videos were analyzed to detect body parts in each video frame. The spatial 

coordinates of the different body parts during a training session were then used to calculate movement parameters. 

After confirming normal distribution of the spatial coordinates per body part over training sessions, we 

performed the Grubbs’s test for outlier removal to discard possible tracking errors. Animals were head-fixed on top 

of the wheel, hence, Y position was similar between both sexes (Fig 2. B,C). However, we observed differences in 

X position across the sexes (the right back paw and knee boxplots do not overlap with the hip and tail ones in 

females, while in males they do). This indicates a tendency in males to rotate their body axis from left to right, 

which causes the hip and tail x position to fluctuate more compared to females (Fig 2. B,C). We selected speed of 

the right back paw as a proxy for general locomotion behavior on further analysis.   

Animals increased their speed on the wheel during training, and both females and males had comparable 

variances (F-test for two sample variances in speed: F = 0.58, p = 0.305). We found that females moved significantly 

faster than males during learning, reaching an average speed of 31 cm/s compared to males that reached 24 cm/s 

(two-way ANOVA repeated measures for sex and sessions: sex effect: F(1,26) = 12.17, p = 0.0017, Cohen’s d 

session five: 1.07) (Fig. 2D,E). We observed a similar increasing trend between CR amplitude and running speed 

across sexes. Thus, we performed a linear regression between speed of the right back paw and CR amplitude on the 

last session which shows a clear correlation between the variables (R2 = 0.75, p = 0.002) (Fig.2 F). These results 

reveal that mice that spontaneously move faster on the wheel, reach higher learning scores in eyeblink conditioning.  

 

Learning scores correlate with C-fos expression 

 

To explore brain regions that could have a role in modulating associative learning during eyeblink 

conditioning, we performed C-FOS immunostainings following the last training session. C-fos is an immediate early 

expressed gene, a family of transcription factors that is expressed shortly after a neuron has depolarized. Because 

of its precise time window of expression, it is widely used as an activity marker (Chung, 2015). We imaged sections 

of whole brains with a fluorescent microscope and developed an image analysis workflow to quantify C-FOS 

positive neurons and identify their location (Supp. Fig. 1). 

To ensure an appropriate control for the quantification of C-FOS positive cells, we included a 

pseudoconditioned mouse in each group (n = 2 males, 2 females). These mice went through the same experimental 
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steps as the conditioned mice with the only exception that they were not trained with paired CS-US trials. Instead, 

we exposed them to a protocol with CS and US only trials, keeping the same structure and duration as the 

conditioned protocol. Pseudoconditioned mice did not acquire an association given that there was no substrate for 

learning. These animals showed marginal increase in running speed over training sessions, and displayed lower C-

fos expression in most areas of the brain, excluding the visual cortex, where we found an abundance of C-FOS 

positive cells. (Supp. Fig. 2). 

We quantified the density of C-FOS expressing cells in brain regions defined within the hierarchical 

structure of the Allen Brian Atlas (cerebrum, brainstem and cerebellum). In order to identify regions potentially 

involved in associative learning, we selected mice that showed a CR amplitude of 0.4 or higher in CS only trials (n 

= 14; 5 males, 9 females). We performed a Kendall’s correlation (non-parametric rank order regression) between 

Figure 2: Learning scores correlate with spontaneous locomotor activity. A) Top: Example view of tracking with DeepLabCut. 

Bottom: Example tracking traces (Y position change). B) Scatter plot and boxplots of each body part (females, n = 14). C) 

Scatter plot and boxplots of each body part (males, n = 14). D and E) CR amplitude and speed of the right back paw over 

training sessions. Purple: females (n = 14), green: males (n = 14). Shaded area: sem.  Speed: two-way ANOVA for sex and 

sessions: sex effect: F(1,26) = 12.17, p = 0.0017. F) Positive correlation between CR amplitude and speed of the right back 

paw on the last session of training (linear regression: R2 = 0.7534, p = 0.002). 
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density of C-FOS positive cells and CR amplitude on the last session. In the cerebellum, C-FOS labelling was 

clearly localized in the granule cell layer (Fig 3A). In the cerebellar hemispheric regions, crus 1 and simplex had a 

significant correlation between C-FOS cell density and CR amplitude (crus 1: tau = 0.42, p = 0.042, simplex: tau = 

0.52, p = 0.009). In the cerebellar vermis, lobule VI also had a significant correlation and the highest Tau (lobule 

VI: tau = 0.8, p = 0.009) (Fig. 3B). In the midbrain and hindbrain, we found a significant correlation in the red 

nucleus, the facial nucleus, the inferior olive and the pontine nuclei (Red nucleus: tau = 0.43, p =  0.041, Facial 

nucleus: tau = 0.57, p = 0.006, inferior olive: tau = 0.76, p = 0.0008, pontine nuclei: tau = 0.48, p = 0.021) (Fig. 

3E). Finally, we found a positive correlation in the visual, motor and somatosensory cortices and the amygdala 

(visual cortex: tau = 0.51, p = 0.013, motor cortex: tau = 0.69, p = 0.0003, somatosensory cortex: 0.54, p = 0.007, 

amygdala: tau = 0.63, p =  0.001) (Fig. 3H). 

Figure 3: Learning scores correlate with C-fos expression. A) C-FOS positive granule cells in lobule VI in the cerebellum. 

B) Cerebellar areas with significant positive correlation between C-FOS positive cell density and CR amplitude (crus 1: tau 

= 0.42, p = 0.042, simplex: tau = 0.52, p = 0.009, lobule VI: tau = 0.8, p = 0.009). C) 3D model with significant areas 

highlighted. D) C-FOS positive cells in the inferior olive. E) Brainstem areas with significant positive correlation between C-

FOS positive cell density and CR amplitude (Red nucleus: tau = 0.43, p = 0.041, Facial nucleus: tau =0 .57, p = 0.006, inferior 

olive: tau = 0.76, p = 0.0008, pontine nuclei: tau = 0.48, p = 0.021). F) 3D model with significant areas highlighted. G) C-

FOS positive cells in the visual cortex. H) Cortical areas with significant positive correlation between C-FOS positive cell 

density and CR amplitude (visual cortex: tau = 0.51, p = 0.013, motor cortex: tau = 0.69, p = 0.0003, somatosensory cortex: 

0.54, p = 0.007, amygdala: tau = 0.63, p: 0.001). I) 3D model with significant areas highlighted 
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Together, these results confirm the previously reported areas associated with eyeblink conditioning within 

the olivo-cerebellar and ponto-cerebellar systems (Ruigrok, 2011; D’Angelo et al., 2016) and suggest that other 

areas  might be involved in this learning task.  

C-FOS positive cells identity 

To gain insight on the types of cells expressing C-fos, we performed several double immunostainings. To 

confirm that C-FOS positive cells observed in the granule cell layer were indeed granule cells, we co-stained for C-

FOS and GABAα6, a granule cell specific marker (Fig 4. A, B). To understand whether there was a certain layer 

specificity in C-fos expression following eyeblink conditioning, we performed two double immunostaings with C-

FOS; CUX1, a marker for upper cortical layers (II-IV) and CTIP2, for lower cortical layers (V-VI). Although we 

detected C-FOS positive cells in all layers of the cortex, we observed a higher colocalization of CUX1 and C-FOS 

compared to CTIP2 and C-FOS, especially in the visual, somatosensory and motor cortices (Fig 4. C-F). This 

indicates an enrichment of C-fos expression in upper cortical layers, which suggest increased neural activity in these 

layers during associative learning.  

Figure 4: Co-localization of C-FOS and other neuronal markers. A) crus 1, example image used for quantification of C-FOS 

positive cells. Red: GABAα6, Green: C-FOS. Scale: 500 μm. B) Confocal image of the zoomed in area in A, 60x. C) visual 

cortex, example image used for quantification of C-FOS positive cells. Red: C-FOS, green: CUX-1. Scale: 500 μm. D) Confocal 

image of the zoomed in area in C, 40X. E) visual cortex, example image used for quantification of C-FOS positive cells. Red: 

C-FOS, green: CTIP2. Scale: 500 μm. F) Confocal image of the zoomed in areas in E, 40X.  
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Correlation between learning scores and C-fos expression is consistent in B6CBAF1 strain 

 

Given the evidence of the possible unwanted effects of highly inbred mouse strains like B6 in replicability 

and reproducibility (Åhlgren and Voikar, 2019), we wanted to investigating inter-strain variability in associative 

learning. We asked whether the results obtained in B6 mice would be consistent in a different mouse strain. For this 

purpose, we performed eyeblink conditioning together with C-FOS immunostainings in B6CBAF1 mice, which are 

the F1 hybrids of B6 and CBA strains. Hybrid mice are used due to their hybrid vigor, the robustness and health 

gained from a high degree of heterozygosity (Wolfer et al., 2002). B6CBAF1 mice have significantly less retinal 

degeneration and hearing loss compared to B6 mice, which makes them an appropriate candidate for visual and 

auditory experiments (Erway et al., 1996; Milon et al., 2018; Ohlemiller, 2019).  

B6CBAF1 mice learned the association between the stimuli and gradually formed CRs. We observed a 

trend indicating similar sex differences between B6CBAF1 mice and B6. Females reached 53% CR percentage 

compared to 35% in males (two-way ANOVA repeated measures for sex and sessions: sex effect: F(1,14) = 2.55, 

p =  0.237, interaction sex and session: F(4,104) = 3.01, p = 0.021, Cohen’s d session five: 0.86) (Fig 5. A). When 

it comes to the amplitude of these responses, BFCBAF1 females showed a trend towards slightly higher CR 

amplitude over training sessions compared to males (two-way ANOVA repeated measures for sex and sessions: sex 

effect: F(1,14) = 2.55, p = 0.132, Cohen’s d session five: 0.84 ) (Fig 5. B). 

We followed the same analysis pipeline to quantify C-fos expression in brain slices of B6CBAF1 mice after 

eyeblink conditioning. Next, we selected mice that showed a CR amplitude of 0.4 or higher in CS only trials (n =11; 

3 males, 8 females) and performed a Kendall’s correlation between density of C-FOS positive cells and CR 

amplitude on the last training session. The granule cell layer also contained C-FOS labelling, and crus 1, the simplex 

and lobule VI were found to have a significant positive correlation (crus 1: tau = 0.82, p = 0.0001, simplex: tau = 

0.7, p = 0.005, lobule VI: tau = 0.75, p = 0.0007) (Fig 5. C, D). In the hindbrain, the correlation between C-FOS 

cells and learning was also significant in the inferior olive and the pontine nuclei (inferior olive: tau = 0.85, p = 

0.0004, pontine nuclei: tau = 0.78, p = 0.0003) (Fig 5. E, F). Additionally, the visual, motor and somatosensory 

cortices showed significant positive correlations (visual cortex: tau = 0.64, p = 0.0057, motor cortex: tau = 0.75 p 

= 0.0008, somatosensory cortex: tau = 0.6, p = 0.009) (Fig 5. G, H).  

 

Variability between sexes and strains 

 

To further understand inter-strain and inter-sex variability in our dataset, we calculated the coefficient of 

variance (CV) for each of the variables that we quantify in both B6 and B6CBAF1 mice. We selected the 14 learners 

(CR amplitude on session 5 > 0.4) B6 mice (n = 5 males, 9 females) and the 11 learners B6CBAF1 mice (n = 3 

males, 8 females) and grouped them by strain and by strain and sex (Fig. 6). For each group, we calculated the CV 
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for the common variables acquired and previously reported, which can be grouped in two main categories: eyeblink 

performance and C-fos expression. Eyeblink performances includes CR amplitude and percentage. C-fos expression 

includes the density of C-FOS positive cells in the brain areas where we have found a positive significant correlation 

across both strains: crus 1, simplex, lobule VI, inferior olive, pontine nuclei, and the visual, motor and 

somatosensory cortices. When comparing strains, we observed that the variances for each variable were similar, 

with the exception of the somatosensory cortex, where B6CBAF1 mice seem to be more variable compared to B6 

(Fig. 6A). B6 female and male mice had similar CVs for most of the variables, although in crus 1 and the 

somatosensory cortex males seem to have a slightly higher CV (Fig. 6B). However, this could be due to the 

difference in sample size. We observed something similar between B6CBAF1 female and male mice; males showed 

Figure 5: Correlation between learning scores and C-fos expression is consistent in B6CBAF1 mice.  A) CR percentage in 

CS only trials over training sessions. Yellow: females (n = 9), cyan: males (n = 7). Shaded area: sem. B) CR amplitude in CS 

only trials over training sessions. Shaded area: sem C) C-FOS positive cells in the lobule VI. D) Cerebellar areas with 

significant positive correlation between C-FOS positive cell density and CR amplitude (crus 1: tau = 0.82, p = 0.0001, simplex: 

tau = 0.7, p = 0.005, lobule VI: tau = 0.75, p = 0.0007). E) C-FOS positive cells in the inferior olive. F) Brainstem areas with 

significant positive correlation between C-FOS positive cell density and CR amplitude (inferior olive: tau = 0.85, p = 0.0004, 

pontine nuclei: tau = 0.78, p = 0.0003). G) C-FOS positive cells in the visual cortex. H) Cortical areas with significant positive 

correlation between C-FOS positive cell density and CR amplitude (visual cortex: tau = 0.64, p = 0.0057, motor cortex: tau = 

0.75, p = 0.0008, somatosensory cortex: tau = 0.6, p = 0.009).  
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slightly higher CV in C-FOS density in the simplex (Fig. 6C). Additionally, B6CBAF1 mice had the highest CV in 

the somatosensory cortex.  

 

Discussion 

Understanding behavioral variability in the context of neuroscience is a challenge. We are still far from 

fully understanding how factors like sex and strain give rise to differences in behavior. 

We tackled this question by making use of a well-known learning paradigm to study behavioral variability. 

We found that B6 female and male mice showed comparable variance in eyeblink conditioning and locomotion 

while being head-fixed on a rotating wheel. The variance within these behaviors was not different between sexes 

and females reached higher learning scores and running speeds within five days of training. Importantly, we found 

a robust correlation between learning scores and running speed which is consistent across sexes. In a similar way, 

we found that enriched C-fos expression across several brain areas positively correlates with learning, which 

suggests the involvement of these regions in eyeblink conditioning. Finally, we observed similar results in a hybrid 

mouse strain (B6CBAF1).  

 

Sex, strain and behavior: comparable variability but difference in performance  

Opposed to what is sometimes assumed in behavioral science, we observed that sexes show comparable 

variability. However, we found significant differences in performance during eyeblink conditioning and 

locomotion. Common behaviors like duration of running vary between female and male mice in the wild (Lightfoot 

et al., 2004; Goh & Ladiges, 2015). Behaviors widely assessed in research such as fear conditioning and navigation 

Figure 6: Strain and sex variability. Learners were selected if CR amplitude on session 5 > 0.4. CV = STD/mean. A) For 

strains: B6, n = 14, B6CBAF1, n = 11. B) For B6 mice: males B6, n = 9, females B6, n = 5. C) For B6CBAF1 mice: males, n 

= 3, females, n = 8. VC: visual cortex; MC: motor cortex; SSM: somatosensory cortex; CV: Coefficients of variation. 
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on the Morris water maze also show differences depending on sex (Roof & Stein, 1999; Keeley et al., 2013; Yang 

et al., 2013; Gruene, Flick, et al., 2015). In the context of cerebellar-dependent learning, evidence shows that 

estradiol increases the density of parallel fiber to Purkinje cell synapse and induces long-term potentiation, which 

improves memory formation (Andreescu et al., 2007). In trace eyeblink conditioning, both sexes reach similar 

learning scores but females show significantly higher CR percentage compared to males in the first five days of 

learning, which is in line with our findings (Rapp et al., 2021). Considering that adapting motor reflexes is a highly 

conserved behavior, it is logical that both sexes reach similar asymptotic learning scores in longer paradigms. 

However, these findings together with our results suggest that females exhibit faster learning rates during the first 

stages of learning.  

Using females could reduce the training time to achieve desired scores, which would be advantageous for 

certain experiments, particularly time-sensitive ones, such as calcium imaging or electrophysiological 

measurements. In addition, our results show that male and female mice have similar variability, which indicates 

that females can be included in studies without taking into account the estrous cycle phase. In general, utilizing both 

sexes would reduce the overall number of animals used in research and increase the relevance and generalization 

of scientific findings.  

A common experimental setting in neuroscience involves head-fixing awake mice and placing them on a 

freely moving wheel. A recent study investigated sex differences in head-fixed running behavior and found that 

female mice ran forward naturally within the first two days, while males took seven days to progressively learn to 

only run forward (Prawira, 2019). In our experiments, the differences in learning scores between sexes were strongly 

correlated to the changes in locomotor activity on the wheel. Our results show that the previously reported 

correlation between imposed locomotor activity and learning scores (Albergaria et al., 2018) persists when mice 

can initiate locomotion voluntarily. This suggests that spontaneous locomotion might facilitate associative learning 

and could be predictive of learning scores.  

Finally, we have found that, besides moving slower, males tended to have a tilted position on the wheel 

compared to females. These differences in body position could be partially caused by differences in stress levels 

that, at the same time, could affect learning rates. It is known that stress plays an important role in modulating neural 

activity in the hippocampus. Corticosterone - among other stress hormones – increases CA1/CA3 firing rates shortly 

after a stressful period and induces molecular cascades that enhance calcium influx, which disrupts hippocampal 

function (Joëls, 2009). Similar mechanisms have been described in the cerebellum; calcium-based excitability in 

the DCN is altered in animals with higher levels of corticosterone evoked by shipping stress (Schneider et al., 2013). 
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Associative learning networks  

 

Our results show that C-fos expression upon eyeblink conditioning in the cerebellar cortex is localized in 

the granule cell layer. This is expected given that multiple forms of plasticity have been studied within the synapses 

in this layer. For example, the mossy fiber-granule cell synapse undergoes both long-term potentiation and long-

term depression (Gao et al., 2012), and evidence has shown that granule cell activity adapts over time during 

eyeblink conditioning (Giovannucci et al.,2017), and other types of learning (Knogler et al., 2017; Wagner et al., 

2017). In addition, induction of LTP by theta-burst stimulation in acute cerebellar slices activated cAMP-responsive 

element binding protein (CREB) cascade which, in turn, activated C-fos expression (Gandolfi et al., 2017). Our 

results are consistent with these findings and, overall, they provide evidence on how plasticity at the input level in 

the cerebellar cortex can evoke transcriptional processes that contribute to learning consolidation. The strongest 

correlations between the C-fos expression and CR amplitude within the cerebellum were observed in simplex, lobule 

VI, and crus 1, which is consistent with the “eyeblink region”, but expands beyond the small area usually recorded 

using electrophysiological approaches (Heiney et al., 2014a; ten Brinke et al., 2015). Strong C-fos expression in 

crus 1 supports our previous findings showing importance of this lobule in eyeblink conditioning (Badura et al., 

2018). 

Outside the cerebellum, we identified several brain areas that could play a role in eyeblink conditioning. At 

the brainstem level, we found a relation between high learning scores and C-fos expression in the pons, the inferior 

olive, the red nucleus and the facial nucleus. High activity in the red nucleus and facial nucleus is to be expected, 

given that these two nuclei, together with the oculomotor nucleus, execute the blink. The inferior olive and the 

pontine nuclei relay the US and CS information to the cerebellar cortex, respectively. During early training sessions, 

the US is a highly aversive stimulus, which makes it comparatively more salient than the CS signal. Hence, one 

would expect increased activity in the pons relative to the inferior olive. However, in later learning stages (when 

animals have consolidated the association), the CS is predictive of the US, which would increase the activity in the 

inferior olive relative to the pons. We found a correlation between learning scores and C-FOS positive cells in both 

the pons and the inferior olive, which could indicate an intermediate stage of learning, where animals have learned 

the association but the US information is still relevant.  

Moreover, we found higher C-fos expression in the visual, motor and somatosensory cortices in mice with 

higher learning scores. Processing in these cortices could facilitate the CS to become more salient and ultimately 

predict the US. The somatosensory cortex projects to the lateral amygdala which, in turn, projects to the central 

amygdala to ultimately contact the pons. The high C-fos expression found in the amygdala points towards a two 

stage conditioning model; where the amygdala would have an initial role with arousal as a salient feature and a 

second phase where the cerebellum would take over to form precisely-timed CRs (Boele et al., 2010). In the motor 

cortex, higher C-fos levels in high performing mice might be due to locomotor activity rather than learning itself. 
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However, as mentioned above, this could play a role in learning either by directly affecting cerebellar input or 

indirectly as arousal.  

Finally, we found an enrichment of C-fos expression in upper cortical layers (II, III and IV), specially in 

the visual and somatosensory cortices. The principal excitatory neurons in layers II/III have large axons that project 

to other telencephalic areas, such as the cortex itself and the striatum (Adesnik and Naka, 2018), while neurons in 

layer IV form loops within the layer and connect to layers II/III and VI (Scala et al., 2019). Layers VI and VII are 

thought to be the main outputs of the cerebral cortex, connecting to multiple subcortical areas and the thalamus, 

respectively (Harris and Shepherd, 2015). The higher C-FOS density in upper cortical layers indicates higher 

activity, which could reflect feedforward loops within neuronal populations and translaminar connectivity that could 

reinforce learning. However, research is needed to determine the identity of these neurons.  

Together, these findings give us a better understanding of the networks underlying eyeblink conditioning 

and provide candidate brain areas to be further researched in the context of associative learning. 

 

 

Materials and Methods  

Animals  

All experiments were performed in accordance with the European Communities Council Directive. All 

animal protocols were approved by the Dutch National Experimental Animal Committee (DEC). C57BL/6 mice 

were ordered from Charles River (n = 16 males; n = 16 females), and B6CBAF1 mice from Janvier (n = 7 males; n 

= 9 females). Mice were group-housed and kept on a 12-hour light-dark cycle with ad libitum food and water. All 

procedures were performed in male and female mice approximately 8-12 weeks of age.  

Eyeblink pedestal placement surgery 

 Mice were anesthetized with isoflurane and oxygen (4% isoflurane for induction and 2-2.5% for 

maintenance). Body temperature was monitored during the procedure and maintained at 37°C. Animals were fixed 

in a stereotaxic device (Model 963, David Kopf Instruments, Tujunga CA, USA). The surgery followed previously 

described standard procedures for pedestal placement (Gao et al., 2016; ten Brinke et al., 2017). In short, the hair 

on top of the head was shaved, betadine and lidocaine were applied on the skin and an incision was done in the 

scalp to expose the skull. The tissue on top of the skull was removed and the skull was kept dry before applying 

Optibond™ prime adhesive (Kerr, Bioggio, Switzerland). A pedestal equipped with a magnet (weight ~1g), was 

placed on top with Charisma®, (Heraeus Kulzer, Armonk NY, USA) which was hardened with UV light. Rymadil 

was injected subcutaneously (5mg per kg). Mice were left under a heating lamp for recovery during at least 3 hours. 

Mice were given 3-4 resting days before starting experiments.   
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Eyeblink conditioning  

Mice were habituated to the set-up (head fixed to a bar suspended over a cylindrical treadmill in a sound 

and light isolating chamber) for 5 days with increasing exposure (15, 15, 30, 45 and 60 min). Training started after 

two rest days. Twenty-eight 57BL/6 mice (n = 16 males; n = 16 females), and 16 B6CBAF1 mice (n = 7 males; n 

= 9 females) were trained using the standard eyeblink protocol (Brinke et al., 2015, Koekkoek et al., 2002). Ten 

CS-only trials of 30 ms with an inter-trial interval (ITI) of 10 ± 2 s were presented before the first training session 

to acquire a baseline measurement. Mice were next trained for 5 consecutive days. Each session consisted of 20 

blocks of 12 trails each (1 US only, 11 paired and 1 CS only) with an ITI of 10 ± 2 s. The CS was a 270 ms blue 

LED light  (~ 450 nm) placed 7 cm in front of the mouse. The US was a 30 ms corneal air puff co-terminating with 

the CS. The puffer was controlled by a VHS P/P solenoid valve set at 30 psi (Lohm rate, 4750 Lohms; Internal 

volume, 30 µL, The Lee Company®, Westbrook, US) and delivered via a 27.5 mm gauge needle at 5 mm from the 

center of the left cornea. The inter-stimulus interval was 250 ms. Eyelid movements were recorded with a camera 

(Baseler aceA640) at 250 frames/s. 4 C57BL/6 mice (n = 2 males; n = 2 females), were trained using a 

pseudoconditioning protocol. Pseudoconditioning protocol consisted of 20 blocks of 12 trails each (1 puff only, 12 

LED only) with an ITI of 10 ± 2 s. The puff and LED stimulus had the same characteristics as in the conditioning 

protocol. Data was analyzed with a custom written MATLAB code as previously described (Giovannucci et al., 

2017; Badura et al., 2018). Traces were normalized within each session to the UR max amplitude. The CR detection 

window was set to 650-730 ms and CRs were only classified as such when the amplitude was equal or higher than 

5% of the UR median. The CR percentage was calculated as the number of counted CRs (equal or higher than 5% 

of the UR median) divided by the total CS trials per session. 

Locomotion 

An infrared camera (ELP 1080P) (sampling frequency 60 frames/s) was placed in each of the eyeblink 

boxes and connected to an external computer (independent from the eyeblink system). The cameras were positioned 

at the right back corner of the chamber on top of a magnet tripod attached to a custom-made metal block which 

allowed stable fixation. The recording angle was standardized by selecting the same reference in the field of view 

of each camera. Simultaneous video acquisition from the three cameras was performed in Ipi Recorder software 

(http://ipisoft.com/download/). Body movement recording was parallel to eyelid recording during the training 

sessions. The output videos (.avi format) from each mouse and session were approximately 35 min (corresponding 

to the length of an eyeblink session).   

Locomotion analysis 

We used DeepLabCut (DLC) to track body parts from videos (Mathis et al., 2018) (Fig. 2). We extracted 

40 frames of 4 different videos from two males and two females (total of 160 frames). Next, frames were manually 
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labeled with 5 body parts (tail base, hip, knee, right back paw and nose). These frames were used for training the 

pre-trained deep neural network ResNet50 (He et al., 2016; Insafutdinov et al., 2016). Evaluation of the network 

was done to confirm a low error in pixels between labeled frames and predictions. Video analysis was done by 

using the trained network to get the locations of body parts from all mice and sessions (16 mice x 5 sessions = 80 

videos). DLC output is a matrix with x and y positions in pixels and the likelihood of this position for each body 

part. We used this matrix to calculate distance covered and speed per body part with a custom written code 

(https://github.com/BaduraLab/DLC_analysis) 

Tissue processing 

Mice were anesthetized with 0.2 ml pentobarbital (60 mg/ml) and perfused with 0.9% NaCl followed by 

4% paraformaldehyde (PFA). Given the peak time expression of C-fos (Chung, 2015), animals were perfused 90 

minutes after finishing the last training session. Brains were dissected from the skull and stored in 4% PFA at room 

temperature (rT) for 1.5 hours. They were next changed to a 10% sucrose solution and left overnight at 4°C. Brains 

were embedded in 12% gelatin and 10% glucose and left in a solution with 30% sucrose and 4% PFA in PBS at rT 

for 1.5 hours. Next, they were transferred to a 30% sucrose solution in 0.1 PB and kept at 4°C. Whole brains were 

sliced at 50 μm with a microtome and slices were kept in 0.1 PB.   

Immunostaining and Imaging 

Sections were incubated in blocking solution (10% NHS, 0.5% Triton in PBS) for an hour at rT. After 

rinsing, sections were incubated for 48 hours at 4°C on a shaker in primary antibody solution with 2% NHS (1:2000 

Rabbit anti-C-FOS, ab208942, Abcam; 1:1000 Rat anti-Ctip2, ab18465, Abcam; 1:1000 Rabbit anti-GABAalpha6, 

G5555, Sigma-Aldrich; 1:1000 Rabbit anti-Cux1, (Ellis et al., 2001)). After rinsing, sections were incubated for 2 

hours at rT on a shaker with secondary antibody (1:500 Donkey anti-rabbit A594, 711-585-152, Jackson; 1:500 

Donkey anti-Rabbit A488, 711-545-152, Jackson; 1:500 Donkey anti-rabbit Cy5, 711-175-152, Jackson; Donkey 

anti-rat Cy3, 712-165-150, Jackson). Sections were counterstained with DAPI. Finally, sections were rinsed in 0.1 

PB, placed with chroomulin on coverslips and mounted on slide glasses with Mowiol.  

Sections were imaged with a Zeiss AxioImager 2 (Carl Zeiss, Jena, Germany) at 10x. A DsRed filter and 

an exposure time of 300 ms was used for the Alexa 595 channel (C-FOS). The DAPI channel was scanned at 20 ms 

or 30 ms exposure time. Tile scans were taken from whole brain slices. We processed half the sections obtained 

from slicing, hence, the distance between tile scan images was 100 μm. High resolution images were taken with a 

LSM 700 confocal microscope (Carl Zeiss, Jena, Germany). 

Image analysis 

We developed an image analysis workflow for brain region identification and quantification of C-FOS 

positive neurons following eyeblink conditioning (Supp. Fig. 1) (https://github.com/BaduraLab/cell-counting) . 
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The workflow combines Fiji and a SHARP-Track, a software written in MATLAB initially developed to localize 

brain regions traversed by electrode tracks (Shamash et al., 2018) (https://github.com/cortex-

lab/allenCCF/tree/master/SHARP-Track). Brain slices were preprocessed (rotating, cropping and scaling) with a 

custom written macro in Fiji (Schindelin et al., 2012). Next, slices were registered to the Allen Brain Atlas using 

the SHARP-Track user interface. Segmentation was performed on the registered slices in Fiji. Given the 

characteristic C-FOS staining pattern in the cerebellar granule layer (Fig 3. A), we used different thresholding 

algorithms for the cerebellum and for the rest of the brain. Following that, automated cell counting of C-FOS 

positive neurons was performed with a custom written macro in Fiji (cerebellum - circularity: 0.5-1, size: 0-20 

pixels, rest of the brain - circularity: 0.7-1, size: 0-40 pixels) to get the X and Y coordinates of every detected cell. 

The output matrix of coordinates was used to create a ROI array per slice in SHARP-Track. This step allows one 

to one matching between the ROI array and the previously registered slice. Finally, the reference-space locations 

and brain regions of each neuron were obtained by overlapping the registration array with the ROI array. ROI counts 

were normalized by brain region surface following the hierarchical structure of the Allen Brain Atlas. The surface 

of each brain areas was calculated per slice and cell density was defined as ROI counts/surface. 

Statistics 

Statistics were performed in MATLAB and GraphPad Prism 6. Data is reported as mean ± std or sem. 

Normality was tested and accepted for both eyeblink CR amplitudes and for speed of the right back paw. The 

corresponding statistical test for the p values reported are specified in Results. Time data (training sessions) was 

analyzed using two-way repeated measures ANOVA for sex and session. Sex effect is reported in Results, session 

effect is significant in all groups (indicating learning through time) and interaction is reported if significant. For 

Kendalls’s correlation on C-FOS data, we report Tau and p values. 
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Supplementary Information 

 

Supplementary Figure 1: Schematic analysis pipeline for C-FOS quantification.  
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Supplementary Figure 2: Pseudoconditioned mice. A) CR amplitude and speed of the right back paw over sessions. B) 

Absence of C-FOS in pseudoconditioned animals. Example images, red: C-FOS. n = 2 males, n = 2 females. Scale: 500 μm 
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Supplementary Figure 4: Confocal images, brain areas that have a positive correlation between C-FOS cell density and CR 

amplitude in B6 mice. Cerebellum: 60X, others: 40X. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.15.464518doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464518
http://creativecommons.org/licenses/by-nc/4.0/


 

28 
 

 

 

Supplementary Figure 3: Confocal images, brain areas that have a positive correlation between C-FOS cell density and CR 

amplitude in B6CBAF1 mice. Cerebellum: 60X, others: 40X. 
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