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Abstract

A common challenge in drug design pertains to finding chemical modifications to a ligand

that increases its affinity to the target protein. An underutilised advance is the increase

in structural biology throughput, which has progressed from an artisanal endeavour to a

monthly throughput of up to 100 different ligands against a protein in modern synchrotrons.

However, the missing piece is a framework that turns high throughput crystallography data

into predictive models for ligand design. Here we designed a simple machine learning ap-

proach that predicts protein-ligand affinity from experimental structures of diverse ligands

against a single protein paired with biochemical measurements. Our key insight is using
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physics-based energy descriptors to represent protein-ligand complexes, and a learning-to-

rank approach that infers the relevant differences between binding modes. We ran a high

throughput crystallography campaign against the SARS-CoV-2 Main Protease (MPro), ob-

taining parallel measurements of over 200 protein-ligand complexes and the binding activ-

ity. This allows us to design a one-step library syntheses which improved the potency of two

distinct micromolar hits by over 10-fold, arriving at a non-covalent and non-peptidomimetic

inhibitor with 120 nM antiviral efficacy. Crucially, our approach successfully extends lig-

ands to unexplored regions of the binding pocket, executing large and fruitful moves in

chemical space with simple chemistry.

Introduction

Predicting protein-ligand affinity is a longstanding challenge that underpins computer-aided drug design.

The challenge often lies in designing chemical modifications which would significantly improve the po-

tency of a weakly potent starting point (hit-to-lead) or finding chemotypes that maintains potency whilst

designing away other liabilities (lead optimisation). Established medicinal chemistry heuristics focus on

making interpretable and modest chemical changes, iteratively “morphing“ the ligand to optimise inter-

actions and explore unknown binding pockets1,2. Significant acceleration can be realised if this iterative

process is replaced by methods which suggest large and synthetically facile changes to the ligand to give

a significant increase in potency, motivating a computational approach to ligand design.

The plethora of computational methods in the literature can be organised in terms of the available

information they make use of. Ligand-based approaches (Figure a) derive information only from the

chemical identity of ligands which are binding to the protein, and focus on learning the relationship

between the chemical structure of the ligand and its activity. Such methods, however, are circumscribed

by the problem of extrapolation: the model cannot extrapolate to regions of the binding site which are not

already explored by molecules in the dataset, nor to unexplored interactions between novel chemotypes

and the binding site.

Structure-based approaches ameliorate this limitation by taking the protein structure into account

and explicitly model the protein-ligand interactions (Figure b). However, rigorous methods, such as free
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Figure 1: Overview of approaches used in computer-aided drug design. Conventional approaches
predict the activity of ligands (a) by learning the relationships between the molecular structure of a
molecule and its activity or (b) through physics-based modelling using only the structure of the target and
relying on methods such as free energy perturbation (FEP) calculations or molecular docking. (c) Here,
we demonstrated a strategy that exploits high-throughput crystallographic characterisation of protein-
ligand complexes to predict ligand affinity.

energy perturbations (FEP) or alchemical free energy calculations generally require substantial compu-

tational resources and are constrained by the quality of the approximate forcefield.3–5 In practice, these

approaches are typically used to compute relative free energy changes of small modifications to prede-

fined scaffolds6,7, as convergence time and error both increase with the size of change relative to the

starting ligand. To reduce computational cost, empirical scoring functions such as docking8–11 have

been developed. Whilst docking can identify hits from virtually screening large libraries12,13, it is typi-

cally not used in ligand optimisation as the correlation between predicted and experimentally measured

protein-ligand interaction energy is often weak.

The rapid acceleration in the throughput of structural biology unlocks a new source of data (Figure c).

Historically, protein structure determination was laborious, thus on a particular target there were only
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handful of co-crystallised ligands reported in the literature. Although databases such as the Protein

Data Bank14 could be mined to parametrize docking algorithms15,16, this necessitates training on diverse

classes of proteins with varied protein-ligand affinity measurement techniques, introducing noise and

dataset bias17. The synergy between modern robotic techniques for crystallisation and crystal soaking18,

automated data analysis pipelines19 and modern synchrotron infrastructure has increased the monthly

throughput to up to 100s of ligands against a target20. However, the missing piece of the puzzle is a

framework that can turn high throughput crystallographic data into predictive models for ligand design.

In this paper, we present a machine learning approach that relates high throughput crystallography

data, represented as empirical energy terms, to measured bioactivity. We used this to accelerate the

COVID Moonshot initiative21, an open science consortium that reported over 200 protein-ligand com-

plexes against SARS-CoV-2 Main Protease (MPro) with associated potency (IC50) measurements. Retro-

spective validation shows that our method outperforms ligand-based and structure-based approaches. We

prospectively designed one-step library syntheses, improving the potency of two distinct micromolar hits

by over 10-fold and arrived at a lead compound with 120 nM antiviral efficacy. Crucially, our designed

inhibitors gain potency by extending to unsampled regions of the binding site, illustrating the ability of

our model to generalise via the incorporating physical interactions.

Results and Discussion

Energy-based model is generalizable across chemical space

To describe protein-ligand structures as a fixed-length vector for downstream machine learning (Fig-

ure a), we turn to the literature on empirical scoring functions. We use the terms of empirical energy

function – hydrophobic, electrostatic, hydrogen bonding etc. – as descriptors of the structures. Our

hypothesis is that whilst empirical energy terms capture different aspects of protein-ligand interactions,

how these interactions stack up to yield the free energy of binding depends on binding-site specific vari-

ables such as binding site flexibility. We further hypothesize that those protein-specific corrections are

learnable from our dataset, comprising high throughput structural biology data and associated bioactiv-

ity. To fix ideas, in our approach we featurize all the protein-ligand complexes using the Open Drug

Discovery Toolkit (ODDT)22 and extract the Autodock Vina descriptors to serve as a low-dimensional

representation of the each structure.
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We predict protein-ligand affinity using this representation as an input. Instead of predicting IC50

values directly, we focused our attention to predicting the pairwise comparison of the ligands, choosing

a cut-off of 0.25 log10 units for classifying one compound as more active than another (Figure S1). The

threshold was chosen to match typical assay error. This learning-to-rank approach allows us to combine

qualitative (potency below measurable) and quantitative measurements, and forces the model to ignore

irrelevant experimental noise by ensuring that it is only ranking structures with demonstrably different

bioactivity23. We build our models using Autodock Vina descriptors as features and a random forest as

the machine learning algorithm (Materials and Methods; Supplementary Figure S1).

Specifically, we applied this approach to the high-throughput structural biology campaign against

the SARS-CoV-2 MPro, an essential protein in viral replication and a validated target for anti-coronavirus

therapeutics24–27. All MPro clinical candidates to date are peptidomimetics inhibiting via a covalent

mechanism, which are generally suboptimal for drug development. We launched the COVID Moonshot,

an open science initiative aiming to develop non-covalent small molecule oral antiviral21. The campaign

obtained 236 structures of non-covalent inhibitors binding to the MPro. Out of these ligands, 94 had

IC50 below 50 µM (Figure S2). To the best of our knowledge, COVID Moonshot is the only openly

accessible dataset with over 100 structures of different ligands against a single target with associated

bioactivity measurement; as such, our model evaluation will focus on this dataset.

To implement the models and evaluate their performance in ranking novel ligands, first, we use a

scaffold-split approach where an entire scaffold is held out from the training set and placed in the test set.

There are four salient chemical scaffolds in the dataset: aminopyridine-like, isoquinoline, benzotriazole

and quinolone (Materials and Methods; Supplementary Figure S2) with 123, 44, 19 and 15 structures,

respectively. For the compounds that were part of the test set, we extracted the features from the docked

structures instead of the experimental crystal structures, where the ligands had been docked to the active

site using OpenEye’s FRED hybrid docking mode as implemented in the “Classic OEDocking” floe on

the Orion online platform (Materials and Methods). This is because when deploying the model as a

prioritisation tool for synthesis and screening as we will do later in this work, experimental structural

information is inaccessible and the docked structure serve as its approximation. Figure b shows that our

learn-to-rank model achieved an average AUROC value around 0.8 (Supplementary Figure S3 shows the

results broken down into different scaffolds). To estimate error in the performance metric, the training

data was bootstrapped and 10 different models built for each scaffold, the quoted values are the mean and

the standard deviations in the obtained AUROC values. This result illustrates that our model accurately
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Figure 2: Structure-based learning outperforms docking and ligand-based machine learning in
relative affinity predictions. (a) To build a model that captures the relationship between the crystal
structure of a protein-ligand complex and the activity of the ligand, Autodock Vina descriptors were
extracted from each crystal structure and deployed to predict the relative binding strength of ligands
of interest. (b) Comparing this approach (green) to ligand-based learning (pink) and docking (yellow)
using data from the COVID Moonshot campaign. The average AUROC scores were computed using a
scaffold-split, with the error bars corresponding to standard error of the mean. Performance on individual
scaffolds is shown in Supplementary Figure S3. (c) Time-split evaluation of our model. Our approach
maintains its predictive power when trained on older, less potent molecules and asked to rank the affinities
of newer more potent molecules (green line). The black line tracks the potency of most potent molecule
discovered at that point.
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ranks unseen ligands without the requirement to have any structures from that specific scaffold as part of

the training set.

Structural data is salient to model performance

To understand the impact of experimental structural biology data, we consider two alternative mod-

els: (i) a ligand-based model that relied only on the use of ligand-based descriptors providing no in-

formation about the protein-crystal structure and (ii) a model that used a docked structure instead of

the measured crystallographic structure. Specifically, for the former case, we featurised the ligands us-

ing Morgan fingerprints28, implemented through the use of the RDKit package. For the latter case, we

docked ligands to the active site using OpenEye’s FRED hybrid docking modes described above. For

consistency, the same model architecture (random forest) was used for all cases with the hyperparameters

tuned separately for each model.

Figure b shows that our approach which incorporates experimental structural data outperforms both

docking-based and ligand-based models, highlighting the importance of high throughput structural biol-

ogy. The AUROC values correspond to the average values across the four scaffolds. The slightly better

performance of the docking-based model over the ligand-based one likely stems from the fact that the

model does not rely solely on ligand-based input but also incorporates information about the protein-

ligand interactions.

Model maintains performance throughout the campaign

Having demonstrated that our proposed strategy can reliably rank ligands by potency even when outside

the chemical space that it encountered during training (i.e. for a new scaffold), we next explore how

its utility varies through the campaign and what is the amount of structural data required for efficient

performance. As a drug discovery campaign progresses, more knowledge about the chemical attributes

that determine the binding of a ligand to its target is gathered and the designs are honed accordingly.

Therefore, trying to predict the potency of molecules tested earlier in the campaign with molecule tested

later in the campaign as training set is much easier (and less useful) than the converse, i.e. hindsight is

usually much more accurate than foresight.

To examine the predictive capability of the structure-driven ligand prioritisation approach as the

campaign progresses, we use a time-split strategy. We ordered the compounds by the time when they
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had been tested and used only the structures available until that specific time point for training. We

first note that in the course of the campaign, the potency of the molecules increased by many orders of

magnitude (Figure c, black line). To avoid susceptibility of the model to memorise the specifics of a

particular scaffold, we kept all aminopyridine-like and isoquinoline-like molecules in the training data

while using benzotriazole-like and quinolone-like ligands for validation. Figure c (green line) shows that

our structure-based model remains predictive when trained on molecules tested early in the campaign

and deployed to rank molecules tested later. This is in contrast to the model that relied on ligand-based

or docking-based input (Figure c, pink and dark yellow lines).

Finally, from these data, we can interrogate that our proposed approach performs effectively (AU-

ROC value above 0.7) when only around 100 crystal structures are available to train the model. Crucially,

this is a throughput that could be achieved in a modern synchrotron20 on monthly timescale, illustrating

that our proposed strategy has the potential to be exploited routinely in the context of drug discovery

campaigns.

Model-guided library synthesis discovers potent leads

To apply our model to lead discovery, we need to generate protein-ligand structures for unseen ligands.

Starting from two hits with a amine handle reported by the COVID Moonshot Consortium29, chosen

because they have detectable potency and ease of synthetic access, we generate a virtual library that is

synthesizable in single reaction step using amide formation (Figure 3a) and reductive amination (Figure

3b). The library design is motivated by structural data, aiming to extend the hit into the unoccupied

P1’ binding pocket (Figure 3, top left). Using the Manifold platform (postera.ai/manifold), we

select carboxylic acid and aldehydes that are in-stock building blocks in Enamine (a synthetic chemistry

CRO with one of the largest building block collections onsite) with the building blocks further filter based

on predicted reactivity and the final compound having clogP < 3. In total, there are 15,720 compounds

in the amide virtual library and 2,664 compounds in the reductive amination library.

We then generated predicted binding pose by constrained docking into the binding site using existing

structural data in the isoquinoline series as the constraints (Materials and Methods), and use our trained

structure-based learn-to-rank approach to rank all the ligands in the virtual library. Specifically, each of

the docked poses are ranked against the top 5 most potent non-covalent binders in the dataset (Supple-

mentary Figure S4) and the mean of the five predictions estimated to generate the final ranking. Top 18

compounds from the final ranking were selected from the amide formation library with 15 successfully

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.15.464568doi: bioRxiv preprint 

postera.ai/manifold
https://doi.org/10.1101/2021.10.15.464568
http://creativecommons.org/licenses/by-nc/4.0/


Me

IC50 = 9.13 uM

A OO

N

IC50 (R=Me)/IC50 = 16x

N

NO

3.9x

N N
N

O
O

3.3x

N
H

O

1.9x

NN

N

1.8x

HN N

O

O
Cl

0.98x

N
N

N
N

0.89x

N

N

OO

0.81x

N

N
N

CF3

0.67x

N
N

NN

0.5x

N
H

O

NC

0.49x

N N
N

N

O

0.47x

HN N

O

O
CN

0.43x

N N

N
N

O

0.38x

B
Me

IC50 = 10.5 uM

F
SO2NHMe

IC50 (R=Me)/IC50 = 6.1x

H2NO2S
F

5.4x

BocHN

HO

4.8x

H2NO2S

4.3x

N O

O

O

4.2x

N
N

N
N

O
O

3.4x

N
N N NHBoc

3.0x

N

NHO

2.4x

NN
N

1.9x

N N
NO

1.8x

N

NN

H2N

O

1.6x

N N
NO

1.2x

N
HN

O
1.2x

N
N

N

O
1.1x

1.1x

O

H
N

N

O
N
H N N

S
O

O

0.90x

O
H
N

O

O

0.89x

N

N

N

NC
0.87x

O
H2N

O

O

O

0.87x

0.84x

N N

ON
O

N

O

O

0.73x

N

NN
O

0.73x

N
NSO

O

0.43x

N

N
HN

N
Me

O

O

< 0.11x

N

N
H

O
H
N

Cl

R

O

A
Cl

O

HN
O

NH

N
R

B

Figure 3: Lead compounds are starting points for antiviral development. Top hits reported in Figure
3 is purified and assayed in enzymatic assay. Compound 1, with nM potency, is further profiled in SARS-
CoV-2 CPE assay in Vero E6 cells. The 95% CI for the enzymatic assays: Compound 1 [0.23, 0.43] µM,
Compound 2 [0.96, 1.2] µM, Compound 3 [1.3, 1.7] µM.
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to show no cytotoxic effect at 10 µM. The 95% CI for the enzymatic assays: Compound 1 [0.23, 0.43]
µM, Compound 2 [0.96, 1.2] µM, Compound 3 [1.3, 1.7] µM.

synthesized, and top 32 from reductive amination library with 24 successfully synthesized.

The compounds prioritised by our crystallography-driven approach were then assessed for Inhibition

of Mpro activity using a biochemical assay with a fluorescence-based readout23,29. Figure 3 shows that

around 30% of the library has potency that is that greater than 2x compared to the reference. These

compounds are all substantial changes to the hit, in some cases doubling the atom count, and reaching

the ligand into unknown regions of the binding site whilst remaining a low logP. The high hit rate

suggests that the model can accurately prioritise these new chemotypes. We note that compounds were

assayed as enantiomers or diastereoisomers in this initial triage.

We further characterise the potent leads by resolving the enantiomers/diasteroisomers. Figure 4

shows that our top enantiopure compound, Compound 1, achieves nM potency in florescence Mpro

assay. Compound 1 is further profiled in SARS-CoV-2 antiviral assay (CPE assay, in Vero E6 cells),

attaining EC50 = 120nM. As a control, Compound 1 displays no cytotoxicity effect against Vero E6 cells

at 10µM. Compound 1 is thus a starting point for the development of antiviral therapeutics.
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Conclusion

With the crystal structures of protein-ligand complexes being acquired at an increasing throughput, here

we show how these data can be used to power a new approach to computational ligand design by using

physics-inspired empirical energy terms as a descriptor of the protein-ligand complex. We focus on

the COVID Moonshot Initiative, which reported an unpredentedly rich dataset of 200 ligands for which

both their activity and structure of binding to the main protease of SARS-CoV-2 had been determined.

We developed a machine learning model that learned the relationship between the multi-dimensional

docking score extracted from the crystal structure and the relative bioactivity of ligands. The approach

maintained a high and robust performance (AUROC of 0.79), even when making predictions outside the

training scaffold. It also yielded powerful results in a prospective campaign, increasing the potency of

hit compounds by more than 10x with simple chemistry that extends the hits to unsampled region of the

binding site. Our approach arrived at a lead compound with 120 nM antiviral efficacy.

Materials and Methods

Code availability

Source code and data required to reproduced this study are available on: https://github.com/

kadiliissaar/ligand_design_structural_biology

Dividing the molecules by scaffolds

In order to reliably estimate the performance of our developed model, we performed the train:test

splits in a scaffold stratified manner. To this effect, four distinct scaffold categories were defined —

aminopyridine-like, isoquinoline, benzotriazole and quinolone — and each compound classified as be-

longing into one of them by using SMARTS to define chemical substructures. Figure S5 shows repre-

sentative examples of each chemical series, highlighting with the chemical substructure that gives rise to

the name.

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2021. ; https://doi.org/10.1101/2021.10.15.464568doi: bioRxiv preprint 

https://github.com/kadiliissaar/ligand_design_structural_biology 
https://github.com/kadiliissaar/ligand_design_structural_biology 
https://doi.org/10.1101/2021.10.15.464568
http://creativecommons.org/licenses/by-nc/4.0/


Model development

As described in the Main Text, two types of models were developed: (i) those that divided the full dataset

into the four scaffolds and developed four parallel models by each time keeping molecules that originated

from one of the four scaffolds as a test set and using the remainder of the data for training, and (ii) those

that sorted all the data chronologically by the date the molecule was tested.

In all cases, after splitting the data into the training and test sets, all possible pairs were generated

and a difference in the pIC50 value as well as between the descriptors evaluated as as been illustrated in

Supplementary Figure S1. Compounds that were determined to be inactive were included when forming

pairs and they were all allocated activities equal to the highest measured activity values. Following

this data preparation step, a random forest classifier was trained to build a model that would predict

if the difference in the pIC50 value is above (the activity of the ligands differs) or below (the activity

of the ligands does not differ) 0.25 log10 units using the difference in the descriptors extracted from

the structures of the respective compounds as the input features. Hyperparameters of each model were

tuned by performing a 10-fold cross-validation process and a random grid search. Generally, the best

performance was achieved at shallow forest depths (maximum depth of 3), which can be explained by

the relatively large number of training points (order of 103 - 104) in comparison to the number of features

(6).

Docking experiments

We redocked all compounds synthesized by The COVID Moonshot Consoritium against x2908 structure

reported by Diamond XChem. We use the “Classic OEDocking” floe v0.7.2 as implemented in the

Orion 2020.3.1 Academic Stack (OpenEye Scientific). Omega was used to enumerate conformations

(and expand stereochemistry) with up to 500 conformations. FRED was used for docking in HYBRID

mode using the x2908 bound ligand. The docked poses are available on GitHub.

Fluorescence MPro inhibition assay

Method is described previously29. Compounds were seeded into assay-ready plates (Greiner 384 low

volume, cat 784900) using an Echo 555 acoustic dispenser, and DMSO was back-filled for a uniform

concentration in assay plates (DMSO concentration maximum 1%) Screening assays were performed in
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duplicate at 20µM and 50µM. Hits of greater than 50% inhibition at 50µM were confirmed by dose re-

sponse assays. Dose response assays were performed in 12 point dilutions of 2-fold, typically beginning

at 100µM. Highly active compounds were repeated in a similar fashion at lower concentrations begin-

ning at 10µM or 1µM. Reagents for Mpro assay were dispensed into the assay plate in 10µl volumes for

a final volume of 20µM.

Final reaction concentrations were 20mM HEPES pH7.3, 1.0mM TCEP, 50mM NaCl, 0.01% Tween-

20, 10% glycerol, 5nM Mpro, 375nM fluorogenic peptide substrate ([5-FAM]-AVLQSGFR-[Lys(Dabcyl)]-

K-amide). Mpro was pre-incubated for 15 minutes at room temperature with compound before addition

of substrate and a further 30 minute incubation. Protease reaction was measured in a BMG Pheras-

tar FS with a 480/520 ex/em filter set. Raw data was mapped and normalized to high (Protease with

DMSO) and low (No Protease) controls using Genedata Screener software. Normalized data was then

uploaded to CDD Vault (Collaborative Drug Discovery). Dose response curves were generated for IC50

using nonlinear regression with the Levenberg–Marquardt algorithm with minimum inhibition = 0% and

maximum inhibition = 100%.

SARS-CoV-2 antiviral assay

Method is described previously29. SARS-CoV-2 (GISAID accession EPI ISL 406862) was kindly pro-

vided by Bundeswehr Institute of Microbiology, Munich, Germany. Virus stocks were propagated (4

passages) and tittered on Vero E6 cells. Handling and working with SARS-CoV-2 virus was conducted

in a BSL3 facility in accordance with the biosafety guidelines of the Israel Institute for Biological Re-

search (IIBR). Vero E6 were plated in 96-well plates and treated with compounds in medium containing

2 % fetal bovine serum. The assay plates containing compound dilutions and cells were incubated for 1

hour at 37oC temperature prior to adding Multiplicity of infection (MOI) 0.01 of viruses. Viruses were

added to the entire plate, including virus control wells that did not contain test compound and Remdesivir

drug used as positive control. After 72h incubation viral cytopathic effect (CPE) inhibition assay was

measured with XTT reagent. Three replicate plates were used.

Chemical Synthesis

All compounds were synthesized at Enamine and available for purchase from their catalogue. Detailed

description of the synthesis protocol is outlined in the Supplementary Materials.
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