
Title: Interactive 3D visualization and post-processing analysis of vertex-based unstructured polyhedral meshes 1
with ParaView 2
Author: Paula C. Sanematsu1 3
1: Department of Physics, Syracuse University, Syracuse, NY 13244, USA. 4

Abstract 5
The development of physics-based 3D models that investigate the behavior of biological tissues requires effective 6
and efficient visualization tools. The open-source software ParaView has such capabilities, but often impose a 7
steep learning curve due to the use of the Visualization Toolkit (VTK) data structures. To overcome this, I show how 8
to setup the components of 3D vertex-like models, i.e., vertices, faces, and polyhedra, into the VTK data format 9
and then output as ParaView unstructured grid files. I present a few relevant tools to visualize and analyze the files 10
in ParaView. All sample codes are available in the Github repository vis3Dvertex. 11

Keywords 12
Unstructured polyhedral mesh; 3D vertex model; 3D Voronoi model; ParaView; interactive visualization 13

1. Introduction 14
The development of 2D continuum- [1], particle- [2], and vertex-based models [3-5] to understand the behavior of 15
cellular tissues has revolutionized our understanding of how biological cells behave and interact with each other 16
from a mechanistic point of view. One remarkable example is how vertex models allowed us to understand how 17
epithelial tissue in the lungs behave differently for normal vs. asthmatic tissue [6]. In this work, the visualization of 18
modeling and experimental results was crucial to understand the biological processes. 19

With the rapid advancement of biological imaging and computational power, it is reasonable to expect the further 20
advancement of 3D vertex models as the 2D models rely on the assumption that a cross sectional plane of a 3D 21
tissue is representative of the entire height of a monolayer tissue. Although this is a reasonable assumption in 22
many instances, for various other cases, it is not [7, 8]. Beyond the monolayer configuration, researchers have 23
developed 3D vertex models to understand how polyhedral-shaped cells behave in a three-dimensional tissue. 24
Studies as early as 2004 [9] developed 3D vertex models to understand cell deformation and rearrangement under 25
external forces. Merkel and Manning [10] showed that a vertex-like 3D self-propelled Voronoi (SPV) model, 26
governed by an energy functional depended on cell shapes exhibited a rigidity transition, similarly to the 2D vertex 27
model. In general, vertex-like models in 2D and 3D include vertex [11] and Voronoi [10] models. The former has 28
the cell vertices as the degrees of freedom whereas, in the latter, a Voronoi tessellation is created based on the 29
cell centers which, in turn, are considered the degrees of freedom. Hereinafter, the term “3D vertex models” refers 30
to the class of vertex-like models, including vertex and Voronoi models. 31

An essential component to the further advancement of 3D vertex models is the efficient visualization of simulation 32
results. However, 3D visualization is not trivial because visualizing polyhedra requires rendering, that is, converting 33
a 3D image into a 2D image in the computer. Rendering can be a computationally intensive task, which may limit 34
the user’s possibilities while visualizing simulation results because every time the user changes the at angle, 35
transparency, or coloring, a new rendering is performed. Thus, fast 3D rendering is indispensable for the 36
visualization of 3D vertex models. 37

2. Problems and Background 38
In the published work of 3D vertex models, mostly two software have been used for visualization: POV-Ray [12] 39
and MATLAB [13]. POV-Ray is a free and open-source ray tracing software that generates renderings based on a 40
text-based scene description. It shows an intuitive representation of the data and has very high-resolution 41
rendering, to the point that some renderings (not from vertex simulations) resemble real pictures. POV-Ray’s main 42
disadvantage is the lack of user interaction. If the user wants to change the camera angle or the rendering color, 43
those must be done in the text-based scene description file, and then re-render the visualization. MATLAB is a 44
proprietary software with limited 3D rendering capabilities that includes camera angle changes, zooming in/out, 45
but it lacks the ability to manipulate on the rendering. 46

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://github.com/pcsanematsu/vis3Dvertex
https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

Some scientific visualization software have been especially designed for fast 3D rendering of scientific data, such as 47
VisIt [14], ParaView [15], and Avizo (Thermo Fisher Scientific). All have a GUI with a pipeline of input data and data 48
manipulators rather than text-based interfaces like MATLAB or Matplotlib [16] that are commonly used for 49
visualization of 2D simulations. Avizo is a commercial software widely used in the petroleum and geophysical 50
communities. VisIt and ParaView are free and open-source and have extremely powerful parallelization 51
capabilities. To put into perspective, the Department of Energy (DOE) Advanced Simulation and Computing 52
Initiative (ASCI) developed VisIt for terascale simulations. ParaView was also designed to visualize and analyze 53
extremely large datasets. It has successfully run on various platforms on 4000-32000 cores and it was able to 54
visualize a billion-particle simulation [17]. Although parallelization of scientific visualization is not the focus of this 55
work, ParaView allows this extension if parallelization of 3D vertex simulations becomes necessary. 56

In this work, I use ParaView to demonstrate how to visualize and analyze 3D vertex model simulations used in 57
physics-based models. ParaView provides interactive visualization such that the user can view the 3D rendering 58
from various angles, change color palettes, transparency, and rendering representation (e.g. wireframe, surface, 59
volume) with a few mouse clicks. It contains filters that operate on the input data which can be manipulated, and 60
then represented by plots, spreadsheets, or renderings. ParaView has an animation tool for time-lapse simulations 61
to create movies or jump from a time step to another. Finally, it allows Python batch scripting without the need of 62
using the pipeline. 63

ParaView handles its data structure using the Visualization Toolkit (VTK) [18], which may pose a steep learning 64
curve for computational biologists, physicists, and engineers. To overcome such a hurdle, I briefly explain the VTK 65
data structures necessary for a polyhedral mesh. I present a pseudocode to “convert” faces and vertices of 66
polyhedral data into VTK data structures and output ParaView independent or a timeseries of files. I use the 67
voro++ library [19] to create polyhedra by Voronoi tessellations. I modify voro++’s examples to create and output 68
VTK data structures. All sample codes are available in vis3Dvertex along with a Singularity container image file 69
(available on Github release page) that can be used to run the sample codes on a Linux machine with Singularity 70
installed. In Section 4, I show how to visualize the output files in ParaView as well as how to manipulate the data 71
using a few filters relevant for 3D vertex models. Although the focus of this work is on applications for biophysical 72
models, this work is also relevant for any application that uses polyhedral unstructured meshes such as the 73
materials science community who have used Voronoi-based models to understand material behavior under stress 74
[20-23]. 75

3. Paraview and VTK framework: Creating 3D polyhedral unstructured grids 76

3.1. VTK data structures and VTK polyhedral grids 77

I will briefly give some examples of VTK data structures and refer the reader to the free-to-download VTK user’s 78
guide, textbook, and Doxygen manuals for more details: https://vtk.org/documentation/. The primary data 79
structure in VTK is a data object. Data objects can be abstract such as graphs and trees or well-defined such as 80
structured or unstructured grids – the latter being the focus of this work. In structured data, for example 81
rectilinear grids, we know the connection between nodes (i.e. topology) and, therefore, we do not need to 82
explicitly define the coordinates of each point. Unstructured data, on the other hand, require topology and point 83
coordinates to be defined. Consequently, unstructured data demands considerably more memory, and one should 84
only use it when structured grids are not possible. 85

A VTK structured or unstructured grid is composed of “cell types.” VTK supports various cell type dimensionalities 86
such as vertex in 0D, line in 1D, triangle, quadrilateral, polygon in 2D, and tetrahedron, hexahedron, polyhedron in 87
3D (defined in the VTK source code vtkCellType.h). Cell types with a regular geometry, like tetrahedra (4 faces) 88
and hexahedra (6 faces), use the vertices’ coordinates and a predefined ordering of the cell’s vertices to describe 89
the cell topology. Thus, although we need to state the point coordinates, we do not need to explicitly define the 90
topology of tetrahedral and hexahedral grids, saving some memory. In contrast, irregular polyhedral cells have a 91
varying number of faces, and they need to have their topology explicitly defined along with their point 92
coordinates. This work focuses on the polyhedral cells, represented by the VTK_POLYHEDRON cell type, to allow 93
the visualization and analysis of the most general 3D unstructured grid that is used in physics-based 3D vertex 94

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://github.com/pcsanematsu/vis3Dvertex
https://github.com/pcsanematsu/vis3Dvertex/releases/tag/v1.0.0
https://vtk.org/documentation/
https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

models. Furthermore, the methodology presented here can be applied to experimental data whose vertex 95
positions and topology are defined. Note that the VTK_POLYHEDRON only handles convex polyhedra; if concave 96
polyhedra exist, then the VTK_POLYGON cell type can be used instead, such that a set of polygons would compose 97
a polyhedron. 98

The topology or connectivity in polyhedron cells is stored as stream of ordered faces in the following format: 99
[numberOfCellFaces, (numberOfPointsOfFace0, pointId0, pointId1, …),
(numberOfPointsOfFace1, pointId0, pointId1, …), …] 100

where numberOfCellFaces is the number of faces in the cell, numberOfPointsOfFace0 is the number of 101
points in the 0-th face, pointId0 is the vertex index of point 0, pointId1 is the vertex index of point 1 and so on. 102
Figure 1 shows one polyhedron and its face and vertex indexing lists from voro++’s modified example 103
cell_statistics_vtk.cc. 104

 105

Figure 1: A polyhedron with labeled indices: vertex (blue) and face (red); and its VTK_POLYHEDRON face stream (top) created 106
from voro++’s modified example cell_statistics_vtk.cc. The black number is the number of faces in the polyhedron, 107
pink numbers are vertices per face, blue numbers are vertex indices, and red numbers are face indices. 108

To add a cell into the unstructured grid vtkUnstructuredGrid, I use the method InsertNextCell: 109

vtkIdType InsertNextCell(int cellType, vtkIdList *faceStream) 110
where cellType is VTK_POLYHEDRON and faceStream is shown in Figure 1. 111

The point coordinates are explicitly defined in the vtkPoints object and added to the vtkUnstructuredGrid 112
with the method InsertNextPoint: 113

vtkIdType InsertNextPoint(double xCoordinate, double yCoordinate, double zCoordinate) 114

With cells and vertices defined, the basic components of an unstructured grid, I can now define attributes for the 115
grid. Attributes can be variables used in the simulations such as time, pressure, velocity, force, surface area, 116
volume, etc. These attributes are stored as data arrays whose number of components is defined by the user (see 117
examples in Figure 2). Attributes can be point-, cell-, or field-based: PointData attributes are associated with the 118
points whereas CellData attributes are associated with each polyhedron and assumed constant over the entire 119
cell. FieldData gives a characteristic of the entire mesh – a common example is the time stamp. 120

3.2. Pseudocode 121

Figure 2 provides a pseudo code of the concepts of Section 3.1. The first three blocks create the VTK objects for the 122
unstructured grid and points objects. After these objects are created, three nested for-loops are necessary – cell, 123

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

face, and vertex – to populate the vtkPoints object and to create the ID list of the VTK_POLYHEDRON cell type. 124
In the vertex loop, I insert the points coordinate into vtkPoints and add the vertex index into the vtkIdList of 125
VTK_POLYHEDRON (Figure 1, blue numbers). In the face loop, the number of vertices per face (Figure 1, pink 126
numbers) are inserted into the vtkIdList of VTK_POLYHEDRON. After the face loop, I insert each cell attribute to 127
its corresponding object. 128

After the nested for-loops, cell attributes objects (e.g. cellID, cellVolume) and are inserted into the 129
unstructured grid as a CellData attribute. The points and their PointData attributes, if any, are also inserted 130
into the unstructured grid. Finally, I output the unstructured grid using a vtkWriter object. 131

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

// create unstructured grid and points (i.e. vertices) 1
create vtkUnstructuredGrid object 2
create vtkPoints object 3
 4
// create field attributes (e.g. vtkTime) 5
create vtkAttribute object 6
set vtkAttribute number of components (scalar==1; vector==3) 7
set vtkAttribute number of tuples = 1 8
set vtkAttribute name 9
 10
// create cell attributes (e.g. cellID, cellVolume, cellPosition) 11
create vtkAttribute object 12
set vtkAttribute number of components (scalar==1; vector==3) 13
set vtkAttribute number of tuples = number of cells 14
set vtkAttribute name 15
 16
cellCounter = 0 17
loop through cells 18
 create vtkIdList object to represent cell 19
 20
 // start creating the face stream as defined in Code XXX 21
 insert number of faces to vtkIdList 22
 loop through faces 23
 insert number of vertices to vtkIdList 24
 loop through vertices (using right-hand rule with inwards surface normal) 25
 insert vertex to vtkPoints 26
 insert vertexID to vtkIdList 27
 insert cell (i.e. vtkIdList) as a VTK_POLYHEDRON to vtkUnstructuredGrid 28
 29
 // add attributes to cell 30
 insert cellCounter to cellID 31
 insert volume of cell to cellVolume 32
 insert (x,y,z) position of cell to cellPosition 33
 34
 update cellCounter 35
 36
// add cell data to unstructured grid 37
insert cellID to vtkUnstructuredGrid 38
insert cellVolume to vtkUnstructuredGrid 39
insert cellPosition to vtkUnstructuredGrid 40
 41
// add point data to unstructured grid 42
insert vtkPoints to vtkUnstructuredGrid 43
 44
// populate vtkTime and add field data to unstructured grid 45
insert simulation time to vtkTime 46
insert vtkTime to vtkUnstructuredGrid 47
 48
// output unstructured grid 49
create vtkWriter object 50
set vtkWriter data to output (i.e. vtkUnstructuredGrid) 51
set vtkWriter file name 52
set vtkWriter file type (e.g. binary, ASCII) 53
update vtkWriter (i.e. outputs file) 54
 55
// add unstructured grid filename to time series file 56
update time series file 57 132

Figure 2: Pseudocode to create a polyhedral vtkUnstructuredGrid with VTK_POLYHEDRON cell type. 133

When the simulation iterates over time (or is minimized), one can write a ParaView timeseries file (.pvd) with the 134
time stamp of each iteration and its corresponding “.vtu” unstructured grid file. For this iterative case, the 135
pseudocode of Figure 2 would be contained within an iterative loop and each “.vtu” file needs the time stamp as a 136
FieldData (second code block of Figure 2). Supplementary Figure S1 illustrates a timeseries for 5 iterations 137
implemented in the voro++’s modified example random_points_vtk.cc. 138

 139

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

3.3. Sample code using voro++ 140

Figure 3 shows a snippet of random_points_vtk.cc with point coordinates insertion followed by the face loop 141
where the vtkFaces object is populated for a single polyhedron. Note that in the voro++ library, the container 142
that holds the Voronoi cells does not have a global list of vertices. The vertices are, instead, listed per cell. When 143
two cells share a face with 𝑁 vertices, these 𝑁 vertices are listed twice in the global list. Thus, in the example 144
random_points_vtk.cc, the global list of vertices, points, has repeated point coordinates. Other codes, 145
however, may have a unique list of global vertices in which case the variable containerVertexStartIndex 146
would not be necessary. 147

// loop vertices and store their position
for(unsigned int i=0 ; i<v.size() ; i+=3) {
 points->InsertNextPoint(v[i], v[i+1], v[i+2]);
}

// loop over all faces of the Voronoi cell and populate vtkFaces with
// numberOfVerticesPerFace and their vertex indices
int j,k=0;
int numberOfVerticesPerFace;
while((unsigned int)k<f_vert.size()) {
 numberOfVerticesPerFace = f_vert[k++];
 vtkFaces->InsertNextId(numberOfVerticesPerFace); // number of vertices in 1 face

 j = k+numberOfVerticesPerFace;
 while(k<j) {
 int containerIndex = f_vert[k++] + containerVertexStartIndex;
 vtkFaces->InsertNextId(containerIndex);
 } // end single face loop
} // end vertices loop 148

Figure 3: Snippet of point coordinate insertion and VTK_POLYHEDRON implemented in random_points_vtk.cc. 149

4. Implementation: ParaView basics 150
ParaView[15] works with visualization pipelines of sources, filters, and outputs. Figure 4 shows the main GUI 151
components. In the “Pipeline Browser,” the user can view sources and filters along with their pipeline hierarchy 152
indicated by the indentation. The user can select the “eye” on the left of the object to make it visible in the “3D 153
View.” The “Properties” and “Information” panels are below the Pipeline Browser. These will display the properties 154
and information of the pipeline selected object. The Properties panel also has the “Advanced Toggle” button 155
which, if selected, displays additional properties about the object. Above the Pipeline Browser and 3D View, in the 156
“Menu Bar,” the user can access most of ParaView’s features and “Toolbars,” which provides shortcuts to 157
commonly used features. For an extended basic tutorial, refer to ParaView’s tutorial: The ParaView Tutorial 158
version 5.4.1 [24], section – although an older version, the basics are mostly compatible with recent versions 5.9.X. 159

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

 160

Figure 4: Paraview GUI. Figure adapted from Moreland [24] using voro++’s modified example random_points_vtk.cc. (A) 161
The entire sample colored by cell volume. (B) After "Threshold" filter is applied with the criterion 0 ≤ cellVolume ≤ 0.5 (blue 162
box). (C) A cross sectional plane at the plane indicated in panel A – for details, see SI Section 3. 163

5. Illustrative examples: relevant filters and tools for 3D vertex models 164
All filters in ParaView are accessible through the Menu Bar (Filters -> Alphabetical) or through shortcuts in the 165
Toolbar. The “Threshold” filter allows the user to define a scalar’s minimum and maximum threshold values. The 166
cells within these limits will be displayed in the viewer. Figure 4 shows the entire Voronoi container before (panel 167
A) and after the Threshold filter is applied (panel B and blue box). 168

The “Glyph” filter is useful to visualize vectorial data that can be displayed as a line to represent orientation or as 169
an arrow that also includes the direction. In physics-based model, this representation is helpful to visualize velocity 170
fields and cell orientation (polarity). Sahu, Schwarz [25] used the glyph filter to visualize cell stratification in the 171
presence of heterotypic surface tension as shown in the blue-green-purple cells of Figure 5. The stratification 172
becomes more evident with the cell orientation illustrated by the line glyphs positioned at the cell center. For 173
more details on cell orientation, see Supplementary Information (SI) Section 2. 174

For simulations where cell velocity data is available, the filter “Stream Tracer” produces streamlines using a Runge-175
Kutta integrator on the velocity data. Here, to illustrate a meaningful example of 3D streamlines, I use a simulation 176
from Sanematsu, Erdemci-Tandogan [26] to illustrate 3D streamlines around a spherical object as well the cells’ 177
velocity field as arrow Glyphs. 178

 179

Figure 5: Glyph filter to show (A) cell orientation (reproduced from Sahu, Schwarz [25]; licensed under a Creative Commons 180
Attribution (CC BY) license); (B) velocity field; and (C) Streamlines generated by Stream Tracer filter. 181

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

The “Calculator” filter manipulates point or cell data by performing arithmetic operations. For cell-shape based 182

models [10], Figure 6A shows how to calculate the cell shape parameter 𝑠 = 𝑆/𝑉2/3, where 𝑆 is the observed cell 183
surface area and 𝑉 is the cell observed volume. This example shows how a filter can be used to derive data and 184
reduce storage space. 185

In addition to filters, “Interactive tools” are very useful during development and development (Figure 6B, C). They 186
display cell or point data as the user hover the mouse over cells. For implementation details refer to SI Section 4. 187
Another practical feature is the “File -> Save State”, which saves the pipeline workflow in a “.pvsm” file. This state 188
file can be later loaded (File -> Load State) and the pipeline workflow is applied to the original data or another 189
dataset (see SI Section 5). 190

 191

Figure 6: voro++’s modified example import_vtk.cc. (A) Calculation of cell shape parameter (𝑠 = 𝑆/𝑉2/3) using the 192
“Calculator” filter (red rectangle) to manipulate CellData. (B) Display of “Hover Cells On” of the purple outlined cell. (C) Pink 193
outlined cells selected using “Interactive Select Cells On”: green numbers are the cellShape value that were selected by clicking 194
on “Cell Labels” on the top right-hand corner. 195

6. Conclusions 196
I present an efficient and powerful way to interactively visualize and analyze physics-based 3D vertex models using 197
ParaView, an open-source software designed for scientific visualization of extremely large datasets. As ParaView 198
uses the VTK library for its data structures, I first modify a very simple example from the voro++ library, 199
cell_statistics_vtk.cc, to show how to “convert” a polyhedron’s vertices and faces into VTK data 200
structures. I provide a general way to loop through a 3D-vertex model’s cells, faces, and points to create the VTK 201
objects. I modify an example from the voro++ library, random_points_vtk.cc, to implement the pseudocode 202
and create a timeseries file for time-evolving simulations. To visualize and analyze 3D vertex models, I present 203
relevant ParaView filters for physics-based models by visualizing scalar and vectorial data. Other relevant tools that 204
can be useful for debugging, such as the “Hovel Cells On,” are also presented. To generate such examples, codes 205
are available in vis3Dvertex. 206

To start using ParaView can be a cumbersome task as the user has to become familiar with the pipeline workflow, 207
VTK data structures, and polyhedral data structures. However, its existing capabilities of fast visualization, 208
interactivity, and analysis are very useful to understand 3D vertex-models results in a timely manner. Here, I 209
present examples to try to bridge the gap for biologists, biophysicists, engineers, and modelers so ParaView can be 210
used to its potential. In addition, if it comes a day that 3D vertex models need CPU parallelization, ParaView is 211
ready to be used. 212

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://github.com/pcsanematsu/vis3Dvertex
https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

Acknowledgements 213
This work is supported by NIH grants R01GM117598 and R01HD099031. Simulations were performed on Syracuse 214
University HTC Campus Grid, which is supported by NSF award ACI-1341006. The author thanks Dr. Lisa Manning’s 215
mentorship and support for the realization of this manuscript, Dr. Larne Pekowski for patiently helping with 216
Singularity and computing resources, and Dr. Preeti Sahu for providing valuable comments on this article. 217

References 218
1. Banavar, S.P., et al., Mechanical control of tissue shape and morphogenetic flows during vertebrate body 219

axis elongation. Scientific Reports, 2021. 11(1): p. 8591. 220
2. Kim, S., et al., Embryonic tissues as active foams. Nature Physics, 2021. 17(7): p. 859-866. 221
3. Farhadifar, R., et al., The Influence of Cell Mechanics, Cell-Cell Interactions, and Proliferation on Epithelial 222

Packing. Current Biology, 2007. 17(24): p. 2095-2104. 223
4. Bi, D., et al., Motility-driven glass and jamming transitions in biological tissues. Phys Rev X, 2016. 6(2). 224
5. Fletcher, Alexander G., et al., Vertex Models of Epithelial Morphogenesis. Biophysical Journal, 2014. 225

106(11): p. 2291-2304. 226
6. Park, J.-A., et al., Unjamming and cell shape in the asthmatic airway epithelium. Nature Materials, 2015. 227

14(10): p. 1040-1048. 228
7. Okuda, S. and K. Fujimoto, A Mechanical Instability in Planar Epithelial Monolayers Leads to Cell Extrusion. 229

Biophys J, 2020. 118(10): p. 2549-2560. 230
8. Krajnc, M., et al., Fluidization of epithelial sheets by active cell rearrangements. Phys Rev E, 2018. 98(2-1): 231

p. 022409. 232
9. Honda, H., M. Tanemura, and T. Nagai, A three-dimensional vertex dynamics cell model of space-filling 233

polyhedra simulating cell behavior in a cell aggregate. J Theor Biol, 2004. 226(4): p. 439-53. 234
10. Merkel, M. and M.L. Manning, A geometrically controlled rigidity transition in a model for confluent 3D 235

tissues. New Journal of Physics, 2018. 20(2): p. 022002. 236
11. Okuda, S., et al., Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based 237

on a reversible network reconnection framework. Biomechanics and Modeling in Mechanobiology, 2013. 238
12(5): p. 987-996. 239

12. Persistence of Vision Pty. Ltd., Persistence of Vision Raytracer. 2004. 240
13. MATLAB, version 9.4.0.813654 (R2018a). 2018, Natick, Massachusetts: The Mathworks Inc. 241
14. Childs, H., et al., VisIt: An end-user tool for visualizing and analyzing very large data. 2012. 242
15. Ahrens, J., B. Geveci, and C. Law, Paraview: An end-user tool for large data visualization. The visualization 243

handbook, 2005. 717. 244
16. Caswell, T.A., et al., matplotlib/matplotlib: REL: v3.3.2. 2020, Zenodo. 245
17. Woodring, J., et al., Analyzing and visualizing cosmological simulations with ParaView. The Astrophysical 246

Journal Supplement Series, 2011. 195(1). 247
18. Schroeder, W., et al., The Visualization Toolkit: An Object-oriented Approach to 3D Graphics. 2006: 248

Kitware. 249
19. Rycroft, C., Voro++: A three-dimensional Voronoi cell library in C++. 2009, Lawrence Berkeley National 250

Lab.(LBNL), Berkeley, CA (United States). 251
20. Zhu, D.-F., et al., A 3D Voronoi and subdivision model for calibration of rock properties. Modelling and 252

Simulation in Materials Science and Engineering, 2017. 25(8): p. 085005. 253
21. Song, Y., et al., Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. 254

Materials & Design, 2010. 31(9): p. 4281-4289. 255
22. Ghazvinian, E., M.S. Diederichs, and R. Quey, 3D random Voronoi grain-based models for simulation of 256

brittle rock damage and fabric-guided micro-fracturing. Journal of Rock Mechanics and Geotechnical 257
Engineering, 2014. 6(6): p. 506-521. 258

23. Chen, J., et al., On the crushing response of the functionally graded metallic foams based on 3D Voronoi 259
model. Thin-Walled Structures, 2020. 157: p. 107085. 260

24. Moreland, K., The ParaView Tutorial. n.d. p. 151. 261
25. Sahu, P., J. Schwarz, and M.L. Manning, Geometric signatures of tissue surface tension in a three-262

dimensional model of confluent tissue. New Journal of Physics, 2021. 263

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

26. Sanematsu, P.C., et al., 3D viscoelastic drag forces contribute to cell shape changes during organogenesis 264
in the zebrafish embryo. Cells & Development, 2021: p. 203718. 265

 266

B- Required Metadata 267
 268

Table 1 – Code metadata 269

Nr Code metadata description

C1 Current Code version V1.0.0

C2 Permanent link to code / repository used
of this code version

https://github.com/pcsanematsu/vis3Dvertex

C3 Legal Code License GNU General Public License v2.0

C4 Code Versioning system used git

C5 Software Code Language used c++

C6 Compilation requirements, Operating
environments & dependencies

Required libraries: voro++, Eigen3, VTK; examples were
tested on a Linux machine with the Singularity container
image available on the release v1.0.0:
https://github.com/pcsanematsu/vis3Dvertex/releases/tag/
v1.0.0.

C7 If available Link to developer
documentation / manual

https://github.com/pcsanematsu/vis3Dvertex#readme

C8 Support email for questions pcsanema@syr.edu

 270

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464601doi: bioRxiv preprint

https://github.com/pcsanematsu/vis3Dvertex
https://github.com/pcsanematsu/vis3Dvertex/releases/tag/v1.0.0
https://github.com/pcsanematsu/vis3Dvertex/releases/tag/v1.0.0
https://github.com/pcsanematsu/vis3Dvertex#readme
https://doi.org/10.1101/2021.10.15.464601
http://creativecommons.org/licenses/by/4.0/

	Title: Interactive 3D visualization and post-processing analysis of vertex-based unstructured polyhedral meshes with ParaView
	Author: Paula C. Sanematsu1
	Abstract
	Keywords
	1. Introduction
	2. Problems and Background
	3. Paraview and VTK framework: Creating 3D polyhedral unstructured grids
	3.1. VTK data structures and VTK polyhedral grids
	3.2. Pseudocode
	3.3. Sample code using voro++

	4. Implementation: ParaView basics
	5. Illustrative examples: relevant filters and tools for 3D vertex models
	6. Conclusions
	Acknowledgements
	References
	B- Required Metadata
	Table 1 – Code metadata

