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Abstract

Microbial eukaryotes are ubiquitous in the environment and play important roles in key
ecosystem processes, including accounting for a significant portion of global primary
production. Yet, our tools for assessing the functional capabilities of eukaryotic
microbes in the environment are quite limited because many microbes have yet to be
grown in culture. Maximum growth rate is a fundamental parameter of microbial
lifestyle that reveals important information about an organism’s functional role in a
community. We developed and validated a genomic estimator of maximum growth rate
for eukaryotic microbes, enabling the assessment of growth potential for both cultivated
and yet-to-be-cultivated organisms. We produced a database of over 700 growth
predictions from genomes, transcriptomes, and metagenome-assembled genomes, and
found that closely related and/or functionally similar organisms tended to have similar
maximal growth rates. By comparing the maximal growth rates of existing culture
collections with environmentally-derived genomes we found that, unlike for prokaryotes,
culture collections of microbial eukaryotes are only minimally biased in terms of growth
potential. We then extended our tool to make community-wide estimates of growth
potential from over 500 marine metagenomes, mapping growth potential across the
global oceans. We found that prokaryotic and eukaryotic communities have highly
correlated growth potentials near the ocean surface, but that this relationship
disappears deeper in the water column. This suggests that fast growing eukaryotes and
prokaryotes thrive under similar conditions at the ocean surface, but that there is a
decoupling of these communities as resources become scarce deeper in the water column.
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Introduction 1

Microbial eukaryotes are ubiquitous in the environment, and play diverse roles relevant 2

to ecosystem (e.g., [1, 2]) and human (e.g., [3, 4]) health. In the ocean in particular, 3

protists dominate, accounting for approximately 30% of total marine biomass [5]. 4

Among marine primary producers alone, protists account for a third of total biomass [5]. 5

Marine systems account for about half of all global primary production [6], so that the 6

abundance of protists in these systems suggests an important overall role for protists in 7

regulating global carbon cycles [7], among other biogeochemical cycles. And yet, our 8

tools for studying the ecology and evolution of eukaryotic microbes are still quite 9

limited, at least in comparison to their prokaryotic neighbors [8]. 10

Several recent developments have greatly advanced our ability to survey the ecology 11

of microbial eukaryotes directly from the environment using metagenomics. Large-scale 12

efforts to augment the sizes of our existing genomic and transcriptomic databases, 13

specifically the Marine Microbial Eukaryote Transcriptome Sequencing Project 14

(MMETSP; [9]), have expanded our ability to use database-dependent approaches for 15

metagenomic analysis for both taxonomic and functional classification (e.g., [10–13]). 16

At the same time, novel approaches for binning and validation have been applied by 17

multiple groups to reconstruct high-quality metagenome-assembled genomes (MAGs) 18

from environmental datasets [14–16]. 19

With these new environmentally-derived genomes come new challenges – specifically 20

that of inferring features of an organism’s physiology and ecology from its genome 21

sequence, a persistent challenge in metagenomics [17–19]. One trait of particular interest 22

is the maximal growth rate of an organism, a fundamental parameter of microbial 23

lifestyle that can tell us a great deal about an organism’s ecology [20–22]. Among 24

microbial eukaryotes, minimal doubling times range over two orders of magnitude, from 25

hours (e.g., [23, 24]) to days (e.g., [25]), and potentially even weeks (e.g., [26, 27]). 26

Temperature sets a well-studied upper-bound on the maximal growth rates of microbial 27

eukaryotes (see work on the Eppley Curve, e.g., [28–33]), but there is a great deal of 28

variation among species below this threshold. For prokaryotes, genomic signals of 29

translation optimization can be leveraged in order to predict the maximal growth rates 30

of an organism [20,22,34]. Here, we show that the same signals, specifically the codon 31

usage bias of highly expressed genes, can be used to estimate the growth potential of 32

eukaryotic microbes directly from their genome sequences. We compiled a database of 33

178 species of eukaryotic microbes with recorded growth rates in culture and either 34

publicly available genomes or transcriptomes. We then used this database to build a 35

genomic predictor of growth potential for eukaryotic microbes. We applied this tool to a 36

set of 465 MAGs and 517 metagenomes to derive ecological insights about the variation 37

of eukaryotic growth potential across organisms and environments. 38

Results and Discussion 39

Predicting maximal growth rates of eukaryotic microbes 40

We compiled an initial dataset of maximal growth rates and optimal growth 41

temperatures recorded in culture for 178 species with either genomic or transcriptomic 42

information publicly available (S1 Fig, S1 Table). A sizeable portion of this dataset 43

corresponded to marine eukaryotic microbes, with 101 entries corresponding to 44

organisms in the MMETSP, though eukaryotic microbes from other environments were 45

also represented, including important human pathogens (e.g., Giardia intestinalis, 46

Entamoeba histolytica, Leshmania spp., etc.). In general, eukaryotic microbes with 47

genomes in GenBank, which tended to be human associated, had faster maximal growth 48
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rates than the marine eukaryotic microbes found in MMETSP (S1 Fig). This pattern is 49

similar to that found in prokaryotes, where human-associated bacteria and archaea 50

typically had much faster growth rates than those found in marine systems [20]. 51

One of the most reliable signals of optimization for rapid growth in prokaryotic 52

genomes is high codon usage bias (CUB) in highly expressed genes [22]. The degeneracy 53

of the genetic code means that multiple codons may code for the same amino acid, but 54

not all organisms use alternative codons at equal frequencies. In fact, many organisms, 55

both prokaryotic and eukaryotic, are biased in their usage of alternative codons. The 56

codon usage patterns of genes are thought to be optimized to the relative abundance of 57

tRNAs within the cell, and this optimization is particularly apparent among 58

highly-expressed genes in fast-growing species [35–42]. The basic intuition here is that 59

CUB is a result of optimization of genes for rapid translation, which in turn facilitates 60

rapid growth. We wanted to see whether such patterns could be leveraged to predict the 61

growth rates of eukaryotic microbes [43]. For each genome or transcriptome, we 62

calculated the CUB of a set of highly expressed genes relative to the expected CUB 63

calculated from all other coding sequence in that genome or transcriptome (details of 64

these calculations can be found in Materials and Methods; [20,39,44]). Because 65

ribosomal proteins are expected to have high expression across species and many 66

physiological conditions [20,22], we take these as our set of highly expressed genes for 67

all analyses (see Methods and S2 Table). We found a significant negative relationship 68

between CUB of highly expressed genes calculated in this way and the minimum 69

doubling time of an organism (Pearson’s correlation with log-transformed doubling 70

times, ρ = −0.400, p = 3.14 × 10−8). Thus we confirmed that high CUB is a signal of 71

growth rate optimization among microbial eukaryotes. 72

We then built a linear model relating CUB of highly expressed genes and optimal 73

growth temperature to the doubling times of eukaryotic microbes (Fig 1a). We found 74

that such a model could explain about a third of variation in doubling time among 75

organisms (linear regression, r2 = 0.328), and that both CUB (p = 1.16 × 10−7) and 76

optimal growth temperature (p = 1.89 × 10−10) were significant predictors in the model. 77

Interestingly, similar to what we have previously reported for prokaryotes [20], we found 78

that for eukaroytic microbes the relationship between CUB and doubling time saturated 79

at a threshold doubling time, after which CUB no longer changed with increasing 80

doubling time (Fig 1b). In our earlier work on prokaryotes, we took the presence of this 81

threshold as evidence that for slow-growing organisms who experienced little selection 82

for optimized codon usage, drift would overwhelm the evolutionary process [20]. Thus 83

prokaryotes could be divided into two distinct evolutionary regimes related to their 84

growth strategies. It appears that a similar dynamic may be at work among eukaryotes, 85

although the relatively small number of sequenced eukaryotic microbes with minimal 86

doubling times greater than 40 hours makes this hard to assess. If such a threshold does 87

exist for eukaryotes, it is at a much higher doubling time than the one seen in 88

prokaryotes (40 hours versus 5 hours respectively; [20]), likely due to constraints on 89

eukaryotic growth related to cell size and complexity. In any case, similar to the 90

threshold effect seen for prokaryotes, we note that above this threshold, predicted 91

maximum growth rates are likely to be overestimated. Thus, our model can only 92

reliably predict minimum doubling times up to 40 hours, after which we can only infer 93

that a microbe grows “very slowly”. 94

Finally, we asked if our eukaryotic model of growth improved predictions for 95

eukaryotic organisms relative to the predictions made by previous tools developed for 96

prokaryotes. Consider that tools able to predict growth rate from CUB already exist, 97

though they have been trained exclusively on prokaryotic organisms [20,22]. We applied 98

these prediction tools to our eukaryotic dataset and found that they systematically 99

overestimated the growth rates of eukaryotic organisms, often by more than an order of 100

June 26, 2022 3/17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2021.10.15.464604doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464604
http://creativecommons.org/licenses/by/4.0/


magnitude, leading to quite poor performance on eukaryotes (Fig 1c-d). Thus our 101

eukaryote-specific model is an important development, as prokaryote-specific models 102

cannot accurately predict eukaryotic growth rates. We have incorporated this 103

eukaryote-specific model into the open-source and user-friendly growth prediction R 104

package gRodon, which we previously developed to predict prokaryotic growth rates 105

(https://github.com/jlw-ecoevo/gRodon; [20]). 106

Environmentally derived genomes reveal biases in culture 107

collections and ecological patterns 108

We obtained a large set of 1669 eukaryotic MAGs assembled and binned from the Tara 109

Oceans metagenomes by two separate groups [15, 16]. Of these, we were able to predict 110

the growth rates of 465 MAGs in which we found at least 10 ribosomal proteins (see 111

Materials and Methods for details). These MAGs were uniformly slow-growing, with an 112

average minimum doubling time of approximately one day, and none with a minimum 113

doubling time less than 10 hours long (Fig 2a). These MAGs provide a baseline 114

expectation of the maximal growth rates of eukaryotic microbes in marine environments, 115

and while the reconstruction of MAGs from the environment is not a wholly unbiased 116

process, we expect these MAGs to be more representative of the distribution of 117

organisms living in the environment than what we find within our culture 118

collections [20]. In fact, we found that MAGs were estimated to have only slightly 119

longer doubling times than cultured organisms in MMETSP (27.5 vs 24.5 hours 120

respectively; t-test, p = 9.25 × 10−4; Fig 2a). The differences between these two 121

datasets were most apparent when looking at the tails of the distributions of growth 122

rates, where the MMETSP had a long tail of fast-growing organisms that was absent 123

among the MAGs (Fig 2a,b). Altogether the data suggest that our culture databases of 124

eukaryotes do a relatively good job at capturing an accurate distribution of growth rates 125

among organisms, though they are slightly enriched for fast growing organisms that are 126

rare in the environment. This result is in stark contrast to the pattern seen among 127

marine prokaryotic organisms where culture collections were shown to be systematically 128

biased towards fast-growers [20]. 129

Within the set of MAGs several patterns were apparent. First, while organisms 130

classified as phototrophic and heterotrophic had largely overlapping growth rate 131

distributions (Fig 2c), heterotrophs tended to grow faster than phototrophs (t-test, 132

p = 1.58 × 10−3; trophic classification on the basis of the presence of metabolic 133

pathways in a MAG, taken from Alexander et al. [15]). This reflects previous findings 134

that at higher temperatures heterotrophic marine eukaryotic microbes had faster growth 135

rates than phototrophic ones, though phototrophs outgrew heterotrophs at lower 136

temperatures because their growth rates decreased less dramatically with decreases in 137

temperature [33]. 138

Just as growth rates varied among functional groups, they also systematically varied 139

among taxonomic groups (Fig 2d). Overall, marine fungi had the fastest average 140

estimated growth rates. MAGs belonging to the Chlorophyta also seemed to be 141

relatively fast growing, with a somewhat narrow range of growth rates clustered around 142

a doubling time of about a day. By contrast Dinoflagellata, Haptophyta, and to some 143

degree Ochrophyta all had a considerable number of very slow growing representatives 144

(minimal doubling time > 40 hours), though these groups had very broad distributions 145

of growth rates and included many faster growing members as well. The diversity of 146

growth rates in these groups is perhaps not surprising, as the cell sizes of diatom and 147

dinoflagellate species vary over two orders of magnitude, indicating a wide diversity of 148

morphologies and environmental niches [45,46]. Overall, the distribution of maximal 149

growth rates varied across taxonomic groups, likely a product of both specialization for 150
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different niches and historical contingency. 151

In accordance with the variation of growth potential across taxonomic groups, we 152

found that closely related organisms had more similar maximal growth rates than 153

distantly related organisms (S2 Fig). That is, the absolute difference in doubling times 154

between two organisms increased as a function of the patristic distance (distance from 155

tip-to-tip on a phylogeny) between the two organisms, though this relationship had 156

little explanatory value (linear regression, p = 2 × 10−16, β = 0.26, r2 = 0.01). In any 157

case, below a threshold distance of 0.1 substitutions per site maximum growth rates 158

could be extrapolated between relatives with an average absolute error under six hours 159

(S2 Fig), which may be taken as an acceptable level of error for a general guess at 160

overall lifestyle. This means that for 18S rRNA amplicon sequence variants (ASVs) 161

where a genus-level relative has a genome or transcriptome available, rough estimates of 162

growth potential may be inferred, similar to prokaryotes [20]. 163

Predicting the growth potential of prokaryotic and eukaryotic 164

communities from metagenomes 165

It is often difficult to reconstruct high-quality MAGs for many organisms, both 166

prokaryotic and eukaryotic, from the environment. Even when we cannot easily obtain 167

MAGs representative of the entire microbial community in a particular environment, it 168

is possible to apply CUB-based predictors to a metagenome to estimate the average 169

growth potential of a community [22]. The prokaryotic growth predictor previously 170

implemented in the gRodon package allowed the user to predict the median 171

community-wide maximal growth rate of the prokaryotic community [20]. Our 172

eukaryotic model can be similarly applied to calculate the median maximal growth rate 173

of the eukaryotic community represented in a metagenomic sample. To demonstrate this 174

application, we acquired assemblies of 610 globally-distributed marine metagenomic 175

samples from the BioGEOTRACES dataset [47]. This dataset is particularly useful for 176

our purposes because samples were not size-fractionated, allowing both prokaryotic and 177

eukaryotic communities to be assessed simultaneously. We sorted these metagenomes 178

into prokaryotic and eukaryotic contigs and applied prokaryotic gRodon (using 179

“metagenome” mode) to the prokaryotic sequences and eukaryotic gRodon (using 180

“eukaryote” mode) to the eukaryotic sequences. Because our eukaryotic model only uses 181

one measure of codon usage bias applied on a gene-by-gene basis, it is similar to 182

“metagenome” mode from prokaryotic gRodon (v1.0.0) as well as growthpred, and can be 183

applied as-is directly to mixed-species metagenomic data [20,22]. See Materials and 184

Methods for details of this analysis. 185

Overall, we were able to predict the average community-wide maximal growth rates 186

of the prokaryotic and eukaryotic communities in 517 samples with at least 10 ribosomal 187

proteins each that could be classified as eukaryotic or prokaryotic (Fig 3; S3 Fig). The 188

correlation between the growth potentials of prokaryotic and eukaryotic communities at 189

the ocean surface was striking (Pearson correlation of samples from < 100 meters, 190

ρ = 0.566, p = 1.08 × 10−27; Fig 3a), though this relationship disappeared among 191

deeper samples (Pearson correlation of samples from > 100 meters, ρ = −0.101, 192

p = 0.146; Fig 3b). A linear model confirmed a significant interaction between depth 193

and the relationship between eukaryotic and prokaryotic growth rates (linear regression 194

of prokaryotic growth rates, βeukaryotes = 0.0980, peukaryotes = 3.05 × 10−7, 195

βdepth = −0.0106, pdepth = 5.72 × 10−9, βeukaryotes:depth = 1.43 × 10−4, 196

peukaryotes:depth = 1.74 × 10−5). Notably, this was not simply an effect of temperature in 197

the model, as the CUB of eukaryotic and prokaryotic communities co-varied across 198

samples (S4 Fig). Additionally, these patterns cannot be attributed to differences in 199

coverage. While doubling time did decrease with the relative abundance of eukaryotic 200
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contigs in a sample, as would be expected, samples with a lower proportion of 201

eukaryotes were not particularly skewed in their estimated growth rates (S5 Fig). 202

It is perhaps not surprising that the growth potentials of eukaryotic and prokaryotic 203

communities would be correlated, since conditions favorable to more copiotrophic 204

lifestyles (e.g., high nutrients) should be similar across both prokaryotes and eukaryotes. 205

The observed decoupling of the growth potential of eukaryotic and prokaryotic 206

communities with depth is consistent with a model of high productivity at the surface 207

linked through particle sinking to productivity at deeper depths. We found that 208

eukaryotic growth potential at depth (> 100 meters) was correlated with eukaryotic, but 209

not prokaryotic, growth potential at the surface (< 100 meters), suggesting that 210

eukaryotic productivity at the surface is a primary driver of community composition at 211

deeper depths (S6 Fig), likely in part due to the relationship between cell size and 212

sinking rate [48,49]. The decoupling of eukaryotic and prokaryotic growth potential 213

with depth is also reflected in the increasing heterotrophy of the eukaryotic community 214

as depth increases. Leveraging the MAGs discussed in the last section which had been 215

previously mapped to a globally distributed set of marine metagenomes [15,50], we 216

found that MAGs that were predicted to be phototrophic dropped off in abundance 217

relative to heterotrophic MAGs after 100 meters (S7 Fig). 218

Conclusions 219

We developed and validated a new tool to estimate the growth potential of eukaryotic 220

microbes directly from genomic and transcriptomic sequences. Using this tool, we were 221

able to predict the maximal growth rates of a large set of uncultured marine organisms 222

directly from reconstructed MAGs. We found distinct patterns in growth potential 223

across functional and taxonomic groups and assessed existing culture collections for 224

functional bias. We then applied our tool to a large set of marine metagenomes to 225

predict the community-wide growth potential of eukaryotes along large ocean transects. 226

We found a clear positive relationship between eukaryotic and prokaryotic growth 227

potential at the ocean surface, suggesting that fast growing organisms from multiple 228

domains of life thrive under similar conditions, and the same for slow growing 229

organisms. With an increasing number of environmental metagenomes published each 230

year, for many environments it will now be possible to build high-resolution maps of 231

microbial growth potential across domains, yielding insights into the drivers of microbial 232

community structure and function. 233

Our tool demonstrates the clear utility of genomic and metagenomic trait estimators 234

for eukaryotic microbes. Yet, when working with eukaryotic microbes there are 235

relatively few bioinformatic resources both in terms of methods and databases. Moving 236

forward, as the complexity and subtlety of our bioinformatic tool-set increases, 237

eukaryotic microbes represent a new frontier for methods development and ecological 238

investigations with molecular data (e.g., [11, 12,14–16]). 239

Materials and Methods 240

The code to generate all figure and analysis in the paper can be found at 241

https://github.com/jlw-ecoevo/eeggo. The new gRodon v2 R package with the 242

eukaryotic growth rate model implemented can be found at 243

https://github.com/jlw-ecoevo/gRodon2. All visualizations were made using the 244

ggplot2 [51] and ggpubr [52] R packages. 245
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Training Data 246

From a list of protist species with transcriptomes in MMETSP and/or genomes in 247

GenBank, we searched for recorded growth rates in culture, alongside the temperatures 248

at which these rates were recorded, from the scientific literature (S1 Fig, S1 Table). If 249

multiple rates were reported in culture, we always took the fastest rate we were able to 250

find. We converted between doubling time and specific growth rate using the equation: 251

doubling time = ln(2)
growth rate . When growth rate was reported in terms of divisions per 252

day we instead used the conversion equation: doubling time = 1
growth rate . A 253

considerable number of growth rates recorded for marine organisms came from previous 254

database compilation efforts by others [33,53]. 255

All MMETSP transcriptome assemblies with annotated coding sequence were 256

obtained from https://zenodo.org/record/3247846 [54]. Species that had a 257

eukaryotic prey species listed under experimental conditions were excluded from further 258

analysis to reduce the possibility of contamination. For each species in MMETSP, we 259

selected the single largest transcriptome assembly. We then removed any potential 260

cross-contamination between species by identifying possible contaminants using CroCo 261

v1.1 [55] with a threshold of 97% identity and otherwise default parameters 262

(--suspect-id 97), removing any transcripts listed as “suspect”. We additionally 263

classified transcripts using kraken2 v2.1.1 [13,56] with the ‘nt’ database and default 264

parameters, and removed any transcripts classified as viruses or prokaryotes in order to 265

remove any potential contaminants. 266

For assemblies from GenBank with growth rates listed in our dataset we first ran 267

EukMetaSanity v1.0.0 [11], which incorporates repeat prediction [57], reference protein 268

selection [12,58], and ab-initio gene predictions to determine putative gene loci. The 269

output GeneMark-EP/ES predictions were used for analysis [59, 60]. We then classified 270

coding sequences using kraken2 v2.1.1 [13,56] with the ‘nt’ database and default 271

parameters, and removed any transcripts classified as viruses or prokaryotes in order to 272

remove any potential contaminants. 273

Fitting the Model 274

For each transcriptome in our dataset we used the annotations provided [54] (generated 275

using dammit [61]) to locate coding sequence corresponding to ribosomal proteins. For 276

each genome in our dataset we searched among translated coding sequences for 277

ribosomal proteins using blastp v2.10.1 [62] against a custom blast database of ribosomal 278

proteins of eukaryotic microbes drawn from the Ribosomal Protein Gene Database (all 279

genes coding for ribosomal proteins available from Dictyostellium discoideum, Giardia 280

lamblia, Phaeodactylum tricornutum, Plasmodium falciparum, Thalassiosira pseudonana, 281

and Toxoplasma gondii ; S2 Table; [63]). In all downstream analyses we omitted any 282

genomes or transcriptomes with fewer than 10 ribosomal proteins detected [20,22]. 283

For each coding sequence corresponding to a ribosomal protein in each genome or 284

transcriptome we calculated the MILC statistic of codon usage bias [39] using the 285

coRdon R package [44], the same as done for prokaryotic gRodon [20]. This statistic is 286

both GC-content and length corrected and should be insensitive to both factors. For 287

these calculations the expected codon usage was taken as the genome-wide average 288

(across all coding sequences in a genome or transcriptome; [20]). As recommended in 289

the coRdon documentation, in order to get a reliable estimate of codon bias we removed 290

all genes with fewer than 80 codons. We then calculated the median bias across all 291

genes coding for ribosomal proteins for each genome or transcriptome. 292

We then fit a linear model (lm() function from the base R stats package [64]) to 293

Box-Cox transformed doubling times (with the optimal λ chosen using the boxcox() 294

function from the MASS package [65]) using (1) optimal growth temperature, and (2) 295
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the median codon usage bias of genes coding for ribosomal proteins (see above) as 296

predictors. We then implemented this model into the existing gRodon package for 297

prokaryotic growth rate prediction, expanding the package’s predictive range to 298

eukaryotic organisms (using the new mode=‘‘eukaryotes’’ setting; 299

https://github.com/jlw-ecoevo/gRodon2). 300

For comparison with prokaryotic models we ran genomes and transcriptomes 301

through growthpred (obtained as a docker image at 302

https://hub.docker.com/r/shengwei/growthpred; [66]) and gRodon v1.0.0 on 303

metagenome mode (the prokaryotic setting most similar to both growthpred and our 304

eukaryotic model; [20, 22]), including the recorded optimal temperatures for prediction. 305

Estimating Growth Rates from MAGs 306

We obtained a set of 1669 eukaryotic MAGs assembled from the Tara Oceans 307

metagenomic surveys by two groups [15,16]. Previously, EukMetaSanity had been run 308

on these MAGs to call genes and find coding sequences [11]. We used these annotations, 309

and (similar to above) searched for ribosomal proteins using blastp v2.10.1 [62] against 310

a custom blast database of ribosomal proteins of eukaryotic microbes drawn from the 311

Ribosomal Protein Gene Database [63]. We ran EUKulele v1.0.6 to classify these MAGs 312

taxonomically and omitted any organisms identified as Metazoa from downstream 313

analyses [10]. Division-level classifications were taken as the division assigned as most 314

likely by eukulele. After removing any MAGs with less than 10 ribosomal proteins 315

detected or that were classified as Metazoa, we were left with a total of 465 eukaryotic 316

MAGs. 317

To infer the optimal growth temperatures of each MAG we used distributional data 318

across the Tara Oceans metagenomes. For MAGs from Delmont et al. [16], optimal 319

temperatures had already been predicted by the authors as part of a machine-learning 320

pipeline implemented to discover each MAGs niche. For the Alexander et al. [15] MAGs 321

we took a simpler approach. For each MAG we took the top 1% of samples in terms of 322

MAG relative abundance and calculated the mean temperature recorded for those 323

samples (S8 Figure). For closely related MAGs found in both Delmont et al. [16] and 324

Alexander et al. [15], we found that the two methods for estimating optimal growth 325

temperature agreed well (S9 Figure). 326

Finally, we calculated maximal growth rate using gRodon v2.0.0 in eukaryote mode. 327

Ridgeline plots were generated using R package ggridges [67]. 328

Estimating Growth Rates from Metagenomes 329

Assemblies of the bioGEOTRACES metagenomes were obtained from Biller et al [47]. 330

We then ran EukRep v0.6.6 on these assemblies to classify contigs as eukaryotic or 331

prokaryotic (using settings -m strict --tie prok; [68]). 332

In order to call and annotate genes from prokaryotic contigs we ran prokka v1.14.6 333

(using settings 334

--norrna --notrna --metagenome --cpus 80 --centre X --compliant; [69]). 335

Ribosomal proteins were identified from prokka annotations. We then predicted the 336

average community-wide maximal growth rate of the prokaryotic community using 337

gRodon v2.0.0 in metagenome mode using the temperature metadata provided with the 338

samples [20]. 339

In order to call genes from eukaryotic contigs we ran MetaEuk v4.a0f584d (using 340

setting easy-predict; [12]). Similar to our procedure with individual genomes, we 341

searched for ribosomal proteins among translated proteins output from MetaEuk using 342

blastp v2.10.1 [62] against a custom blast database of ribosomal proteins of eukaryotic 343

microbes drawn from the Ribosomal Protein Gene Database [63]. We then predicted the 344
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average community-wide maximal growth rate of the eukaryotic community using 345

gRodon v2.0.0 in eukaryote mode using the temperature metadata provided with the 346

samples. 347

Phylogeny 348

We ran BUSCO v5.2.2 against the eukaryota_odb10 database on translated proteins 349

from the complete set of MAGs described above as well as the decontaminated 350

MMETSP transcriptomes [14]. For the purposes of tree-building only, we removed any 351

organisms without at least 50% of BUSCO gene families present (out of 255). We then 352

identified any gene families present in at least 80% of remaining organisms, yielding 51 353

gene families. We aligned each of these families using MUSCLE v3.8.31 with default 354

parameters [70] and trimmed our alignments with trimal v1.4.rev15 (using setting 355

-automated1; [71]). Alignments were concatenated (using 356

https://github.com/nylander/catfasta2phyml) and trimmed again using trimal 357

v1.4.rev15 (using setting -automated1). We then used Fasttree v2.1.10 to infer a 358

phylogeny (using default settings; [72]). 359

We visualized our phylogeny using R package ggtree [73] and calculated patristic 360

distance using R package ape [74]. 361
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Fig 1. Codon usage bias (CUB) and temperature predict the maximum
growth rates of microbial eukaryotes. (a) Predictions from a linear model of
minimum doubling time with CUB and temperature as predictors on our training set
generally reflect empirically observed doubling times (r2 = 0.328). (b) The relationship
between CUB and minimum doubling time is roughly linear and negative until
approximately 40 hours, after which the relationship levels off (ρ = −0.400,
p = 3.14 × 10−8). (c) Predictions of the maximum growth rates of microbial eukaryotes
on the basis of CUB and temperature using models trained on prokaryotes are
systematically biased towards faster growth predictions and (d) perform much worse
than a model trained directly on eukaryotes in terms of mean squared error (MSE).
Dashed vertical lines denotes 40 hours and dashed diagonal line denotes where x = y.
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Fig 2. Environmentally derived genomes of eukaryotic microbes reveal
differences in growth potential across sampling sources, lifestyles, and
taxonomic groups. (a) The distribution of predicted minimum doubling times of
organisms represented in the MMETSP (n = 241) is slightly shifted towards faster
maximum growth rates as compared to the distribution of predicted minimum doubling
times among marine eukaryotic microbes represented by MAGs (27.5 vs 24.5 hours
respectively; t-test, p = 9.25 × 10−4; n = 465). (b) This difference in growth potential is
primarily driven by a small number of very fast growing organisms (minimum doubling
time < 10 hours) in MMETSP. (c) MAGs from organisms predicted to be heterotrophic
were associated with faster maximum growth rates than those predicted to be
phototrophic (t-test, p = 1.58 × 10−3). (d) Different taxonomic groups have distinct
distributions of predicted growth potentials among their members, as predicted from
MAGs.
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Fig 3. Bulk community-wide prediction of growth potential from
metagenomes yields insights into global patterns of eukaryotic and
prokaryotic growth in the oceans. (a) The average community-wide maximum
growth rate of eukaryotic and prokaryotic communities are strongly correlated near the
ocean surface (< 100 meters; ρ = 0.566, p = 1.08 × 10−27), but (b) not at deeper depths.
(c,d) Average community-wide growth rates near the surface for eukaryotes and
prokaryotes vary substantially across the global oceans (< 100 meters).
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