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Abstract20

Understanding human genetic influences on the gut microbiota helps elucidate the21

mechanisms by which genetics affects health outcomes. We propose a novel approach,22

the covariate-adjusted kernel RV (KRV) framework, to map genetic variants associated23

with microbiome beta-diversity, which focuses on overall shifts in the microbiota. The24

proposed KRV framework improves statistical power by capturing intrinsic structure25

within the genetic and microbiome data while reducing the multiple-testing burden. We26

apply the covariate-adjusted KRV test to the Hispanic Community Health Study/Study27

of Latinos in a genome-wide association analysis (first gene-level, then variant-level)28

for microbiome beta-diversity. We have identified an immunity-related gene, IL23R,29

reported in previous association studies and discovered 3 other novel genes, 2 of which30

are involved in immune functions or autoimmune disorders. Our findings highlight the31

value of the KRV as a powerful microbiome GWAS approach and support an important32

role of immunity-related genes in shaping the gut microbiome composition.33

Introduction34

The human microbiome plays an important role in host health and is involved in funda-35

mental body functions such as metabolism and immune response [1, 2]. While environmental36

factors have a large influence on microbiome composition [3], it is still of interest to study37

the effect of human genetic variation on the microbiome: such studies provide clues as to38
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the biological mechanisms by which genetics may influence health outcomes. As a notable39

example, elevated abundance of Bifidobacterium, a genus of beneficial gut bacteria that uti-40

lizes lactose as an energy source, has been associated with a non-persistence genotype of the41

human lactase gene (LCT ), which typically results in lactose intolerance [4, 5, 6]. Such an42

association implies a potential mediating role of the microbiome in the relationship between43

host genetics and metabolic outcomes, where the presence of Bifidobacteria may provide44

some level of lactose tolerance to lactase non-persistent individuals [4].45

Many studies have sought to identify genetic variants that influence microbial composi-46

tion, and most of them incorporate microbiome characteristics as phenotypes in genome-wide47

association studies (GWAS). Typical analyses marginally test the association between abun-48

dances of individual taxa and genotypes of individual genetic variants [5, 7, 8, 9]. Such49

analyses often suffer from a low statistical power, due to a large multiple-testing burden and50

failure to accommodate inherent structure in microbiome and genetic data, e.g., phylogenetic51

relationships among taxa and epistasis among genetic variants.52

As the microbiome functions as a community, an alternative microbiome phenotype is53

beta-diversity, the dissimilarity in overall microbiome profiles between individuals. Beta-54

diversity analysis represents a standard mode of analysis in microbiome profiling studies as55

it focuses on discovery of concerted shifts in the community rather than individual taxa.56

However, few studies have considered beta-diversity as a trait of interest in microbiome57

GWAS and there is no standard strategy. Some studies [6, 10] have performed principal58

coordinates analysis (PCoA) on the pairwise beta-diversity matrix and evaluated the as-59

sociation between the top principal coordinates (PCo’s) and the genotype of each genetic60

variant. Such a strategy could suffer from power loss, as the top PCo’s may not fully capture61

the variation within the microbiome data. Hua et al. [11] assumed a linear model between62

the pairwise beta-diversity and the pairwise genetic distance at each genetic variant and63
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developed a score test in a tool called microbiomeGWAS. Rühlemann et al. [12] adopted a64

distance-based multivariate analysis of variance (MANOVA) approach called distance-based65

F test [13] and evaluated the difference in beta-diversity among the different genotype groups66

for each genetic variant. These approaches still test one variant at a time and are subject67

to a stringent genome-wide significance threshold. Studies using the above approaches have68

identified loci within genes involved in immunity [6, 12], vitamin metabolism [10] and com-69

plex diseases such as type 2 diabetes [14]. In our study, we aim to further improve statistical70

power with a novel approach and bring more discoveries from microbiome GWAS.71

Here we propose to assess the association between groups of variants at the gene level and72

the overall microbiome composition, characterized by beta-diversity, at the community level.73

Community-level analyses and multi-variant testing have been shown to be powerful in mi-74

crobiome [15, 16] and genetic studies [17], respectively, due to their ability to capture innate75

structure and correlation within the data, while reducing the multiple-testing burden. Using76

the recently developed kernel RV (KRV) framework [18, 19], we summarize the individuals’77

microbiome (or genetic) characteristics by a pairwise similarity matrix called “kernel” ma-78

trix, where each entry in the matrix represents similarity in microbiome (or genetic) profiles79

between a pair of individuals. Microbiome similarity can be obtained by transforming known80

beta-diversity measures, while genetic similarity can also be characterized in various ways,81

such as the average genotype matching over all genetic variants. The association between82

microbes and genetics is then assessed via comparing similarity in microbiome profiles to83

similarity in genetic profiles across all pairs of individuals. Intuitively, if the genetics is84

associated with the microbiome, we would expect the pairwise microbiome profiles to be85

similar whenever the pairwise genetic profiles are similar. In particular, the test statistic is86

the normalized Frobenius inner product, a measure of correlation, between the two kernel87

matrices.88
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Although the KRV is a potentially powerful approach for microbiome GWAS, due to the89

nature of microbiome kernels, the KRV framework has difficulties in controlling for covariates90

such as population structure, which is imperative for any genetic association analysis. Here91

we extend the original KRV framework to allow for flexible covariate adjustment.92

We apply the covariate-adjusted KRV to the Hispanic Community Health Study/Study93

of Latinos (HCHS/SOL) [20, 21] via a two-stage (first gene-level, then variant-level) genome-94

wide association analysis. This is the first study to investigate the genetic effect on the overall95

gut microbiome composition, characterized by beta-diversity, in Hispanic/Latino popula-96

tions. We have identified a gene (IL23R) reported in a previous microbiome genetic associ-97

ation study and discovered other novel genes related to immune functions. Furthermore, we98

have identified 311 significant variants within these genes. In addition, our simulation results99

show that the covariate-adjusted KRV maintains valid type I error rates in the presence of100

confounding and has a much greater power than other single-trait-based competing methods101

across a range of scenarios. Together, our proposed approach demonstrates good statistical102

properties and provides a powerful way to study the effect of human genetic variation on103

microbiome composition.104

Results105

Overview of covariate-adjusted KRV106

We aim to assess the covariate-adjusted association between genotypes of multiple genetic107

variants within a gene and abundances of multiple microbiome taxa, using the previously108

developed KRV framework. We now give an overview of the original KRV framework and109

extend it to allow for covariate adjustment.110

The KRV framework has been proposed by Zhan et al. [18, 19] to evaluate the general111
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association between a group of genetic variants, G, and a group of traits, Y . Suppose we have112

genotype data of m genetic variants and phenotype data of q traits available for n unrelated113

individuals. For the ith subject, let gi = (gi1, · · · , gim)T be the set of genotypes, where114

gil ∈ {0, 1, 2} represents the number of minor alleles for the lth variant; let yi = (yi1, · · · , yiq)T115

be the set of traits. Example phenotypes in previous studies include expression values of116

multiple genes from a particular pathway [18] and levels of multiple amino acids [22]. In the117

context of microbiome GWAS, we treat the microbiome as the phenotype. Specifically, gi118

represents the genotypes of m genetic variants within a particular gene, and yi represents119

the abundances of q microbiome taxa that form the microbiota.120

Let k(gi, gj) be a kernel function that measures the similarity in genetic profiles between121

individual i and j. Let `(yi,yj) be another kernel function that measures the similarity in122

phenotypic profiles between i and j. Specific choices of kernel functions in the context of123

microbiome GWAS are discussed in Choice of kernels. We can then define a kernel matrix124

K ∈ Rn×n, where the (i, j)-th entry of K is k(gi, gj). Similarly, we define another kernel125

matrix L ∈ Rn×n such that Lij := `(yi,yj). The matrices K and L can be viewed as126

pairwise similarity matrices for genotypes and phenotypes, respectively. We further center127

the two kernel matrices: let K̃ := HKH and L̃ := HLH , where H = I − 11T/n is a128

column-centering matrix. Then the KRV coefficient that evaluates the relationship between129

the genetic variants and the traits is defined as130

KRV(G, Y ) :=
tr(K̃L̃)√

tr(K̃K̃) tr(L̃L̃)
. (1)

Intuitively, the KRV coefficient compares genotypic similarity to phenotypic similarity131

across all pairs of individuals. A large KRV coefficient indicates that the pairwise similarity132

pattern in genetic profiles well resembles the pairwise similarity pattern in phenotypic pro-133
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files, which implies that the genetic variants are associated with the traits in a certain way.134

On the other hand, the KRV coefficient can also be viewed as a multivariate and non-linear135

extension of the Pearson’s sample correlation coefficient r: when both gi and yi are one-136

dimensional and we use the linear kernel functions k(gi, gj) = gTi gj and `(yi,yj) = yT
i yj, the137

KRV coefficient is exactly equivalent to r2. To perform hypothesis testing, the permutation138

distribution of the KRV statistic under the null hypothesis of no association between genetics139

and phenotypes can be approximated by a Pearson Type III distribution [18], allowing us to140

obtain a p-value and assess the significance of the association at a given significance level.141

The above framework does not take into account any covariates that might be involved in142

a typical genetic association study. Unaccounted confounders, such as population structure,143

can lead to spurious associations in GWAS studies [23]. Now suppose that, for each individual144

i, we have a set of covariates xi = (1, xi1, · · · , xip)T ∈ Rp+1; let X ∈ Rn×(p+1) be the sample145

covariates matrix such that the i-th row ofX is xT
i . Assume thatX has full rank. We intend146

to assess the association between the genetic variants and the phentoypes, after adjusting147

for the effects of the covariates X. Previous studies, including the original KRV framework,148

have suggested using a residual-based approach [17, 24, 18], where we first regress out the149

covariates from each raw phenotype and then construct the phenotype kernel matrix using150

the resulting residuals. Such an approach is not feasible for microbiome data, as popular151

microbiome kernels (e.g., the Bray-Curtis kernel and the weighted UniFrac kernel) require152

the input to be discrete taxa count data, which is not satisfied by the covariate-adjusted153

residuals.154

To adjust for covariates in a general way, we propose to perform a kernel principal com-155

ponent analysis (kernel PCA) [25], a general extension of regular PCA, on the constructed156

phenotype kernel matrix and treat the resulting kernel PCs as surrogate phenotypes. We can157

then regress out the covariates from the kernel PCs and reconstruct the phenotype kernel158
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matrix with the adjusted PCs. The same procedure is performed on the genotype kernel159

matrix. After algebraic manipulation (see Derivation of covariate-adjusted KRV coefficient),160

the adjusted KRV coefficient is of the form:161

KRVadj(G, Y ) :=
tr(P⊥XKP

⊥
XL)√

tr(P⊥XKP
⊥
XK) tr(P⊥XLP

⊥
XL)

,

where P⊥X := I−PX and PX is the projection matrix onto the column space ofX. We adjust162

for covariates on both the phenotype kernel and the genotype kernel, due to the symmetry163

of the KRV coefficient. Similar to the analogy between KRV and the sample correlation,164

we can view the adjusted KRV coefficient as an extension of the sample partial correlation165

[26, 27]. The usual hypothesis testing procedure in the KRV framework can be applied to166

the adjusted KRV statistic to obtain a p-value. In this case, the null hypothesis is that there167

is no association between the genetics and the phenotypes after adjusting for the effects of168

the covariates.169

Application of covariate-adjusted KRV to HCHS/SOL170

To identify genetic variants associated with the overall gut microbiome composition in171

Hispanic/Latino individuals, we applied the covariate-adjusted KRV test to the HCHS/SOL172

study. HCHS/SOL is a community-based cohort study aimed to identify factors that af-173

fect the health of Hispanic/Latino individuals. The study recruited 16,415 Hispanic/Latino174

adults of diverse ethnic background from four U.S. metropolitan areas (Bronx, NY; Chicago,175

IL; Miami, FL; San Diego, CA) [20]. Genome-wide DNA sequencing data were available in176

12,803 participants. As an ancillary study, the HCHS/SOL Gut Origins of Latino Diabetes177

(GOLD) study was further conducted to investigate the role of gut microbiome composition178

in health outcomes such as diabetes in Hispanic/Latino individuals [21], where gut micro-179
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biome profiles were available in 1674 participants (a subgroup of the HCHS/SOL partici-180

pants) based on 16S rRNA gene sequencing. More details on collection and pre-processing of181

genetic and microbiome data in HCHS/SOL are provided in Description of the HCHS/SOL182

study.183

We considered genetic variants (including both single-nucleotide polymorphisms, or184

SNPs, and insertion/deletion variants, or indels) within ±10 kb of gene regions and grouped185

the variants into gene-level variant-sets correspondingly. The microbiome operational tax-186

onomic units (OTUs) were collapsed at the genus level and rarefied to accommodate dif-187

ferential read depth. We used a linear kernel for the genetic data and different kernels for188

the microbiome data, including Bray-Curtis, unweighted UniFrac, weighted UniFrac and189

generalized UniFrac (see Choice of kernels for details on these kernels). For each gene, we190

assessed the association between the common variants (with minor allele frequency, or MAF,191

≥ 0.05) within the gene and the community-level microbiome profile, using both adjusted192

and unadjusted KRV tests. In the adjusted KRV, we mainly controlled for the top 5 PCs of193

genome-wide genetic variability (denoted as the PC-adjusted KRV), as they well captured194

the population structure of the sample. Individuals from different populations and ethnic195

groups often have systematic differences in their genetic and microbiome profiles [28, 29], so196

population structure is an important confounder in our analysis. We also performed addi-197

tional analyses that adjusted for other non-confounding covariates including age, gender and198

study sites.199

Our investigation of the genetic effect on the microbiome involved two stages. In the first200

stage, we tested the association between the variants in each gene and the microbiome profile201

at the community level. In the second stage, for any genes called significant in the first stage,202

we marginally assessed the association between each of the individual variants within those203

genes and the community-level microbiome profile to look for significant variants, using the204
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covariate-adjusted KRV. Bonferroni correction was applied in both stages. Since this was205

a nested hypothesis testing approach, the second-stage test only required correction for the206

number of variants in the genes that were called significant in the first stage. All analyses207

were performed on unrelated individuals (pairwise kinship coefficient ≤ 0.05) where genetic208

data, microbiome data and covariates data were available.209

As a result, we performed our analyses on 1219 unrelated participants from HCHS/SOL210

where all relevant data were available. Among these individuals, 47.0% identified their back-211

ground as Mexican, 14.8% as Cuban, 12.7% as Puerto Rican, 10.3% as Central American,212

7.7% as South American and 7.5% as Dominican. Microbiome count data were obtained213

on 408 genera, rarefied to 10,000 total counts per individual. A total of 19223 gene-level214

variant-sets that contained at least one common variant were available. Figure 1 shows the215

p-value QQ-plots of the first-stage (gene-level) analysis results. For all microbiome kernels,216

the unadjusted KRV produces highly anti-conservative p-values (with large genomic inflation217

factors), while the PC-adjusted KRV has well-controlled type I error rates (with genomic218

inflation factors ≤ 1.05), confirming that population structure is the major confounder in219

our study. The gene-level Manhattan plots based on the PC-adjusted KRV are shown in220

Supplementary Figure S1.221

Table 1 shows the genes identified at a genome-wide significance in the PC-adjusted222

first-stage analysis (α = 0.05/19223 = 2.6 × 10−6). We have found two genes, IL23R and223

C1orf141, using the Bray-Curtis kernel and two genes, MTMR12 and ZFR, using the un-224

weighted UniFrac kernel. When the analysis is performed on a reduced set of individuals225

(n=1096) where additional covariates (age, gender and study sites) are available and ad-226

justed, IL23R and C1orf141 are no longer genome-widely significant (Supplementary Table227

S1); similar results are observed for a PC-adjusted analysis on the same subsample. To228

investigate the reason for this power loss, we perform PC-adjusted analyses on random sub-229
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Figure 1: P-value QQ-plots from the first-stage (gene-level) analysis of the HCHS/SOL
data. Each QQ-plot corresponds to a distinct microbiome kernel. In the adjusted KRV, the
top 5 PCs of genome-wide genetic variability were adjusted. λGC,0.1 represents the genomic
inflation factor evaluated at the 10th percentile.

samples of the same size from the original 1219 individuals. Around half of the times, at230

least two out of the four genes no longer have genome-wide significance, indicating that the231

non-significant results in the reduced sample are likely due to sample size loss. Nevertheless,232

the results from the two adjusted analyses are qualitatively similar.233
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Table 1: Significant genes identified from the first-stage (gene-level) analysis of the
HCHS/SOL data, using the PC-adjusted KRV (α = 2.6× 10−6).

Microbiome kernel Significant genes Number of common variants P-value

Bray-Curtis
C1orf141 484 1.1× 10−6

IL23R 284 2.4× 10−6

Unweighted UniFrac
MTMR12 174 6.5× 10−8

ZFR 288 2.5× 10−9

The top 5 PCs of genome-wide genetic variability were adjusted.

Among these genes, IL23R is of considerable interest: it encodes one part of the recep-234

tor for interleukin-23 (IL-23), a pro-inflammatory cytokine closely involved in autoimmunity235

[30]. The IL23R gene has been associated with inflammatory bowel diseases (IBD) includ-236

ing Crohn’s disease and ulcerative colitis [31, 32]. In a previous genetic association study237

of microbiome composition [33], the protective variant of the IL23R gene (rs11209026) was238

associated with a higher microbiome diversity and richness and a higher abundance of benefi-239

cial gut bacteria in the ileum of healthy individuals, suggesting the influence of host genetics240

on the microbiome prior to onset of IBD. In addition, a mouse-based experimental study [34]241

showed that mice deficient in intestinal IL23R expression had altered gut microbiota and242

were susceptible to colonic inflammation, where increased disturbance of gut microbiota ex-243

acerbated the disease activity. Coupled with these results, our finding further supports that244

the gut microbiome may mediate the host genetic effect on the development of inflamma-245

tory diseases like IBD. In its normal function, the IL23R gene likely helps shape the overall246

gut microbiota towards a healthy composition, which may in turn support normal immune247

activities and prevent gut inflammation.248

The other genes are also interesting to further explore. The C1orf141 gene, with un-249

characterized protein function, has overlapping regions with IL23R. Variants in the IL23R-250

C1orf141 region have been associated with susceptibility to Vogt-Koyanagi-Harada disease,251

a multi-system autoimmune disorder that affects pigmented tissues, in Chinese and Japanese252
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populations [35, 36]. The ZFR gene encodes the highly conserved zinc finger RNA-binding253

protein, which is shown to prevent excessive type I interferon activation by regulating al-254

ternative pre-mRNA splicing [37]. Prevention of excessive type I interferon activation is255

important for the regulation of immune responses. The MTMR12 gene encodes an adapter256

protein for myotubularin-related phosphatases and is likely involved in skeletal muscle func-257

tions [38]. Overall, most of the significant genes have a role in immunity, indicating an258

interaction between the host genetics and the gut microbiome in facilitating immune re-259

sponses or developing autoimmune disorders.260

Figure 2 shows the Manhattan plots and linkage disequilibrium (LD) heatmaps from the261

second-stage analysis of the HCHS/SOL data, using the PC-adjusted KRV. The IL23R and262

C1orf141 genes were combined into a single IL23R-C1orf141 region due to overlapping vari-263

ants. Based on the analysis using the Bray-Curtis kernel, there are 72 significant variants264

(out of 557 common variants) in the IL23R-C1orf141 region (α = 0.05/557 = 8.98× 10−5).265

Based on the analysis using the unweighted UniFrac kernel, there are 114 significant vari-266

ants (out of 288 common variants) in ZFR and 125 significant variants (out of 174 common267

variants) in MTMR12 (α = 0.05/(288+174) = 1.08×10−4). Relevant information including268

positions, rsID and p-values for these variants is reported in Supplementary Table S2. From269

the LD heatmaps, in each gene, the significant variants share a high level of linkage disequi-270

librium with one other. Future fine mapping of causal variants that affect the microbiome271

composition will be needed.272

To confirm the validity of the adjusted KRV approach, we further conduct kernel PCA273

on the Bray-Curtis and unweighted UniFrac kernel matrices, and check whether individuals’274

microbiome profiles, captured by the top two kernel PCs, differ by genotypes of the top (most275

significant) variant from each identified gene. This is similar to a PCoA analysis. Figure 3276

shows that, for each top variant, the 95% confidence ellipses for different genotypes are well277
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separated from one other, corroborating the findings by the adjusted KRV.278

We next examine the replication of signals found by previous GWAS studies in our anal-279

ysis. Kurilshikov et al. [5] analyzed a sample of 18,340 individuals that comprised of 24280

multi-ancestry cohorts, including the HCHS/SOL GOLD cohort. They reported an associ-281

ation between the LCT locus (rs182549) and Bifidobacterium abundance at a study-wide282

significance (p-value = 1.28×10−20). In our gene-level analysis using the PC-adjusted KRV,283

the LCT gene is nominally significant based on the unweighted UniFrac kernel (p-value =284

0.013), but not significant at the genome-wide level. In addition, we have examined the285

significance of 63 previously reported genes that harbor variants associated with microbiome286

beta-diversity [10, 12, 14, 39, 40] (Supplementary Table S3). 59 out of 63 genes include at287

least one common variant in the HCHS/SOL data. Two genes are replicated with nominal288

significance: BANK1 based on the unweighted UniFrac kernel (p-value = 0.017) and the289

weighted UniFrac kernel (p-value = 0.046), and MAST3 based on the weighted UniFrac290

kernel (p-value = 0.041) and the generalized UniFrac kernel (p-value = 0.049). BANK1 is291

associated with systemic lupus erythematosus and MAST3 is associated with IBD, corrob-292

orating the role of immunity-related genes in shaping gut microbiota. However, none of the293

genes are significant at the genome-wide level.294

Simulation studies295

We conducted simulation studies to further evaluate the type I error rate and power of296

the covariate-adjusted KRV test. We simulated genotype data and microbiome OTU count297

data under realistic settings, and introduced population stratification as a confounder that298

affected both genetic and microbiome data. Detailed simulation procedures are provided in299

Methods: Simulation studies.300

The general simulation setting is as following. We considered a sample size of 1000. SNP301
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Figure 2: Manhattan plots and linkage disequilibrium (LD; R2) heatmaps from the second-
stage (variant-level) analysis of the HCHS/SOL data, using the PC-adjusted KRV. The
Bray-Curtis kernel was used for analysis of variants in the IL23R-C1orf141 region; the
unweighted UniFrac kernel was used for analysis of variants in ZFR and MTMR12. The top
5 PCs of genome-wide genetic variability were adjusted. The red lines represent variant-level
signficance after Bonferroni correction (α = 8.98× 10−5 for variants in the IL23R-C1orf141
region, and 1.08× 10−4 for variants in ZFR and MTMR12 ). A large R2 value indicates high
LD.
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genotype data were simulated over a 1 Mb chromosome region for 500 individuals of African302

ancestry and 500 individuals of European ancestry. Count data of 856 microbiome OTUs303

were simulated using a Dirichlet-multinomial distribution. To introduce population structure304

into the OTU count data, we increased the relative abundance of the 10 most common OTUs305

by 10% in African individuals. Both unadjusted and adjusted KRV tests were performed to306

test the association between the overall microbiome composition and common SNPs (with307

MAF ≥ 0.05) within an 8 kb subregion of the 1 Mb chromosome. In the adjusted KRV308

test, the top PC of genetic variability (obtained from PCA on SNP data over the entire309

1 Mb region) was used as the covariate, a surrogate for population structure. We used a310

linear kernel for genetic data and four different kernels for microbiome data: Bray-Curtis,311

unweighted UniFrac, weighted UniFrac and generalized UniFrac.312

To evaluate the type I error rate, we used the above simulation setting without intro-313

ducing any genetic effect on the microbiome; 10,000 data sets were simulated. To evaluate314

the statistical power of the adjusted KRV, we introduced genetic effect on the microbiome315

in three different scenarios, on top of the general simulation setting. In all three scenarios,316

we simulated a pleiotropy effect, where a single SNP affected the abundance of multiple317

microbiome OTUs. In Scenario 1, a single SNP affected the abundance of the 11th - 20th318

most common OTUs. In Scenario 2, a single SNP affected the abundance of OTUs from a319

relatively common phylogenetic cluster. In Scenario 3, a single SNP affected the abundance320

of 5 rare OTUs. For all scenarios, we considered both small and large effect sizes. We also321

performed two competing methods based on univariate microbiome phenotypes: linear re-322

gression and SNP-set kernel association test (SKAT) [17] (see Methods: Simulation studies323

for details). For each power scenario, 1000 data sets were simulated.324

Table 2 shows the empirical type I error rates of both unadjusted and adjusted KRV tests325

at different significance levels. The unadjusted KRV has inflated type I error rates for all mi-326

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2021. ; https://doi.org/10.1101/2021.10.15.464608doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.15.464608


crobiome kernels except unweighted UniFrac. In contrast, the adjusted KRV maintains valid327

type I error rates for all microbiome kernels. Note that in our simulation setting, popula-328

tion structure affected the abundance of common OTUs, which was unlikely to change these329

OTUs’ presence. Since the unweighted UniFrac kernel only captures presence/absence, but330

not abundance information of a taxon, the population stratification of microbiome profiles is331

not reflected in the unweighted UniFrac kernel. This absence of confounding effect leads to332

a valid type I error rate for the unweighted UniFrac kernel even when the unadjusted KRV333

is used.334

Table 2: Empirical type I error rate of unadjusted and covariate-adjusted KRV at nominal
level α under simulation.

Method Microbiome kernel
α

0.05 0.01 0.001

Unadjusted KRV

Bray-Curtis 0.2403 0.0936 0.0255
Unweighted UniFrac 0.0484 0.0094 0.0011
Weighted UniFrac 0.1371 0.0371 0.0057

Generalized UniFrac 0.1412 0.0416 0.0063

Adjusted KRV

Bray-Curtis 0.0473 0.0114 0.0012
Unweighted UniFrac 0.0523 0.0115 0.0009
Weighted UniFrac 0.0507 0.0095 0.0012

Generalized UniFrac 0.0499 0.0097 0.0011

Linear kernel was used for genetic data.

Figure 4 shows the empirical power of the covariate-adjusted KRV test and competing335

methods under small effect sizes, at the nominal level α = 0.05. In general, for each power336

scenario, the adjusted KRV has a much higher power than linear regression and SKAT,337

regardless of the microbiome kernel being used (with the exception of unweighted UniFrac338

in Scenario 1 and 2). Next we focus on the adjusted KRV and compare across microbiome339

kernels: in Scenario 1, the Bray-Curtis kernel has the highest power; in Scenario 2, the340

weighted UniFrac kernel has the highest power; in Scenario 3, the unweighted UniFrac kernel341

has the highest power. These results are consistent with the ways these microbiome similarity342
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measures are constructed. The Bray-Curtis kernel is efficient in detecting abundance changes343

in common OTUs. The weighted UniFrac kernel has more power to detect abundance changes344

in common phylogenetic clusters, and the unweighted UniFrac kernel is more efficient in345

detecting changes in rare lineages. Again, due to the nature of unweighted UniFrac, all three346

methods based on this kernel have little power in Scenario 1 and 2, where the SNP effect on347

common OTUs or common phylogenetic clusters is unlikely to change their presence.348

Under large effect sizes (Supplementary Figure S2), while the covariate-adjusted KRV349

displays a clear improvement in power, the overall patterns are similar to those under small350

effect sizes.351
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Figure 3: PC2 vs. PC1 from kernel PCA on the microbiome kernel, colored by the genotype
of top variants from the significant genes in the HCHS/SOL study. For each variant, a
95% confidence ellipse (shown as a filled ellipse with black borders) was constructed for
individuals from each genotype. The Bray-Curtis kernel was used for the top variant in the
IL23R-C1orf141 region; the unweighted UniFrac kernel was used for the top variants in ZFR
and MTMR12. The percent of variance captured by each PC was provided in the axis labels.
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Figure 4: Empirical power of covariate-adjusted KRV and competing methods at nominal
level α = 0.05 for different microbiome kernels under small effect sizes. Linear kernel was
used for genetic data.
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Discussion352

We have introduced the covariate-adjusted KRV, a novel microbiome GWAS approach to353

evaluate the association between a group of genetic variants at the gene level and the overall354

microbiome composition at the community level, while adjusting for covariates. Simulation355

studies show that the covariate-adjusted KRV maintains valid type I error rates in the356

presence of confounders and has a much higher power compared to other microbiome GWAS357

methods that rely on univariate microbiome phenotypes. In a genome-wide analysis of the358

HCHS/SOL data, we have identified four genes associated with microbiome beta-diversity.359

We have also identified specific variants within these genes in a second-stage analysis, which360

will be useful for future ascertainment of causal variants that affect the gut microbiota.361

Most of the identified genes based on the HCHS/SOL data have been previously impli-362

cated in immune functions or immunity-related disorders. This is consistent with the works363

by Blekhman et al. [6] and Rühlemann et al. [12], where loci in immunity-related genes364

and pathways have been shown to correlate with gut microbiome composition. The IL23R365

gene is especially interesting for future study, due to its recognition in previous microbiome366

genetic association studies [33] and its role in IBD, a chronic inflammatory disease that367

involves both genetic and microbial factors. Many genetic markers associated with IBD368

are involved in the interactions between the immune system and the microbiome [41, 42].369

Furthermore, IBD is characterized by shift in the gut microbiome composition [43, 44], and370

specific microbes have also been shown to predict response to therapy [45] and postoperative371

disease recurrence [46] in patients with IBD. Therefore, our finding supports previous work372

and could contribute to future investigation of the disease etiology. Finally, as HCHS/SOL is373

one of the most comprehensive studies of Hispanic/Latino populations in the US, the results374

from our analysis will help inform important genetic risk factors for gut-microbiome-related375

health outcomes in Hispanic/Latino individuals.376
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Although the covariate-adjusted KRV has valid type I error rates regardless of the kernels377

used, selecting appropriate kernels that reflect the actual patterns of association is important378

for maintaining a good statistical power. Different kernels measure different aspects of the379

structure within the data and assume different association patterns. In the analysis of the380

HCHS/SOL data, using different microbiome kernels, we discovered distinct significant genes.381

This is likely because these genes affect different aspects of the microbiome composition.382

For example, loci in the IL23R-C1orf141 region, identified using Bray-Curtis, likely affect383

abundances of common microbial taxa such as Bacteroides and Prevotella [21]. Loci in ZFR384

and MTMR12, identified using unweighted UniFrac, likely affect the presence/absence of385

certain rare microbial lineages. Often we do not have prior knowledge on the ways genetics386

is associated with the microbiome. A possible extension would be to use an omnibus test387

that accommodates multiple possible kernels. For example, as proposed by Zhan et al. [19],388

we could construct an omnibus kernel matrix via a weighted sum of multiple candidate kernel389

matrices. Another approach would be to combine p-values obtained using different candidate390

kernels into a single p-value, such as the Cauchy p-value combination method [47].391

We have also investigated the replication of signals from previous microbiome GWAS392

studies. The multi-cohort sample used by Kurilshikov et al. [5] includes the HCHS/SOL393

GOLD cohort. While Kurilshikov et al. reported an association between the LCT locus394

(rs182549) and Bifidobacterium abundance at a study-wide significance, the LCT gene was395

not identified as genome-widely significant in our analysis. Bifidobacterium was a relatively396

common genus (representing 1.04% abundance of all microbial genera) in the HCHS/SOL397

data. However, when we used microbiome kernels that are efficient in detecting abundance398

changes in common taxa, such as Bray-Curtis and weighted UniFrac, abundance differences399

in Bifidobacterium were likely overshadowed by those in the most common genera such400

as Bacteroides and Prevotella (representing 23.7% and 25.0% abundances of all microbial401
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genera, respectively). This discrepancy in results might reflect the difference between taxon-402

level and community-level analyses.403

Two previously reported beta-diversity-associated genes [10] have been replicated in our404

analyses at a nominal significance, but none of the previous signals [10, 12, 14, 39, 40] reaches405

genome-wide significance. There are several possible reasons. First, compared to environ-406

mental effect, most host genetic influences on microbiome composition have relatively small407

effect sizes [3]. The sample sizes of current microbiome GWAS studies, including our study,408

are still too small to achieve enough statistical power. Second, there is considerable variation409

across studies in the collection and processing of microbiome data, leading to difficulties in410

reproducibility. Lastly, certain genetics-microbiome associations might be specific to ances-411

try or populations. In addition, since we focused on genetic loci within or close to gene412

regions, we were unable to evaluate the significance of previously identified loci that fell in413

intergenic regions.414

In conclusion, we have proposed a promising approach to study the covariate-adjusted415

association between host genetic variation and community-level microbiome composition,416

which demonstrates good performances in both simulations and real data analysis. The genes417

and loci identified using our approach will help elucidate the complex interactions among418

host genetics, gut microbiome and host immune systems. With the increasing occurrences419

of high-dimensional traits in large-scale genetic association studies, we expect the covariate-420

adjusted KRV to bring more discoveries by taking advantage of the innate structure within421

the genetic and phenotypic data.422
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Methods423

Choice of kernels424

In the KRV framework, kernel functions are used to summarize pairwise similarities in425

genotype and phenotype profiles among the subjects. In order to improve the statistical426

power in hypothesis testing, we would like to choose kernels that better reflect the actual427

structure within the genetic and phenotype data as well as the patterns of association [15, 48].428

Theoretically, for the KRV statistic in (1) to be well-defined, the kernel matrices need to429

be positive semi-definite. We now review some of the common kernels used for genetic and430

microbiome data, respectively.431

For genotype data, popular kernel functions include the linear kernel k(gi, gj) = gTi gj432

and the identity-by-state (IBS) kernel k(gi, gj) = 1
2m

∑m
l=1(2− |gil − gjl|). The linear kernel433

assumes that the genetic variants are associated with the traits in a linear fashion. The IBS434

kernel defines pairwise similarity as the pairwise genotype matching averaged over all genetic435

variants, and is useful when there are epistatic effects among the variants [17]. Depending436

on analysis interests (e.g. rare-variant analysis), it is also possible to incorporate a weight437

for each variant in the linear and IBS kernels [17].438

For microbiome data at the community level, the kernel matrix can be obtained by439

transforming known ecological or phylogenetic dissimilarity measures (i.e., beta-diversity440

measures). For example, Bray-Curtis dissimilarity quantifies the dissimilarity between two441

microbial communities based on the difference in counts at each taxon between the two com-442

munities. The UniFrac distances are dissimilarity measures based on the phylogenetic struc-443

ture of the taxa [49, 50, 51]: the unweighted UniFrac distance is calculated as the fraction of444

branch lengths within the phylogenetic tree that are not shared between the two communi-445

ties; the weighted UniFrac distance further incorporates taxa abundance information on the446
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basis of the unweighted distance; the generalized UniFrac distance is a compromise between447

weighted and unweighted UniFrac distances. For a given pairwise dissimilarity matrix D,448

the corresponding kernel matrix can be constructed as:449

L = −1

2

(
I − 11T

n

)
D2
(
I − 11T

n

)
,

where D2 is the element-wise square of D. To ensure that the kernel matrix L is positive450

semi-definite, we further apply a correction procedure as implemented in the MiRKAT R451

package [15], where we perform an eigendecomposition of L, convert any negative eigenvalues452

to zero and then reconstruct the kernel matrix.453

Derivation of covariate-adjusted KRV coefficient454

Suppose that we have a phenotype kernel matrix L and a full-rank covariates matrix X455

that includes a column of 1’s. We first perform a kernel PCA (equivalent to an eigendecom-456

position) on the phenotype kernel matrix and obtain a matrix Φ such that:457

L = ΦΦT .

Here each column of Φ is a kernel principal component (kernel PC) of L and has the form458

√
λrφr for r = 1, · · · , n, where λr is the rth eigenvalue of L and φr is the corresponding459

eigenvector for λr. We can view Φ as a finite sample basis for the space spanned by the460

phenotype kernel function `(·, ·).461

We then regress out the covariates X from each kernel PC:462

ε̂ := Φ− PXΦ,
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where PX = X(XTX)−1XT is the projection matrix onto the column space of X. Now ε̂463

represents a sample basis that is orthogonal to the covariates X. We can construct a new464

phenotype kernel matrix from this residual basis: L∗ := ε̂ε̂T . Note that L∗ can be expressed465

in terms of L:466

L∗ = (I − PX)ΦΦT (I − PX) = (I − PX)L(I − PX) = P⊥XLP
⊥
X ,

where we let P⊥X := I − PX . Similar procedures can be performed on the genotype kernel467

matrix K to obtain the adjusted genotype kernel matrix K∗ := P⊥XKP
⊥
X . Both K∗ and468

L∗ are column-centered, since the covariates matrix X includes a column of 1’s, accounting469

for the intercept in a regression. We can then construct a KRV statistic from the adjusted470

kernel matrices K∗ and L∗:471

KRVadj(G, Y ) =
tr(K∗L∗)√

tr(K∗K∗) tr(L∗L∗)
=

tr(P⊥XKP
⊥
XL)√

tr(P⊥XKP
⊥
XK) tr(P⊥XLP

⊥
XL)

.

Such a strategy of covariate adjustment can be seen as a special case of conditional inde-472

pendence (or uncorrelatedness) testing in a kernel-based framework, as proposed by Zhang473

et al. and Strobl et al. [52, 53]. In the context of microbiome GWAS, we are testing the474

correlation between genetic variants and microbiome community profiles, while conditioning475

on the covariates.476

Description of the HCHS/SOL study477

HCHS/SOL is a community-based prospective cohort study aimed to identify risk fac-478

tors for health outcomes in Hispanic/Latino individuals. The study recruited 16,415 His-479

panic/Latino adults aged 18 - 74 years at four U.S. field centers (Bronx, NY, Chicago, IL,480

Miami, FL, and San Diego, CA), using a two-stage probability sampling design [20].481
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12,803 participants consented to genetic studies. Genotyping was performed on an Il-482

lumina custom array, SOL HCHS Custom 15041502 B3, which consisted of the Illumina483

Omni 2.5M array (HumanOmni2.5-8v1-1) and ∼150,000 custom SNPs [54]. Quality control,484

genotype imputation and estimation of pairwise kinship coefficients and PCs of genome-wide485

genetic variability were described in detail by Conomos et al. [54]. In addition to the quality486

control procedures described in [54], prior to the microbiome GWAS analysis, we also filtered487

imputed genetic variants based on an “effective minor allele count”: Neff = 2p̂(1 − p̂)Nv,488

where p̂ is the estimated minor allele frequency, N is the sample size and v is the ratio of489

observed variance of imputed dosages to the expected binomial variance [55]. We retained490

variants with sufficient minor allele counts and excluded any variants with Neff < 30.491

Gut microbiome profiles were available in 1674 participants, a subset of the HCHS/SOL492

participants, from the HCHS/SOL GOLD ancillary study. Based on the collected stool sam-493

ples, DNA extraction and 16S rRNA gene sequencing were performed according to the Earth494

Microbiome Project (EMP) standard protocols [56]. Subsequent bioinformatic processing of495

the microbiome sequencing data was described in detail by Kaplan et al. [21].496

The HCHS/SOL study was approved by the Institutional Review Boards of all partici-497

pating institutions, and written informed consent was obtained from all participants.498

Simulation studies499

To simulate genotype data with population structure, we first generated 10,000 haplo-500

types of African ancestry and another 10,000 haplotypes of European ancestry over a 1 Mb501

chromosome according to coalescent theory using the cosi2 program [57]. To form a sam-502

ple, we then generated the genotype of each African individual in the sample by randomly503

selecting and pairing 2 haplotypes from the 10,000 founding African haplotypes. A similar504

procedure was used to generate the genotypes of European individuals.505
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We used a Dirichlet-multinomial distribution to generate microbiome OTU counts for506

each individual in the sample, as this distribution well accommodates the over-dispersion of507

microbiome count data [15, 58]. To ensure a realistic simulation of OTU counts, we estimated508

the parameters of the Dirichlet-multinomial distribution from a real upper-respiratory-tract509

microbiome data set [59], which consisted of 856 OTUs. This data set is publicly available as510

part of the GUniFrac R package. We assumed 1000 total OTU counts per individual. After511

introducing population structure into the OTU count data by increasing the counts of the512

10 most common OTUs by 10% in African individuals, we rarefied the OTU counts back to513

1000 total counts per individual. Here we used the estimated mean proportion parameters514

of the Dirichlet-multinomial distribution as a measure of OTU prevalence.515

To evaluate the power of the covariate-adjusted KRV, we introduced an association be-516

tween the genetics and the microbiome in three difference scenarios. Let gi be the genotype517

(0, 1 or 2) of individual i at a chosen common SNP (with MAF ≥ 0.05). In Scenario 1,518

for each individual i, we increased the counts of the 11th - 20th most common OTUs by519

a factor of fi, where fi = 1 + c1gi. In Scenario 2, utilizing the available phylogenetic tree520

for the 856 OTUs [59], we increased the counts of OTUs from a relatively abundant cluster521

(representing 10.3% abundance of the total OTU counts) by a factor of fi for each individual522

i, where fi = 1 + c2gi. In Scenario 3, for each individual i, we increased the counts of 5 rare523

OTUs (chosen randomly from the top 40 rarest OTUs) by an addition of ai, where ai = c3gi.524

We considered two sets of effect sizes: (a) small effect sizes: c1 = c2 = 0.3, c3 = 0.5 and (b)525

large effect sizes: c1 = 0.8, c2 = 0.7, c3 = 1. After introducing these genetic effects on the526

microbiome, we again rarefied the OTU counts to 1000 total counts per individual.527

In the power simulation, we considered two competing methods that rely on univariate528

microbiome phenotypes. The first method was linear regression, where we performed kernel529

PCA on both genotype and microbiome kernel matrices and regressed the top PC of the530
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microbiome kernel on the top PC of the genotype kernel, while adjusting for covariates.531

The second method was SNP-set kernel association test (SKAT) [17], a kernel machine532

regression framework for assessing the general association between a univariate trait and533

multiple genetic variants. Here we performed kernel PCA on the microbiome kernel matrix534

and used the SKAT test to regress the top PC of the microbiome kernel on the genetic535

variants within the pre-specified region, while adjusting for covariates; a linear kernel was536

used for genetic data in the SKAT test.537

Computation time538

We estimated the computation time of the covariate-adjusted KRV test for different539

sample sizes. For each sample size, we simulated 10 data sets and reported the average540

computation time. Given constructed genotype and microbiome kernel matrices and 10541

covariates, the average computation times are 0.09, 1.23, 12.58 and 97.57 seconds on a laptop542

(2.7 GHz CPU and 16 GB memory) for sample sizes of 200, 500, 1000 and 2000, respectively.543

The gene-level analysis of the HCHS/SOL data set (with one genotype kernel, 4 microbiome544

kernels and 19223 variant-sets) took approximately 6 hours on a high-performance computing545

cluster (each node with 24 cores, 3.00 GHz CPU and 384 GB memory), with computing jobs546

divided by chromosome.547

Web resources548

Figure 2 was produced using the LDheatmap R package v1.0: https://cran.549

r-project.org/web/packages/LDheatmap. The 95% confidence ellipses in Figure 3550

were produced using the ordiellipse() function of the vegan R package v2.5: https:551

//cran.r-project.org/web/packages/vegan. The covariate-adjusted KRV test is im-552

plemented as part of the KRV() function in the MiRKAT R package v1.2.1: https:553
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//cran.r-project.org/web/packages/MiRKAT. Other tools include: cosi2 program:554

https://software.broadinstitute.org/mpg/cosi2. SKAT R package v2.0.1: https:555

//cran.r-project.org/web/packages/SKAT. GUniFrac R package v1.2: https://cran.556

r-project.org/web/packages/GUniFrac.557

Data availability558

The HCHS/SOL data used in our study are deposited at the database of Genotypes559

and Phenotypes (dbGap; http://view.ncbi.nlm.nih.gov/dbgap) and Biologic Specimen560

and Data Repository Information Coordinating Center (BIOLINCC; https://biolincc.561

nhlbi.nih.gov). The genotype and covariates data are available at dbGap under accession562

codes: phs000880.v1.p1 and phs000810.v1.p1. The 16S rRNA gene sequences are deposited563

in QIITA (https://qiita.ucsd.edu) under ID 11666, and European Nucleotide Archive564

(ENA; https://www.ebi.ac.uk/ena) under accession code ERP117287. HCHS/SOL has565

established a procedure for the scientific community to apply for access to participant data,566

with such requests reviewed by the Steering Committee of the HCHS/SOL project. These567

policies are described at https://sites.cscc.unc.edu/hchs.568

Code availability569

The covariate-adjusted KRV approach is implemented as part of the KRV() function in the570

MiRKAT R package v1.2.1, available at the Comprehensive R Archive Network (CRAN):571
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