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Abstract

Mean-Shift Super Resolution (MSSR) is a principle based on the Mean Shift theory that

extends spatial resolution in fluorescence images, beyond the diffraction limit. MSSR

works on low- and high-density fluorophore images, is not limited by the architecture of

the detector (EM-CCD, sCMOS, or photomultiplier-based laser scanning systems) and

is applicable to single images as well as temporal series. The theoretical limit of spatial

resolution, based on optimized real-world imaging conditions and analysis of temporal

image series, has been measured to be 40 nm. Furthermore, MSSR has denoising

capabilities that outperform other analytical super resolution image approaches.

Altogether, MSSR is a powerful, flexible, and generic tool for multidimensional and

live cell imaging applications.

Key Words: super-resolution microscopy, diffraction limit, single frame, Mean Shift,

fluorescence microscopy, live-cell imaging.

Introduction

Super-resolution Microscopy (SRM), which encompasses a collection of

methods that circumvent Abbe's optical resolution limit, has dramatically increased our

capability to visualize the architecture of cells and tissues at the molecular level. There

are several approaches to SRM which vary in terms of the final attainable spatial and

temporal resolution, photon efficiency, as well as in their capacity to image live or fixed

samples at depth [1, 2]. One class of techniques exceed the diffraction limit by

engineering the illumination or the point spread function (PSF), such as SIM and STED

[3-5]. These techniques can be used for live imaging although they require specialized

hardware and dedicated personnel for maintenance and operation. Single-molecule

localization methods (e.g., STORM, PAINT, PALM) [6-9] that localize individual

emitters with nanometer precision require temporal analysis of several

hundred-to-thousands of images and are prone to error due to fast molecular dynamics

within live specimens.

Some SRM computational methods have few or no demands on hardware or

sample preparation and provide resolution improvements beyond the diffraction limit,

i.e., fluorescence fluctuation-based super resolution microscopy (FF-SRM) approaches

[10-13]. The quantity and performance of computational methods have both increased

over the past decade given the many advantages they present, such as their low barriers
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to entry and generic applicability to data acquired with any microscopy modality

(wide-field, confocal, or light-sheet). However, these methods also present some

limitations, such as the possible introduction of artifacts [14], the requirement for high

signal-to-noise ratio (SNR) data and the acquisition of tens to hundreds of frames

[10-13], which limit their applicability to reconstruct fast dynamical processes.

The problem of spatial resolution in optical microscopy can be addressed from

the statistical point of view. In the case of fluorescence microscopy, the process of

photon emission from punctual sources (fluorescence emitters) can be considered as a

discrete distribution of information, where the unitary element of the distribution is the

photon [15]. In this scenario, the problem of spatial resolution gets reduced to the

problem of finding modes of information, regardless of the shape of the distribution,

hence, disconnecting the problem of optical resolution from the diffraction boundary

[16].

Here, we introduce the Mean Shift Super-Resolution principle for digital images

‘MSSR’ (pronounced as messer), derived from the Mean Shift (MS) theory [17, 18].

MSSR extends the resolution of any single fluorescence image up to 1.6 times,

including its use as a resolution enhancement complement after the application of other

super-resolution methods.

By computing the local magnitude of the Mean Shift vector, MSSR generates a

probability distribution of fluorescence estimates whose local magnitude peaks at the

source of information. As a result of that, the spatial distribution becomes ‘refined’ (i.e.,

for a Gaussian distribution of fluorescence its width shrinks). Additionally, we

demonstrate the extended-, enhanced- and super-resolving capabilities of MSSR as a

standalone method for a variety of fluorescence microscopy applications, through a

single-frame and temporal stack analysis, allowing resolution improvements towards a

limit of 40 nm.

Open-source implementations of MSSR are provided for ImageJ (as a plugin),

R, and MATLAB, some of which take advantage of the parallel computing capabilities

of regular desktop computers (Supplementary Note 7). The method operates almost free

of parameters; users only need to provide an estimate of the point spread function (PSF,

in pixels) of the optical system, choose the MSSR order, and decide whether a temporal

analysis will take place (Supplementary Material and MSSR Manual). The provided
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open-source implementations of MSSR represent a novel user-friendly alternative for

the bioimaging community for unveiling life at its nanoscopic level.

Results

The MSSR principle.

MSSR is tailored around the assumption that fluorescence images are formed by

discrete signals collected (photons) from point sources (fluorophores) convolved with

the PSF of the microscope (Supplementary Notes 1, 2 and 3). Processing a single image

with MSSR starts with the calculation of the MS, which guarantees that large intensity

values on the diffraction-limited (DL) image coincide with large positive values in the

MSSR image (Supplementary Note 4). Further algebraic transformations then restore

the raw intensity distribution and remove possible artifacts caused by the previous step

(edge effects and noise dependent artifacts), giving rise to an image that contains centers

of density with a narrower full width at half maximum (FWHM) (Figure 1a). This

procedure is denoted by MSSR of order zero (MSSR0), and it is the first stage which

shrinks emitter distribution.

The MS is locally computed by a kernel window that slides throughout the entire

image, subtracts the sample mean (weighted local mean) as well as the central value of

the kernel using a spatial-range neighborhood (Supplementary Notes 2 and 3,

Supplementary Figure S5, Supplementary Table S1) [17, 18]. The MS is a vector that

always points towards the direction of the intensity gradient and its length provides a

local measure of the fluorescence density and brightness [19-21]; its magnitude depends

on the value difference between the central pixel of the neighborhood and the

surrounding pixels. A mathematical proof, provided in Supplementary Note 4,

demonstrates that the minimum MS value, computed from a Gaussian distribution,

matches with the point of maximum intensity of the initial distribution (Supplementary

Note 4, Supplementary Figure S6).

The increase in resolution offered by MSSR0 was evaluated by the Rayleigh and

Sparrow limits [22-24], which are two criteria that establish resolution bounds for two

near-point sources (Figure 1b). Processing with MSSR0 of two-point sources located at

their resolution limit (2.5 σ and 2 σ for Rayleigh and Sparrow limit respectively, Figure

1c vertical discontinuous lines) decreases the dip (height at the middle point) [25]

within their intensity distributions (Figure 1b and 1c). Processing a single image with
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MSSR0 shifts the resolution limit by 26 % and 20 % according to the Rayleigh and

Sparrow limits, respectively, and reduces the FWHM of individual emitters (Figure 1c

vertical continuous lines). A comparison of the shrinkability of MSSR 0 applied to

Gaussian and Bessel distributions are shown in Supplementary Figure S9. The reduction

of FWHM of Bessel distribution at different wavelengths of the visible spectrum are

shown in Supplementary Figure S10.

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2022. ; https://doi.org/10.1101/2021.10.17.464398doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464398
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. MSSR of zero order increases resolution by reducing the width of the spatial distribution

of photons emitted from modeled fluorescent emitters. a) The MS is applied to the initial Gaussian

distribution of photons emitted by a point-source (left) resulting in a MS graph (center). Application of

further algebraic transformations (see Supplementary Note 5 and Figure S11 (ii-iv)) provides the MSSR0

distribution (right). b) Sparrow and Rayleigh limits (blue, diffraction-limited) and the corresponding

MSSR0 transformation (brown) for two point-sources. Red dots represent each emitter’s location. The dip

is indicated by a vertical black line. The inter-emitter distance is expressed as σ-times their individual

standard deviation before MSSR processing. c) Dip computed for two point-source emitters of Gaussian

distribution located away at distinct σ (blue line) where the corresponding MSSR0 result is also depicted

(red line). For Gaussian: Rayleigh limit – gray discontinuous line, Sparrow limit - black discontinuous

line. For MSSR0: Rayleigh limit - gray solid line, Sparrow limit - gray solid line. The solid vertical lines

represent the distance between emitters such that when processed with MSSR0, the criterions of Rayleigh

and Sparrow are obtained (For detail see Online Methods section Simulation of fluorescent emitters).

Since the result of MSSR0 is an image, we used the resulting image to seed an

iterative process (Figure 2a). We refer to this as higher-order MSSR (MSSRn, with n>0),

which delivers a further gain of resolution per n-iteration step (Figure 2a and

Supplementary Figure S11). As the order of MSSRn increases, both the FWHM of

emitters (Supplementary Figure S12) and the dip of their intensity distribution decrease

(Figure 2b). Numerical approximations indicate that two point-sources separated at 1.6

σ are resolvable with MSSR3, but not when their separation is 1.5 σ (Figure 2b). The

separation of 1.6 σ sets the theoretical resolution limit of MSSRn.
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Figure 2. Single-frame MSSR analysis of higher order attains a resolution limit of 1.6 σ for nearby

emitters. a) The algorithm for computing higher-order MSSR (MSSRn) is presented. The first iteration of
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MSSR (MSSR1) is given by subtracting the MSSR0 from the original image, resulting in a donut-like

region centered at the emitter’s location. MSSR1 is computed after applying further algebraic

transformations (see Supplementary Note 5 and Figure S11 (ii-iv) for a full description of the MSSRn

process). The second iteration encompasses the subtraction of MSSR1 from MSSR0 and the same

algebraic transformations as used for generation of MSSR1. The process is repeated by updating

consecutive MSSR images which generates higher MSSR orders. b) Theoretical limit of resolution

achievable by MSSRn. Dip computed for two Gaussian emitters in accordance with the variation of the

inter-emitter distance (expressed as σ-times their standard deviation before MSSR processing). Colored

lines represent the dip of MSSR order, from 0 to 3, computed at a given σ distance between emitters.

Images on the right are the bidimensional representation of the MSSRn processing for two single emitters

separated at distances of 1.5σ and 1.6σ. Note that, for 1.5σ, emitters are unresolved up to the third order

of MSSR (For detail see Online Methods section Simulation of fluorescent emitters). Dot and dashed lines

are referred to Rayleigh and Sparrow limits for the DL case and the continuous line marks the MSSR

limit of resolution. c) Experimental demonstration of the resolution increases attainable with higher order

MSSR using the GATTA-SIM 140B nanoruler system. The intensity distribution of the emitter shrinks,

both in σ and intensity, as the order of the MSSR increases (Figure S12). Nearby emitters (Alexa Fluor®

488) located 140 nm apart are resolved using MSSR1, MSSR2 and MSSR3 (right side). SIM images

collected from the same sample (distinct fields) are shown as a positive control. sf-MSSR parameters:

AMP = 10, FWHM of PSF = 3.48, order = 0-3. ImageDecorrelation parameters for DL case: Rmin=0,

Rmax = 0.7, Nr = 50, Ng = 10. ImageDecorrelation parameters for sf-MSSRn (n=0-3): Rmin=0, Rmax =

0.3, Nr = 50, Ng = 10. Scale bar: 100 nm.

In summary, MSSRn processing extends the spatial resolution of single DL

images. The procedure of applying MSSRn to a single DL image will be defined as

sf-MSSRn.

MSSR is a deconvolution approach at the nano scales

In optical microscopy, objects significantly closer to the diffraction boundary

can be resolved with clever illumination and detection schemes (i.e., SIM, Airy Scan, 4

Pi, I5M, STED, SMLM, etc.) [3, 26-28], or by careful image analysis, reviewed in [29].

Rayleigh criterion is a bit too conservative, in the sense that achieving a decrease of the

Dip formed by the joint distribution shaped by two adjacent emitters might be

interpreted as surpassing the diffraction boundary (Supplementary Figure S13 a, b).

Repeating the same procedure using a joint distribution shaped by two adjacent emitters

located at the Sparrow limit there is no further gain of resolution, as the dip remains

constant, taking the value of 1 (Supplementary Figure S13 e, f).
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MSSR aims to revert the effect of diffraction on optical microscopy, so it can be

considered as a deconvolution process. As the diffraction can be modeled with a

Gaussian spread, the pixel value is a superimposition of spreads from individual

emitters (Supplementary Notes 1, 2 and 3). The goal is to reduce the spread. The latter

can be accomplished by “sharpening by blur” [30, 31]. In MSSR, the computation of the

MS is the blurring process used to sharpen the image. What makes sf-MSSRn unique is

the fact that it extends spatial information down below the Sparrow limit. Processing the

joint distributions of Supplementary Figure S13 with sf-MSSRn of any order n leads to a

decrease of the dip value (Supplementary Figure S13 c, d, g, f). Furthermore, sf-MSSR3

processing collapses the dip to zero for both Rayleigh and Sparrow conditions

(Supplementary Figure S13 d, h).

To illustrate how MSSR works by sharpening features down the diffraction

barrier, we provide comparative data against: Wiener deconvolution [32],

Richardson-Lucy deconvolution [33,34] and the Radiality Maps (RMs) [11].

Supplementary Figure S14 shows that Wiener deconvolution partially restores the effect

of diffraction, but without a dramatic increase in spatial resolution. Interestingly,

Richardson-Lucy deconvolution provides a noticeable increase in resolution at the

boundaries of the Rayleigh limit but fails to extend spatial resolution down below the

Sparrow limit (Supplementary Figure S14).

Gustafsson et al. showed that the RMs of SRRF provide a resolution increase

down to 0.7 times the Gaussian FWHM [11], where when the peak separation between

isolated is greater than 0.7 times the FWHM of the PSF, they can be directly resolved

without further enhancement provided by higher-order statistical analysis. MSSR0 and

the Radiality Maps are similar in the sense that both perform sharpening and smoothing.

Supplementary Figure S14a shows that both MSSR and the RMs overcome the

Rayleigh diffraction limit [22]. However, the RMs produce undesired artifacts which are

absent when using sf-MSSR0 (Supplementary Figure S14b), which is in agreement with

the reported spatial artifacts introduced [35]. Figures 1, 2 and Supplementary Figure

S14 show that sf-MSSR0 reliably provides spatial resolution gains, free of image

analysis artifacts, down to the Rayleigh limit, hence, allowing the study of nanoscopic

regimes at the boundaries of the Sparrow limit.

With such data in hand, it is concluded that sf-MSSRn is a deconvolution

process that extends spatial information of DL images at the nano scales.
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MSSR extends spatial resolution in fluorescence microscopy images

To empirically test the ability of MSSR to extend spatial resolution within a single DL

image, a commercial nanoruler sample (GATTA-SIM140B, GATTAquant) was imaged

by Structured Illumination Microscopy (SIM) and Total Internal Reflection

Fluorescence (TIRF) microscopy, which was then processed by sf-MSSRn. The iterative

processing of the widefield data with sf-MSSR3 reveals the two fluorescence emitters

located at a separation of 140 nm, which is consistent with the result obtained by SIM

(Figure 2c).

A theoretical approximation of the Rayleigh limit for a GATTA-SIM 140B

nanoruler (Figure 2c of the main manuscript) with λem= 525 nm and NA = 1.4, is d =

(0.61*525)/1.4 = 229 nm (Table 1). Figures 1c and 2b show that MSSR processing

theoretically extends spatial resolution. Computation of resolution on sf-MSSR0 using

the Rayleigh criterion (at 0.74 of the Dip) gives a spatial resolution of 160 nm, which

corresponds to a resolution change to 0.69 times (0.69x) the resolution limit. Using

higher orders of sf-MSSRn with n = 1, 2, 3, gives a resolution change of 0.66-0.64x the

resolution limit (Table 1). Table 1 also shows the spatial resolution measured on the

GATTA-SIM 140B nanorulers (experimental data), computed through decorrelation

[36], using the Image Decorrelation plug-in for Fiji/ImageJ. Decorrelation computes the

maximal observable frequency in an image (K0) as a proxy of spatial resolution

(Resolution = 1/ K0).  Note that sf-MSSRn dramatically reduces resolution as a function

of the n-order.

GATTA-SI
M 140B Resolution diffraction

limited sf-MSSR0 sf-MSS
R1 sf-MSSR2 sf-MSSR3

Simulation

Rayleigh
limit

229 nm (1x)
2.90 σ

160 nm
(0.69x)
2.02 σ

152 nm
(0.66x)
1.92 σ

148 nm
(0.65x)
1.87 σ

146 nm (0.64x)
1.841 σ

PSF FWHM 192 nm
2.35 σ

114 nm
1.10 σ

84 nm
0.74 σ

56 nm
0.49 σ

38 nm
0.34 σ

PSF sigma 79 nm
1 σ

44 nm
0.63 σ

34 nm
0.43 σ

24 nm
0.28 σ

16 nm
0.20 σ

Experiment resolution 260 nm (1x) 58 nm
(0.22x)

33 nm
(0.13x) 21 nm (0.08x) 13 nm (0.05x)

Table 1. sf-MSSR extends spatial resolution on simulated and real experimental conditions. For
simulated conditions the Rayleigh limit and Sparrow limit were computed by the simulation of two
fluorescent emitters. The values of FWHM of PSF (values in nm units) have been computed by
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measuring directly on the PSF distribution. The values of PSF sigma (values in nm units) were computed
by fitting a Gaussian distribution and reporting the corresponding sigma parameter. sf-MSSR parameters:
AMP = 1, FWHM of PSF = 198 nm, order = 0-3. ImageDecorrelation parameters for DL case: Rmin=0,
Rmax = 0.7, Nr = 50, Ng = 10. ImageDecorrelation parameters for sf-MSSRn (n = 0-3): Rmin=0, Rmax =
0.3, Nr = 50, Ng = 10.

To further test the attainable resolution by sf-MSSRn we used the ArgoLight test

slide, acquiring images of the pattern formed by gradually spaced lines of fluorescent

molecules (Argo-SIM, pattern E). The distance between lines increases from 0 to 390

nm with a step change of 30 nm: 0 nm, 30 nm, 60 nm, etc. Figure 3 shows the

application of sf-MSSRn to the confocal microscopy images of the Argo-SIM

micropattern. As expected, the confocal acquisition allows to resolve parallel rows of

fluorophores located at 240 nm. Remarkably, sf-MSSR0 processing extended spatial

resolution down to 0.5 times the confocal resolution, allowing to discriminate parallel

rows of fluorophores located at 120 nm. It is worth mentioning that this improvement

comes at zero hardware cost, compared to other methods requiring specific

optics/detectors such as the Airyscan [37] and Re-scan confocal microscopy [38].

Higher orders of sf-MSSRn create a saddle point between parallel rows of emitters

located in the range of 60 - 90 nm at the boundaries of the Rayleigh limit (Figure 3b, c).

Figure 3. sf-MSSRn extends spatial resolution in confocal microscopy.  a) Comparison of confocal and

sf-MSSRn reconstruction (n=0-3) of ArgoLight test slide applied to a spaced fluorescent line pattern.

Central lines are gradually being separated by 30 nm (0 nm, 30nm, 60 nm, … 390 nm). b) Results of

confocal and sf-MSSRn reconstruction (n=0-3) of line patterns separated at 0 nm, 30 nm, 60 nm, 120 nm,

240 nm and 390 nm. c) Average profiles of images obtained in (b). Images were acquired using a

Plan-Apochromat 63x/1.4 Oil immersion objective, exciting the Argo-SIM micropattern E with a 405 nm
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laser and detecting the fluorescence in the range 420 – 480 nm (Zeiss LSM880). The pixel size was 44

nm. Images in (a) a (b) correspond to the ensemble average of 31 consecutive sections (width = 1 µm)

along the ArgoSIM micropattern E.

MSSR enhances the resolution of images with extended resolution.

Based on the MSSR capabilities to generate a micrography with extended spatial

resolution after processing a single fluorescence image, we explored if a pre-existing

image with extended resolution can be further enhanced by sf-MSSRn.

The Argo SIM micropattern was imaged using an Airyscan detector with other

experimental settings as in Figure 3. Images were further deconvolved with the

corresponding Airyscan algorithm [39]. Figure 4 shows the application of sf-MSSRn to

the Airyscan microscopy images of the Argo-SIM micropattern. Within the Airyscan

processed image it is possible to resolve parallel rows of fluorophores located at 180

nm, but not 120 nm or less. sf-MSSR0 processing enhanced the spatial resolution of the

same Airyscan data, allowing to discriminate parallel rows of fluorophores located at

120 nm, or less (Figure 4 a, b). Higher orders of sf-MSSRn create a saddle point

between parallel rows of emitters located in the range of 60 - 120 nm (Figure 4 b, c).

Remarkably, compared with the confocal original data in Figure 3, where the last

resolvable line pair is the one corresponding to a distance of 240 nm, the value of 120

nm obtained in Figure 4 by applying sf-MSSR0 to Airyscan processed data corresponds

to a 2-fold improvement in resolution. The first reported applications of Airyscan

technology allowed an improvement in resolution of 1.7X [40], while only following

protocols claim that a 2-fold improvement might be achieved [39], compared to

standard confocal detection.

We then applied sf-MSSR0 on a SIM image of sister meiotic chromatids of

mouse chromosomes [41]. Similar to the results obtained above with Airyscan, Figure

4d shows that processing with SIM images with sf-MSSR0 enhances both the contrast

and resolution of the final image.
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Figure 4. sf-MSSRn enhances the resolution and contrast of Airy scan and SIM reconstructions. a)

Comparison of confocal and sf-MSSRn reconstruction (n=0-3) of ArgoLight test slide applied to a spaced

fluorescent line pattern. Central lines are gradually being separated by 30 nm (0 nm, 30nm, 60 nm, … 390

nm). b) Results of confocal and sf-MSSRn reconstruction (n=0-3) of line patterns separated at 0 nm, 30

nm, 60 nm, 120 nm, 240 nm and 390 nm. c) Average profiles of images obtained in (b). d) sf-MSSR0

applied to SIM reconstruction of chromosome axis. d) Synapsed homologs of meiotic mouse

chromosomes visualized by TIRFM (left), SIM (middle) and SIM + MSSR0 (right). Images in (a) a (b)

correspond to the ensemble average of 31 consecutive sections (width = 1 µm) along the ArgoSIM

micropattern E. Resolution in (d) was measured with the image decorrelation plugin of FIJI/image [36].

MSSR enhances the resolution of super-resolved images.

We explored if a pre-existing super-resolved image can be further enhanced by

sf-MSSR.

First, we used a temporal stack of DL images of tubulin-labeled microtubules

collected at high fluorophore density [42] (previously used to test and compare a variety

of SRM algorithms) [43], which were subject to FF-SRM analysis [10,44]. ESI, SRRF

or MUSICAL were used to compute a single enhanced-resolved image (Figure 5a)
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[11-13]. Supplementary Note 9 contains an in-depth comparison of sf-MSSR0

reconstructions combined with either ESI, SRRF and MUSICAL, which achieve

super-resolution through a temporal analysis [11-14]. Post-processing of ESI, SRRF or

MUSICAL images with sf-MSSR0 enhances contrast and spatial resolution (Figure 5a).

Second, a sequence of images of randomly blinking emitters placed along a

synthetic tubular structure [45] was processed with sf-MSSR0 after analysis with

MUSICAL. In both reconstructions, three regions (small squares in Figure 5b) were

chosen to assess the gain in resolution, visualized in terms of the distance between the

normalized intensity distributions peaks. MSSR further resolves the edges of the

synthetic structures on the MUSICAL-processed image without changing the position

of the distribution peaks (Figure 4c) as predicted by our theory (Supplementary Notes 1

to 4).
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Figure 5. MSSR enhances resolution and contrast of SIM or enhanced-resolved images. a)

Comparison of SRM results of ESI, SRRF and MUSICAL alone and after post-processing with MSSR0

(ESI + sf-MSSR0, SRRF + sf-MSSR0, MUSICAL + sf-MSSR0), over a temporal stack of 500 DL images

of tubulin-labeled microtubules. The average projection of the DL stack is shown on the leftmost side. b)

Comparison of the increase in spatial resolution of MUSICAL with and without post-processing with

MSSR0 (MUSICAL + sf-MSSR0), over a temporal stack of 361 DL images of modeled fluorophores

bounded to a synthetic array of nanotubes (average projection shown on left). The graphs show the

intensity profiles along the lines depicted in each of the insets in the images of the upper row; black, blue

and red lines correspond to the average DL, MUSICAL and MUSICAL + sf-MSSR0 images, respectively.

Scale bars: a) 200 nm; b) 1 μm, insets = 200 nm; c) 500 nm, insets = 100 nm. MSSR parameters: AMP =

1, PSF FWHM = 2, order = 0; ESI parameters: two iterations, first iteration: image output = 250, bin =

50, order = 2, second iteration: image output = 50, bins = 5, order = 2; SRRF parameters: default

parameters; MUSICAL parameters: lambda_em = 650 nm, NA = 1.4, pixel size = 100 nm, threshold = -

0.6, α = 4, subpixel per pixel = 4.

Lastly, we set up an experimental assay to examine the achievable resolution by

MSSR alone, or in combination with either confocal or stimulated emission depletion

(STED) microscopy. Figure 6 a, b, show that STED, but not confocal imaging allows to

discern chromosomal territories within the chromatin of 2-cell stage embryo, as

observed by the lack of colocalization of acetylated (ac, i.e., ‘active’) or methylated

(me, i.e., ‘inactive’) chromatin states, H3K27me3, and H3K27ac respectively [46].

Remarkably, Figure 6c shows that sf-MSSR1 processing of the confocal image allows to

reach a similar experimental conclusion, that there is no colocalization between

H3K27me3 and H3K27ac signals.

Figure 6 also shows the result of post-processing of the STED image with

sf-MSSR1 (Figure 6g). We note an increase in contrast and resolution from confocal to

STED and then to STED + sf-MSSR1 (compare panels e, f, and g in Figure 6). To assess

the resolution change provided by either STED or STED + sf-MSSR1 we used the

image decorrelation approach [36]. The bottom panels of Figure 6 e, f, and g, show the

resolution computed at a confocal image (315 – 330 nm), STED (80 – 100 nm) and

STED + sf-MSSR1 (19 – 22 nm). With these results, we conclude that sf-MSSR1

processing of STED data provides a further increase in spatial resolution.
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Figure 6. sf-MSSRn enhances spatial resolution in STED microscopy. a) Confocal and b) STED

micrographs of fluorescent histone proteins (H3K27me3, H3K27ac) imaged in a 2-cell stage mice

embryo (top-center). c) and d) show the corresponding enhanced-resolved scenes provided by

post-processing of the confocal and STED images with sf-MSSR1, respectively. The bottom row shows

the sequential increase in resolution when comparing the same sample imaged with a (e) confocal

microscope, an (f) STED microscope and (g) after processing the STED image with sf-MSSR1. For each

image, the resolution range (in nanometers) was assessed using the ImDecorr algorithm in ImageJ [36].

Immunofluorescence Imaging was carried out using a STEDYCON mounted on an upright Zeiss

microscope in confocal or STED modes. Samples were imaged with a 20 nm pixel size. Primary

antibodies: anti-H3K27me3 (Abcam ab6002) and anti-H3K27ac (Active Motif, 39034). Secondary

antibodies: anti-mouse labeled with STAR Red and anti-rabbit labeled with STAR Orange. The

parameters used for sf-MSSR processing were AMP = 5, order = 1, FWHM of PSF = 4, interpolation =

bicubic, mesh-minimization = true.
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MSSR achieves super resolution by analyzing fluorescence intermittency over time

Analyzing the temporal dynamics of fluorescence is central to achieving the highest

attainable gain of resolution by FF-SRM approaches (reviewed in [36]). FF-SRM

methods analyze higher order temporal statistics looking to discern correlated temporal

information (due to fluorescent fluctuations) from uncorrelated noise (i.e., noise

detector). In theory, MSSR can be applied to a sequence of images (Supplementary

Note 5). Based on the increase in resolution offered by FF-SRM approaches (SRRF,

MUSICAL), we investigated whether a further resolution gain could be achieved by

applying a temporal analysis to a sequence of single-frame MSSR images (denoted by

t-MSSRn) (Figure 7a). Pixel-wise temporal functions (PTF), such as average (Mean),

variance (Var), the temporal product mean (TPM), coefficient of variation (CV) or

auto-cumulant function of orders 2 to 4 (SOFI2, SOFI3, SOFI4) [10], can be used to

create an image with enhanced spatial resolution (Supplementary Note 5.2,

Supplementary Table S2).

To experimentally validate the increase in resolution by both sf-MSSRn and

t-MSSRn we used two different nanoruler systems, an in-lab CRISPR/dCas12a

nanoruler, used to score nanoscopic distances between individual fluorescent sites down

to 100 nm, and a commercial nanoruler with fluorophores positioned at 40 nm of

separation (GATTA-PAINT, 40G, and 40RY. Gattaquant).

The CRISPR/dCas12a nanoruler system consists of a dsDNA with four binding

sites for dCas12a uniformly distributed every 297 bp (equivalent to ~ 100 nm of

separation) (Supplementary Figure S42a). To validate this system, we imaged the

association of the CRISPR/dCas12a complex to the binding sites on the dsDNA by

atomic force microscopy (AFM) and measured the distance between each dCas12a

complex (Supplementary Figure S42b).

The CRISPR-dCas12a nanorulers were then imaged by TIRF microscopy for

further MSSR analysis. We used a DNA-PAINT approach for fluorescence indirect

tagging [47], in which a fluorescent ssDNA probe hybridizes with an extension of the

gRNA. The “blinking” of the fluorescence signal is attained by events of association

and dissociation between the fluorescent probe and the gRNA on the CRISPR/dCas12a

nanoruler at the binding site.
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In the DL image, amorphous spot-like fluorescent patterns were observed

(Figure 7b). sf-MSSR3 processing of either an isolated frame or an average projection of

the corresponding stack of 100 images (DL-AVG) could not resolve individual

CRISPR/dCas12a binding sites (Figure 6b), and only after processing by t-MSSR3 did

individual binding sites became resolved (Figure 7c). The result of t-MSSR3 varied in

relation to the temporal function used (Figure 7c). The best result for this nanoruler was

obtained by the pixel-wise temporal variance (Var) of the sf-MSSR3 stack (Figure 6c).

t-MSSR3-Var resolved nearby emitters engineered to recognize binding sites located at

100 nm (Supplementary Movie S1), provided by scoring association-dissociation events

between the imaging probe and the gRNA.

Once the CRISPR/dCas12a nanorulers were super-resolved by t-MSSR3-Var

(Figure 7c), we scanned all the individual emitters in close proximity to determine the

average distances between different dCas12a associated to the dsDNA binding sites

(theoretically interspaced by 100 nm, Supplementary Figure S42). Since DNA in

solution is a semi-flexible polymer [48], the measured distances resulted in three

different distributions: 91 ± 31 nm, 220 ± 52 nm, 323 ± 19 nm (Figure 7d), which

accounts for dCas12a separated by one, two and three binding sites along the dsDNA,

respectively. These results confirm that t-MSSR3 can successfully resolve nanoscopic

distances.

To explore the resolution limit attainable by t-MSSRn even further, we looked at

a nanoruler system with smaller separation between fluorophore sites (from Gattaquant)

(Supplementary Figure S43a). Figure 7e shows that using the TRA or TRM pixel-wise

temporal functions in combination with MSSRn (t-MSSRn) does not provide extra

resolution enhancement. TRA provides t-MSSR3 reconstructions less influenced by

noise (recommended in imaging scenarios of marginal signal-to-noise ratios) and TRM

delivers reconstructions whose intensity distribution is less dominated by constantly

emitting sources, i.e., fiducial markers. In stark contrast, higher spatial resolution

regimes, ∼ 0.15 times the FWHM of the PSF (PSF σ: [0.4 - 0.5]), are achieved by

t-MSSRn when encompassing pixel-wise temporal functions of higher-order statistics

such as Variance (Var), Coefficient of Variation (CV), or SOFI (TRAC2-4). Analysis

with t-MSSR3 of 300 DL images using either Var or CV revealed individual fluorescent

spots at 40 nm apart (Figure 7e and Supplementary Figure S43b). The data presented in

Figure 7e demonstrate that t-MSSR3 resolves nanoscopic distances at 40 nm, validating
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a lower experimental spatial resolution bound of 0.5 σ (≈ 40 nm), which depends on the

emission wavelength of the fluorophore (Figure 7e, Supplementary Figure S10c). In

comparison, SRRF and MUSICAL were not able to resolve fluorescent emitters located

40 nm apart, consistent with their limit within the range of 50–70 nm (Figure 7f)

[11-13].

Figure 7. The temporal analysis of MSSR provides a further increase in resolution to 40 nm. a)

Single-frame analysis of MSSR of a given order n is applied to each frame of a sequence, becoming the

sf-MSSRn stack. Next, a pixel-wise temporal function (PTF) converts the MSSR stack into a single

super-resolved t-MSSRn image. Depending on the temporal fluorescence dynamics of the dataset and on

the PTF used, a resolution increase is obtained. b) Left: a stack of DL images of a CRISPR/dCas12a

nanoruler system. Right: zoomed region of the first frame in the stack, along with the average projection

(DL-AVG) of a stack of 100 images, before and after MSSR processing. c) PTF applied to a stack of

MSSR3 images (t-MSSR3). Fluorescent emitters are separated by 100 nm, as established by the

CRISPR/dCas12a nanoruler system. Four types of PTF were computed: TPM, Var, Mean and SOFI4.

MSSR parameters: AMP = 20, FWHM of PSF = 3.74, Order = 3, Number of images for PTF: 300. pixel
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size of the DL dataset = 100 nm. d) Euclidean distances between nearby emitters automatically computed

from t-MSSR3-Var images, following a worm-like chain model (16 regions of interest used, 1.5 µm2

each). e) t-MSSR3 analysis (see Table S3) for a commercially available GATTA-PAINT nanoruler system.

The Var column shows inter-emitter distances resolved at 40 nm. ATTO 488 (green), ATTO 550 (orange)

and Atto 655 (magenta) fluorescent probes were used. f) Same nanorulers shown in (e) but analyzed using

SRRF and MUSICAL. MSSR parameters: AMP = 20, FWHM of PSF for Gattpaint ATTO 488 = 2.79,

Gattapaint ATTO 550 = 3.31, Gattapaint ATTO 655 = 3.74, Order = 3, Number of images for PTF: 300.

Nano J - SRRF parameters: bicubic interpolation magnification = 2, ring radius = 1, radiality

magnification = 10, axes in ring = 8, PTF = TRA, TRPPM, TRCA4, Other parameters were setted as

default. MUSICAL parameters: emission wavelength = same as ATTO emission wavelength (520, 575,

680) used for each row in (e) and (f), NA = 1.49, pixel size = 100 nm, threshold = -0.3 (ATTO 488), -0.02

(ATTO 550), -0.2 (ATT0655), α = 4, subpixel per pixel = 20. frames = 300, musicJ v0.94 of imageJ.

Analyzing the temporal dynamics of fluorescence intermittency is central for

any FF-SRM approach [10-13]. The highest attainable spatial resolution is influenced

by blinking statistics, i.e., photokinetics for fixed fluorophores [11-13,49], and binding

energies for diffusible fluorescent probes [50]. These factors, including the density of

fluorophores emitting per frame, impinge on the final resolution of the reconstruction.

Supplementary Figure S44 shows the pixel-wise temporal dynamics of two GATTA

paint ranorulers (ATTO 655), where the temporal dynamics of a given nanoruler

containing three binding sites can be studied by analyzing the temporal fluorescence

fluctuations at nearby pixels. Note that diffraction imposes constraints to distinguish the

temporal dynamics at individual PAINT binding sites. Noteworthy, sf-MSSR3

processing allows to untangle, in space and in time, the fluorescence dynamics at

individual PAINT binding sites, where the fluorescence signal peaks due to the transient

binding of a fluorescent labeled DNA strand to its corresponding binding site within the

nanoruler.

Single frame nanoscopy, free of noise-dependent artifacts

The theory of image processing by MSSR (Supplementary Note 5), suggests that

it should be robust over a wide range of SNR, granted by four factors. First, when

processing a single frame, MS works as a local spatial frequency filter (a smoothing

filter); regions corresponding to the image background are homogenized by the kernel

window, reducing variation in background noise. Second, one of the steps of the MSSR

procedure is to remove the MS negative constraints. The goal of this step is to remove

an artifact caused by the MS calculation itself when applied to Gaussian and Bessel

distributions. When calculating the complement of the resulting distribution, a valley (or
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depression) is generated between the peak intensity and the tails, which lies in the

negative values and is referred to as negative constraints. After this, the artifact is

removed. Third, when using a PTF, nanoscopic information is enriched due to temporal

oversampling of the hidden fluorescent structure. Fourth, the spatial kernel of the MSSR

algorithm operates within the subpixel realm; the number of neighboring pixels is

digitally increased through interpolation (i.e., bicubic interpolation [51] for single frame

analysis and Fourier interpolation [52] for temporal analysis, Supplementary Note 6)

providing digital oversampling of the emitters’ locations (Supplementary Note 6).

We then experimentally assessed the capacity of MSSR to denoise fluorescence

images and determine whether it introduces noise-related artifacts. We used a PSFcheck

slide [53], which contains an array of regular fluorescent nanoscopic patterns shaped by

laser lithography (Figure 8). Analysis with sf-MSSRn or t-MSSRn showed, in

comparison to alternative approaches, striking denoising capabilities without

introducing noticeable artifacts (Figure 8a, Supplementary Note 9). These artifacts,

resembling amorphous nanoscopic structures around the fluorescent ring or within it,

were commonly found at reconstructions generated by other analytical techniques

(Supplementary Figure S29).

Starting at a SNR > 2, sf-MSSR1 provides reliable SRM reconstructions of

comparable quality to other SRM approaches, which demand the temporal analysis of

the fluorescence dynamics (Figure 8a and Supplementary Note 9). We quantified the

quality of the reconstructions by calculating the Resolution Scaled Pearson (RSP)

coefficient and the Resolution Scaled Error (RSE), which provide a global measurement

of the quality of the reconstruction by comparing the super-resolution image and the

reference image (in this case, the DL image) [14]. Higher RSP and lower SRE values

are associated with reliable reconstructions (Supplementary Note 8). When the SNR is

above 5, all tested algorithms perform similarly well in quality (Figure 8b), but their

global errors differ from each other (Figure 8c). As expected, the RSE increased as a

function of the SNR of the input images for any tested algorithm (Figure 8c).

The performance of MSSR in achieving a satisfactory reconstruction was assessed by

varying the number of input images using a temporal analysis scheme (Supplementary

Note 8). With SNR > 2 input data, RSP reaches near maxima values and RSE near
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minima values when processing a single frame (Supplementary Figure S28,

Supplementary Movie S2). However, when computing MSSR using low SNR input data

(SNR ~ 2) a temporal analysis is required as RSP and RSE values reach a plateau only

when a temporal stack of as few as 25 images is used (Supplementary Movie S3). These

findings illustrate that the minimal number of frames needed by MSSR to provide a

reliable reconstruction depends on the information itself, i.e., on the SNR and on the

fluorescence blinking statistics of the specimen (Supplementary Movies S1-S3); and

can be determined by computing RSP and RSE as function of the number of analyzed

frames with t-MSSRn (Supplementary Figure S28).

Nanoscopic resolution with conventional fluorescence imaging

MSSR addresses the problem of spatial resolution in optical fluorescence microscopy

from the statistical point of view, where the process of photon emission from punctual

sources is considered as a discrete distribution of information, provided by detected

photons. Enhanced or extended resolution is achieved by finding local modes of

information without taking any prior about the local shape of the distribution. The latter

makes the MSSR principle compatible with any imaging approach where the

distribution of information is of discrete nature (i.e., photons), and emanates from

discrete sources (i.e., fluorophores).

To showcase the versatility of MSSR to extended-, enhanced- and super-resolve

data acquired from different fluorescence applications, we evaluated its performance

over a collection of experimental scenarios (Figure 9) (Supplementary Note 10).
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Figure 9. MSSR applications in fluorescence microscopy. MSSR operates over images acquired with

most fluorescence microscopy modalities available (e.g., widefield, confocal, light-sheet, etc.), denoted

by the text in green. It can be applied to achieve enhanced image resolution, SNR and contrast in live-cell

imaging, single-particle tracking, deep tissue and volumetric imaging, among others (denoted by the text

in pale blue). Some examples of these applications are detailed in the main text and Supplementary Note

10. Abbreviations: FF-SRM, Fluorescence Fluctuation-based Super-Resolution Microscopy; SMLM,

Single-Molecule Localization Microscopy; STED, Stimulated Emission Depletion microscopy; SIM,

Structured Illumination Microscopy; SPIM, Selective Plane Illumination Microscopy; EPI,

Epifluorescence; HiLo, highly inclined and Laminated optical microscopy; TIRFM, Total Internal

Reflection Fluorescence Microscopy; CLSM, Confocal Laser-Scanning Microscopy. Scale bars: a) 500

nm; b) 2 μm; c) no scale provided; d) 2 μm; e) 20 μm, insets = 5 µm.

Analysis with MSSR provided nanoscopic resolution of rotavirus replication

machineries (Figure 9a, Supplementary Figure S32), which were recently described by

Garcés et al as a layered array of viral protein distributions [54]. Originally, it took the

authors several days to weeks to generate a single extended-resolution image by means

of analyzing several stacks of hundreds of DL images using 3B-ODE FF-SRM. With

MSSR, we were able to achieve comparable results, through analyzing single DL

frames within seconds with a regular desktop computer with either sf-MSSR1 or

t-MSSR1 (Supplementary Note 7).

Mouse sperm cells are used to study the acrosomal exocytosis (AE), a unique

secretory process which results from fusion events between the plasma membrane and a
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specialized vesicle called acrosome located in the sperm head [55, 56]. Nanoscopic

remodeling of both plasma membrane and actin cytoskeleton was imaged during the AE

by means of sf-MSSR1, showing single frame temporal resolution (of milliseconds)

(Figure 8b, Supplementary Figures S33-34). At the onset of the AE, the FM4-64

fluorescence (a probe that fluoresces when bound to membranes) was confined to the

plasma membrane and was visible above a F-actin cytoskeleton fringe. During the AE,

several fenestration events were observed to occur at both the plasma and acrosome

membranes, as consequence of that, a notorious increase of FM4-64 was observed

close-bellow the F-actin fringe (Supplementary Movie S5 a-f). The AE is a dynamic

remodeling process that takes minutes to occur, sf-MSSR1 allows the observation of

events occurring at the millisecond scales, which are hindered when using other SRM

multi-frame analytical approaches, such as SRRF or 3B [11, 57], due to their mandatory

need of a temporal analysis of the fluorescence dynamics to unveil nanoscopic detail

(compare Supplementary Figures S33 and S34).

Background noise is known to be an important issue in single-particle tracking

(SPT) applications as it decreases the ability to faithfully localize particles and follow

them through time [58, 59]. Moreover, the spatial overlap of PSFs derived from

individual particles makes it challenging for SPT algorithms to recognize them as

separate entities. The denoising capabilities of sf-MSSR1 enhanced both the contrast and

spatial resolution of freely diffusing in-silico particles (Figure 8c, Supplementary Figure

S35), previously used as benchmarks to test a variety of SPT algorithms [60].

Pre-processing of the images with sf-MSSR1 improved the tracking performance of

three commonly employed SPT tracking algorithms: (i) the LAP framework for

Brownian motion as in [61, 62], (ii) a linear motion tracker based on Kalman filter [63,

64], and (iii) a tracker based on Nearest neighbors [65-68] within a wide range of

particle densities and SNR (Supplementary Figure S36). Additional testing with

sf-MSSRn showed an increase in contrast for moving comet-like particles related to

microtubule growth dynamics in live LLC-PK1 cells (Supplementary Figure S37 and

Supplementary Movies S10 and S11), as well as higher nanoscopic colocalization

accuracy in double imaging experiments in single-molecule DNA curtain assays

(Supplementary Figure S38) [69].

Plasmalemma- and nuclear-labeled transgenic Arabidopsis thaliana plants are

routinely used to study cell fate and proliferation during root development in time-lapse
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confocal microscopy experiments in two and three dimensions [70, 71]. When applied

to lateral root primordium cells, located deep inside the parent root, sf-MSSR1

demonstrated the capacity to achieve multidimensional nanoscopic resolution as it

revealed isolated nanodomains resembling nucleosome clutches, previously reported in

mammalian cells [72,73], within the nuclei of a lateral root primordium cells (Figure

8d-e, Supplementary Figure S39 and Supplementary Movie S12). Similar observations

were performed upon epidermal root tissues visualized via selective plane illumination

microscopy (SPIM) after examination of volumetric data with sf-MSSR1

(Supplementary Figure S40).

Supplementary Figure S41 shows a comparison of 3D reconstruction from a

stack of epifluorescence images of bovine pulmonary artery endothelial (BPAE) cells.

When a 2D image is processed by sf-MSSR1, an improvement in spatial resolution and

contrast is observed (Supplementary Figure S41a,b). On the contrary, when a stack is

used for a 3D representation (images taken at z-planes), the resolution obtained by

sf-MSSR along the z-axis is not as refined as in the xy-plane (Supplementary Figure

S41c,d). Nonetheless, a noticeable increase in contrast is attained in the overall dataset

(Supplementary Figure S41, see Supplementary Movies S13 and S14). To further

extend the resolution of DL images in 3D, it is necessary to extend the current

implementations of the MSSR algorithm to account 3D information for MSSR

processing.

In combination, these studies provide evidence for the capabilities of MSSR to

resolve biological detail at nanoscopic scales using either simple or advanced

fluorescence microscopy technologies.

Discussion

Novel theoretical contributions:

From the historical point of view, since the seminal development of the MS

theory [17, 18] and until the present day, few statistical and imaging applications based

on the theory of MS compute the MS vector itself [74]. This can be explained, in part,

because previous applications of MS are based on finding modes in the features space

but did not calculate the MS vector, which is the key component of the working

principle of MSSR. In contrast, MSSR represents an application of MS theory which
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also operates in the second derivative space. By computing the MS vector and

estimating (photon) densities among pixels, MSSR computes a probability function for

the fluorophore estimates whose individual fluorescence distributions are narrowed in

comparison with the PSF of the optical system. The exploration of the information

stored on the second derivative space of the image can be also achieved by substituting

the MS by similar functions that operate in such space, e.g., Laplacian, Hessian,

Difference of Gaussians [75] which, in comparison with the MS, offer computational

advantages as they can be expressed in the Fourier space and implemented using the

FFT algorithm [75]. The information harbored in the second derivative space of the DL

image is used by MSSR to compute an image with higher spatial frequencies than the

corresponding DL image, hence, overcoming both the Rayleigh and Sparrow limits, and

setting up an undescribed limit of spatial resolution which deserves further exploration

and characterization.

The MS theory is not restricted by the number of dimensions of the information

required to compute the kernel windows over which MSSR operates (Supplementary

Notes 2 and 3). Given that, MSSR parameters are suitable to extend its application to

assess data with higher dimensions. For example, in 2D images, the spatial parameter of

MSSR, which encompasses the lateral resolution width of the PSF, is defined to be the

same in the x and y dimensions of the image. In such a case, the shape of the kernel is

circle- or square-like, depending on the application used. For three-dimensional (3D)

microscopy imaging, the lateral (x-y plane) and axial (x-z and y-z planes) dimensions

are affected in different ways by diffraction. The MSSR principle can be further

extended for explicit volumetric imaging by means of using an asymmetric kernel

which can be defined following the 3D lateral-axial aspect ratio of the PSF

(Supplementary Note 11). In addition, the definition of the spatial kernel can be refined

to also consider possible deformations of axial symmetry of the PSF due to optical

aberrations introduced by the imaging system or by the sample itself. A similar

reasoning aimed to extend the portfolio of applications of MSSR can be envisaged

considering spatial-range parameters, the latter narrowing down the working intensity

space where local calculations of MSSR take place.

Novel contributions to microscopy:

We present a new SRM approach capable of achieving multidimensional nanoscopy

through single-frame analysis under low SNR conditions and with minimal

noise-dependent artifacts. Limited only by the imaging speed of the optical system
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setup, MSSR increases resolution by analyzing either a single frame, or by applying

MSSR to each individual image in a stack followed by the application of a pixel-wise

temporal function. MSSR is a powerful stand-alone method for either single or

multi-frame SRM approaches, or as a post-processing method which can be applied to

other analytical multi-frame (restricted to camera-based systems) or hardware

dependent SRM methods for further enhancement of resolution and contrast. We

demonstrated MSSR compatibility with other SRM methods and showed that its usage

enhanced resolution and overall image quality in all the cases tested.

FF-SRM analytical multi-frame approaches such as SRRF, ESI, MUSICAL and 3B

demand a temporal analysis which limits their utility for multi-dimensional imaging of

live samples [65]. The need to collect hundreds to thousands of images of the same

pseudo-static scene, challenges the applicability of these methods in multidimensional

imaging. The temporal multi-frame requirement imposes a tradeoff between the

achievable temporal and spatial resolutions. MSSR removes these constraints while

maintaining computational efficiency (Supplementary Note 7).

We present applications of the MSSR principle that revealed fast molecular

dynamics through single-frame analysis of live-cell imaging data, with reduced

processing times in comparison with similar SRM approaches (Supplementary Notes 7

and 10). Moreover, MSSR greatly improves the tracking efficacy of SPT methods by

means of reducing background noise and increasing both the contrast and SNR of noisy

SPT movies, enhancing the ability to resolve the position of single emitters. MSSR

further pushes the limits of live-cell nanoscopy by its excellent single-frame

performance. This flexibility extends its utility to most fluorescence microscopy and

alternative SRM methods.

Achieving both high (or sufficient) temporal and spatial resolution within a

broad range of fluorescence microscopy applications is a common goal among the

bioimaging community. With recent advances in microscopy equipment and imaging

protocols, the gap between the highest attainable resolution in the temporal and spatial

dimensions within the same experiment, has narrowed. This has been a challenge

especially because both parameters often involve mutually exclusive optical

instrumentation and experimental strategies. The introduction of MSSR represents one

more step in the right direction as it drastically reduces the amount of data needed to

reconstruct a single super-resolved micrography.

27

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2022. ; https://doi.org/10.1101/2021.10.17.464398doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464398
http://creativecommons.org/licenses/by-nc-nd/4.0/


No longer having to sacrifice either temporal or spatial resolution over the other,

has led some scientists to propose new ways to analyze imaging data. Some

approximations have been tailored to study millisecond molecular dynamics and

structural feature changes within the same experiment [76], e.g., by taking advantage of

the simultaneous use of image correlation spectroscopy (ICS) and FF-SRM methods

such as SRRF [11]. In these contexts, MSSR could improve the analysis in three ways:

a) it delivers reliable SRM images in low SNR scenarios, which are common in the

experimental regimes of ICS due to the relatively fast frame rates of its applications, b)

MSSR introduces no noise-dependent artifacts which further refines the quality of the

spatial analysis and c) since no temporal binning is necessary for MSSR, there is no

restriction in the level of temporal detail retrievable from the ICS analysis.

Sub-millisecond time-lapse microscopy imaging can now be achieved by

sCMOS technologies, with applications for particle velocimetry [77], rheometry [78],

and optical patch clamp [79]. We envisage further applications for MSSR in these areas

through unveiling nanoscopic detail hidden in single DL images. Moreover, MSSR can

facilitate correlative nanoscopic imaging through crosstalk with other imaging

techniques such as electron microscopy, i.e., CLEM: correlative light electron

microscopy [80]; or atomic force microscopy, i.e., CLAFEM: Correlative light atomic

force electron microscopy [81]. In addition, MSSR can be applied to nanoscopic

volumetric imaging by using it together with expansion microscopy [82], oblique angle

microscopy [83], SPIM and lattice light sheet microscopy [84], extending their

capabilities to previous unattainable resolution regimes.

A recent study by Chen R. et al., suggests that deep-learning based artificial

intelligence (AI) can reconstruct a super-resolution image from a single DL image [85].

Such AI-based SRM approaches are promising, however, they are limited to the

existence of a maximum likelihood image obtained with another SRM, such as

STORM, that is required for neural network training and error minimization. Otherwise,

the method is prompted to bias the final reconstruction toward the topological

information used to train the AI - network [85]. Our approach works completely

independent of other SRM methods and provides evidence of the existence of a new

resolution limit which lies on the second derivative space of the DL image, information

inaccessible when using neural networks.
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MSSR applications might impact far beyond the field of microscopy, as its

principles can be applied to any lens-based system such as astronomy [86] and

high-resolution satellite imagery [87].
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