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Abstract 

The blockade current that develops when a protein translocates across a thin membrane 

through a sub-nanometer diameter pore (i.e., a nanospectrum) informs with extreme sensitivity 

on the sequence of amino acids that constitute the protein. Whereas mass spectrometry (MS) is 

still the dominant technology for protein identification, it suffers limitations. In proteome-wide 

studies, MS fails to sequence proteins de novo, but merely classifies a protein and it is not very 

sensitive requiring about a femtomole to do that. Compared with MS, a sub-nanometer diameter 

pore (i.e. a sub-nanopore) directly reads the amino acids constituting a single protein molecule, 

but efficient computational tools are still required for processing and interpreting the blockade 

current. Here, we delineate computational methods for processing sub-nanopore nanospectra 

and predicting electrical blockade currents from protein sequences, which are essential for protein 

identification.  

 
1. Introduction 

Sequencing proteins by measuring the blockade current through a sub-nanometer diameter 

pore (sub-nanopore) is a potentially disruptive technology [1-3]. So far, this technology has been 

successfully employed to analyze histones and other proteins [4, 5]. A sub-nanopore that is 

sputtered through a nanometer-thick membrane with a tightly focused high-energy electron beam, 

is designed to be about the size of an amino acid (AA), which accounts for the extreme sensitivity. 

When the membrane is immersed in electrolyte and a voltage is applied across it, the electric 

force on the ions in solution produces a current through the sub-nanopore. Subsequently, when 

a charged denatured protein is impelled by the same electric force through the sub-nanopore, the 

open pore ionic flow is blocked by the acids in the pore waist. The resulting blockade current or 

nanospectrum is modulated by the AA sequence constituting the protein. It has been shown that 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.17.464717doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464717


the nanospectrum is correlated with the volume of amino acids occluding the pore, so the AA 

sequence constituting the protein can be read from the fluctuations in the blockade current [1, 3].  

Currently, mass spectrometry (MS) is the leading technology for protein identification [6]. 

Whereas bottom-up MS analyzes proteolytically digested short peptides, top-down MS is capable 

of analyzing intact proteins [7]. However, MS-based protein identification has fundamental 

limitations in sensitivity and measurable molecular masses [8]. MS detection requires between an 

attomole and femtomole of protein, making it challenging to identify low abundance peptides or 

proteins. Moreover, MS often fails to achieve high sequence coverage for long proteins. Bottom-

up MS identifies some peptides of long proteins but does not offer high sequence coverage. Top-

down MS provides whole sequence coverage of proteins, but the measurable mass of a protein 

is limited due to mass spectrometers’ capacity.        

Sequencing protein with a sub-nanopore could be a disruptive technology for several reasons 

[2]. First, a sub-nanopore reads single protein molecules, significantly increases the dynamic 

range of protein identification. Because of this, single-molecule protein sequencing has many 

applications in low abundance protein analysis and single-cell proteomics. Second, sub-nanopore 

sequencing is not limited by the molecular weight of the protein. In principle, a sub-nanopore could 

read thousands of AAs in a single molecule. Third, a sub-nanopore is capable of analyzing the 

prevalence of heterogeneity in mRNA translation [9] and post-translational modifications (PTMs) 

[10] by direct protein-level analysis. So far, the analysis of blockade currents in nanometer-

diameter pores has been applied successfully to call the sequence of bases constituting DNA and 

RNA. Many methods have been developed for improving the base calling accuracy of nanopore 

DNA reads, including hidden Markov and neural network models [11].  As a result, the base-

calling accuracy has been improved from 63% to >95% within the last several years [12-14]. 

Similarly, computational methods have the potential to improve the accuracy of sub-nanopore 

protein sequencing. However, detecting the acid sequence in a protein with a sub-nanopore is 

more exacting than discriminating the four bases that constitute DNA with a nanopore, and 

efficient tools for the analysis of the blockade current produced when a protein translocates across 

a membrane through a sub-nanopore protein are lacking.  

The interpretation of sub-nanopore nanospectra, however, still presents a daunting challenge 

for detection and identification. Current blockade signals are determined mainly by the volume of 

the AA in the pore. Moreover, there are large variances in the measured blockades that may be 

due to other factors, which include electrical and molecular configurational noise, the AA mobility 

and hydrophobicity in the pore, and the neighboring acids in the sequence.  Even if it is detected, 

calling the acid is confounded by the primary structure of a protein, which is drawn from twenty 
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proteinogenic AAs. Beyond just the twenty proteinogenic AAs, the challenge confronting direct 

protein sequencing is compounded by protein isoforms derived from closely related duplicate 

genes or the same gene by alternative splicing, proteolytic cleavage, somatic recombination, or 

PTMs [10, 15]. In a groundbreaking effort, Kolmogorov et al. first tackled the analysis by 

benchmarking several machine learning models and presented an alignment algorithm for protein 

identification using only a few nanospectra [16], but due to the noise it remained problematic to 

identify a protein by searching nanospectra against a protein database the size of the human 

proteome.    

The sub-nanopore technology has advanced rapidly in the past several years; it is now 

capable of measuring the volumes of single amino acids instead of several consecutive amino 

acids [17]. So, with the proper computational tools, it should be possible to decode single amino 

acids directly using nanospectra. Here, several computational methods for processing 

nanospectra and predicting theoretical nanospectra from protein sequences are described. These 

methods promise to improve the accuracy of theoretical nanospectral prediction and increase the 

Pearson correlation coefficient (PCC) between the empirical and theoretical nanospectra to > 0.9.    

2. Methods 
2.1 Peptide synthesis  

Two carrier-free peptides were used in experiments (Anaspec, Fremont, CA): amyloid beta 

42 (Ab1-42) (DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA), and a scrambled 

variant with the same chemical constituency as amyloid beta 42 (SAb1-42) 

(AIAEGDSHVLKEGAYMEIFDVQGHVFGGKIFRVVDLGSHNVA). The two peptides were 

reconstituted according to the protocols offered by the manufacturer. Typically, the peptides were 

reconstituted at high (100 µg/ml) concentration in phosphate-buffered saline (1´ PBS) without 

adding bovine serum albumin (BSA) to avoid false readings. From this solution, aliquots diluted 

to 2´ the concentration of denaturant with 50 pM protein, 20-100 µM beta-mercaptoethanol (BME), 

250 mM NaCl with 2-5´10-3 % sodium dodecyl sulfate (SDS) were vortexed and heated to 85 °C 

for 120 min. The solution was allowed to cool (to 5° C) and added in 1:1 proportion with the (75 

µL) electrolyte in the reservoir of the polydimethylsiloxane (PDMS) microfluidic device bound to 

the silicon chip supporting the membrane with a pore through it housed in a 5°C cold room.  

2.2 Sub-nanopore fabrication and visualization  
Custom-made amorphous silicon (a-Si) membranes (SiMPore, Inc. West Henrietta, NY) 

nominally 5 nm thick were manufactured by the method described in [17]. Briefly, amorphous 

silicon was sputter-deposited on a 50 nm thick thermal SiO2 layer grown on a float-zone silicon 
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handle 100 µm thick and subsequently capped with another SiO2 layer with the same 25-50 nm 

thickness followed by the deposition of 150 nm of tetraethyl orthosilicate (TEOS).  A membrane 

< 4-5 µm on-edge was revealed by an ethylene diamine and pyrocatechol chemical etch of the 

silicon through a silicon nitride window defined by photolithography on the polished back-side of 

the handle wafer. Finally, a buffered oxide etch (10:1 BOE) was used to remove the oxide to 

produce an a-Si membrane, which ranged from t = 3.5 to 6 nm thick.  

Just prior to loading it into the transmission electron microscopy (TEM) column, the 

membranes were plasma cleaned using Tergeo-EM (PIE Scientific, Union City, CA USA). The 

Tergeo-EM was operated at 10 W using an 80% Ar+20% O2 gas feed in a down-stream, pulse 

mode (1/16 duty-cycle, which was cycled twice for a total exposure of 2 min) such that the samples 

were actually outside the plasma (to eliminate sputtering) and subjected to only extremely short 

plasma pulses (to reduce the intensity). Subsequently, a pore was sputtered through the thin a-

Si membrane using a tightly focused, high-energy (300 kV) electron beam carrying a current 

ranging from 300-800 pA (post-alignment) in a Scanning Transmission Electron Microscope 

(STEM, FEI Titan 80-300 or FEI Themis Z, Hillsboro, OR) with a Field Emission Gun (FEG). 

After sputtering, the pore was re-acquired with either High-Resolution Transmission Electron 

Microscopy (HRTEM) or High-Angle Annular Dark Field (HAADF-)STEM. To minimize beam 

damage, the pores were examined using low beam current (<10-30 pA) or low energy (80kV) or 

both. The illumination convergence angle in the Titan was typically a = 10 mrad at 300kV, whereas 

in the Themis Z, a  = 18 mrad at 300kV or a =27.1 mrad at 80kV with a monochromator limiting 

the energy dispersion in the range 200-220mV at 80kV according to EELS.   

2.3 Microfluidics  

The silicon chip supporting the membrane with a single pore through it with or without a 

polyimide laminate was bonded to a polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) 

microfluidic device formed using a mold-casting technique [17]. The microfluidic device consisted 

of two microchannels (each 250 ´ 75 µm2 in cross-section) connected by a via that could be as 

small as 25 µm in diameter. A tight seal was formed between the silicon chip containing the a-Si 

membrane with the pore in it and the PDMS trans-side of the microfluidic channel with a plasma-

bonding process (PDS-001, Harrick Plasma, Ithaca, NY).  Subsequently, two separate Ag/AgCl 

electrodes (Warner Instruments, Hamden, CT) were embedded in each channel to independently, 

electrically address the cis- and trans-sides of the membrane. Likewise, the two microfluidic 

channels were also connected to external pressure and fluid reservoirs through polyethylene 

tubing at the input and output ports. The port on the cis-side was used to convey proteins to the 

pore.  
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2.4 Low-noise electrical measurements  
To perform blockade current measurements, first, the sub-nanopore was wetted by immersion 

in de-gassed 250 mM NaCl electrolyte for 1-3 days [17]. Subsequently, to measure the blockade 

current, a transmembrane voltage bias (< 700 mV) was applied to the reservoir (containing 75 µL 

of electrolytic solution and 75 µL of 2´ concentrated solution of protein and denaturant) relative 

to the ground in the channel using Ag/AgCl electrodes and the corresponding pore current was 

measured at 5 ± 0.1ºC using either an Axopatch 700B or an Axopatch 200B amplifier with an 

open bandwidth. The actual bandwidth was inferred from the rise-time to a sharp (10 ps rise-time) 

input pulse to be about 75 kHz to 100 kHz, depending on the amplifier and the feedback. The 

analog data were digitized by a 16-bit DigiData 1550B data acquisition system (DAQ, Molecular 

Devices, Sunnyvale, CA) at a sampling rate of 500 kS/s and recorded in 3 minute-long acquisition 

windows. Generally, no blockades were observed beyond the noise in controls that comprised 

the electrolyte and the denaturants (SDS and BME), which were heated to 85°C and then cooled 

without protein.  A total of 12 Axon binary files (ABF) were collected for Ab1-42, and 70 ABF files 

for SAb1-42.  

2.5 Data pre-processing  

The current blockade signals (nanospectra) in ABF files were extracted using a homemade 

software package based on OpenNanopore (version 1.2) [18]. Nanospectra with a relatively long 

duration provided useful information for AA sequencing, but those that are too short did not. So, 

the nanospectra with a duration shorter than 170 µs were ignored. The duration for a peptide in 

the sub-nanopore ranged from tens of microseconds to tens of milliseconds, and the numbers of 

data points in nanospectra vary dramatically. To address the variation in blockade duration, it was 

assumed that each raw blockade represented the same pattern of fluctuations and so it was 

converted into a nanospectrum of 500 data points by averaging or interpolating between 

neighboring data points. Thus, a consensus formed from these spectra represents signals 

irregularly (nonuniformly) sampled above, at, and below the Nyquest rate. Regardless of the 

duration, consensuses formed this way can inform on each AA in the sequence [3, 19-23] 

2.6 Features for AAs  
Linear regression was used to predict the current blockade signals of AAs in peptides. Several 

encoding methods were used for representing amino acids. A given peptide sequence 

𝑎!, 𝑎", … , 𝑎# were converted to a list of AA volumes: 𝑏$, 𝑏!, … , 𝑏#%!, where 𝑏$ = 𝑏#%! = 0 and 𝑏& is 

the AA volume [24] corresponding to 𝑎&  for 1 ≤ 𝑖 ≤ 𝑛. The first encoding method is based on 

single AA volumes: an AA 𝑎& is represented by its volume 𝑏&. The second encoding method is 
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based on the volumes of the AA and its two neighboring ones: an AA 𝑎& is represented by two 

values 𝑏& and 𝑏&'! + 𝑏&%!. In the third encoding method, the 20 AAs are divided into 4 groups 

based on their volumes: minuscule (G, A, S, C), small (T, D, P, N, V), intermediate (E, Q, H, L, I, 

M, K), and large (R, F, Y, W) [16]. So, given a peptide 𝑎!, 𝑎", … , 𝑎#, let 𝑀& = 1 if 𝑎& is a minuscule 

AA and 𝑀& = 0 otherwise, for 1 ≤ 𝑖 ≤ 𝑛. Specifically, 𝑀$ = 𝑀#%! = 0. For position i in the peptide, 

we extract four features based on the volume of 𝑎&. The first feature 𝑥( is the volume of the AA if 

it is a minuscule one, and 0 otherwise, defined as 𝑥( = 𝑀&𝑏& . The features for small (𝑥) ), 

intermediate (𝑥* ), and large (𝑥+ ) AAs are defined similarly. The three encoding methods are 

referred to as single AA volume (1AAV), three AA volume (3AAV), and AA group (AAG) methods, 

respectively. 

The three encoding methods were further extended to include a position feature, which 

represents the distance between the AA and the N- or C-terminus. When the distance is larger 

than 4, the AA is treated as a middle one and the feature is set to 5. For 𝑎& with position i, the 

position feature 𝑥, is: 

 
The three encoding methods with the position feature are referred to as 1AAV-P, 3AAV-P, and 

AAG-P, respectively.  

2.7 Orientation of the nanospectra.   

It was assumed that a nanospectrum of a peptide had two possible orientations: a forward 

nanospectrum enters the pore axis N-terminus first and a backward nanospectrum C-terminus 

first. Let 𝑆 = 𝑠!𝑠"…𝑠- be an empirical nanospectrum with m data points, where 𝑠& is the current 

blockade signal at time point i, and 𝑆. = 𝑠-𝑠-'!…𝑠! the flipped nanospectrum of S. To account 

for the two orientations, a theoretical nanospectrum 𝑇 = 𝑡!𝑡"…𝑡- of the peptide derived from the 

1AAV model and linear interpolation was generated and compared with empirical nanospectra. 

𝑃𝐶𝐶(𝑆, 𝑇) represents the PCC of an empirical nanospectrum S and the corresponding theoretical 

nanospectrum T. If PCC(𝑆, 𝑇) > PCC(𝑆., 𝑇), then S is forward, otherwise, backward. The backward 

nanospectra were flipped so that all nanospectra have the same orientation.  
2.8 Dynamic time warping  

Let 𝑆 = 𝑠!𝑠"…𝑠-  and 𝑇 = 𝑡!𝑡"…𝑡-  be an empirical and a theoretical nanospectra of a 

peptide, respectively. Both S and T were normalized to have zero mean and unit variance. Let 

𝑆[𝑖, 𝑗] represent the subsequence 𝑠&𝑠&%!…𝑠/ of S. Because the velocity of the AAs moving through 
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the sub-nanopore might vary, 𝑠&  and 𝑡&  might correspond to different AAs in the peptide. To 

address the problem, dynamic time warping (DTW) [25] was used to adjust the time-axis of the 

data points in T to match the empirical data points in S (Supplemental Fig. 1). DTW tends to have 

the singularity problem by matching the signal of a short time window to that of a long time window 

[26], so a constraint was introduced such that the ratio between any two time periods matched by 

DTW should be between "
0
 and 0

"
 . That is to say, 6 data points in T can be matched with at least 

4 data points and at most 9 data points in S. The squared error was used to measure the distance 

between two data points 𝑠& and 𝑡&, i.e., 𝑑(𝑠& , 𝑡&) = (𝑠& − 𝑡&)".  

We fill out a 2-dimensional (𝑚 + 1) × (𝑚 + 1) table D, in which 𝐷[𝑖, 𝑗] stores the minimum 

distance between 𝑆[1, 𝑖] and 𝑇[1, 𝑗] after time warping. The recurrence function for computing 

𝐷[𝑖, 𝑗] is shown Step 4 in Supplemental Fig. 1. Because at least 2 data points in S are needed to 

match 3 data points in T and vice versa, the singularity problem is solved. The time complexity of 

the algorithm is 𝑂(𝑚"). 

2.9 Consensus nanospectra  
To reduce the noise in nanospectra, a consensus spectrum of a peptide was formed by 

combining all nanospectra of the peptide. Accordingly, if 𝑆!, 𝑆", … , 𝑆# are the nanospectra of a 

peptide after orientation correction and 𝑆&[𝑗] is the current blockade signal for the jth point in Si for 

1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, then the consensus spectrum S was formed by taking the average 

current blockade signals of the nanospectra. That is to say, the consensus signal 𝑆[𝑗] = ∑ )![/]"
!#$
#

 

for 1 ≤ 𝑗 ≤ 𝑚. The nanospectrum S is called the average consensus nanospectrum of the peptide.   

One limitation of the average consensus approach was that it failed to consider the variance 

in the velocity with which AAs pass the sub-nanopore. The relative dwell time of an AA in a peptide 

molecule is the ratio between the AA dwell times and the whole molecule. The relative dwell times 

in nanospectra for the same AA in the peptide could be different. Owing to this variance, the 

current blockade signals 𝑆![𝑗], 𝑆"[𝑗], … , 𝑆#[𝑗] for the same position j could originate from different 

AAs and so the average current blockade signal may be an inaccurate consensus of the 

nanospectra. 

 Similar to multiple sequence alignment [27], a progressive method was used to improve the 

quality of average consensus nanospectra with high-quality empirical nanospectra (Supplemental 

Fig. 2). According to this algorithm, DTW was used to align each empirical nanospectrum with the 

average consensus nanospectrum, and then each was ranked in the increasing order of the 

distance. The top t empirical nanospectra (t = 50 in this analysis) were chosen to update the 

consensus. The best empirical nanospectrum was first aligned with the average consensus 
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nanospectrum, and the average consensus nanospectrum was then updated by forming a 

weighted average with the best empirical nanospectrum. This step was repeated for the top t 

nanospectra. Specifically, to update the consensus using the ith empirical spectrum, the weight 

for the consensus was u+i-1 and that for the highly ranked empirical spectrum was 1, where u is 

the weight for the original consensus (u = 30 in the experiments). The updated consensus 

nanospectrum is referred to as the alignment consensus nanospectrum of the peptide.  

The functions for reading ABF files were implemented in MATLAB, whereas all the other 

functions were coded in Python. All the data processing was performed on a computer with an 

Intel Core i7-6700 3.4 GHz CPU and 16 GB memory.  

3. Results  
3.1 Sub-nanopore fabrication and characterization 

A sub-nanopore sputtered through a thin, nominally 5 nm thick, a-Si membrane was used to 

analyze the peptides. The thickness was important because it affected the field distribution in the 

pore and therefore the resolution of a read. A pore was sputtered in the window through the a-Si 

membrane using a tightly focused, high energy (300 keV) electron beam formed in either an FEI 

Titan or Themis Z STEM. Subsequently, the pore was visualized in situ with TEM immediately 

after sputtering to reveal a 1.0 ´1.5 nm2-cross-section at the waist defined by the shot noise (Fig. 

1a). However, the pore topography was likely affected, not only by electron-beam sputtering but 

also by oxidation in the ambient. This is likely because after exposure to the ambient for 1-3 days, 

the same pore was re-acquired and the topography visualized with HAADF using an aberration-

corrected (Themis Z) STEM (Fig. 1b) to reveal a smaller lumen [17]. Based on images like this, 

the pore topography was bi-conical with a steep cone angle > 7.4° that broadened to 16° near the 

orifice with an irregular waist 0.65 nm ´ 0.87 nm in cross-section.  

If the bi-conical topography focussed the electric field to a sub-nanometer extent near the 

waist then it followed that a blockade mainly measured the occluding volume due to the AAs in 

the waist (Fig. 1c). So, if only a few acids occupied the waist at a time, it was reasoned that the 

blockade current would mainly measure the volume associated with those residues. Likewise, as 

it has been shown empirically that the small size of a sub-nanopore knocks-down the mobility of 

de-hydrated ions [5], so it should also affect the acid mobility in the same way. Doubtless other 

AAs outside the waist would still contribute at least marginally to the blockade current and the 

mobility in the pore. 

Heat (85°C), SDS, and BME were used to denature the peptide and maintain it. SDS is an 

anionic detergent that works, in combination with heat and reducing agents like BME, to impart a 

nearly uniform negative charge to the protein that stabilizes denaturation. Although the exact 
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structure of the aggregate formed by SDS and protein remains unsolved, a “rod-like” model was 

adopted in which the SDS molecules form a shell along the length of the protein backbone [28]. 

The resulting uniform charge on the protein was supposed to facilitate electrical control of the 

translocation kinetics. Due to its size, however, it is unlikely that the SDS remained bound to the 

protein as the aggregate was forced through the sub-nanopore by an applied electric field.  Rather, 

it was likely cleaved from the protein by the steric constraints imposed by the pore topography 

above the waist [3]. 

3.2 Measurements of the blockade current 
Measurements of fluctuations in the blockade current through a sub-nanopore were used to 

analyze the acid sequence of two synthesized peptides: a 42-residue (human) amyloid-b (Ab)-

protein fragment Ab1-42 and a scrambled variant SAb1-42 of it (Methods) and have been reported 

in [17]. The blockade is defined as the difference between the open sub-nanopore current 𝐼$ and 

the current I in the peptide translocation, that is, ∆𝐼 = 𝐼$ − 𝐼. When a nearly pH-neutral (pH 6.6 ± 

0.1) solution containing denatured Ab1-42 or SAb1-42 peptides was introduced on the cis-side of a 

sub-nanopore with a voltage of 0.40-0.6 V applied across the membrane, blockades were 

observed almost immediately (Fig. 1d). The blockades were attributed to the translocation of rod-

like single peptides across the membrane through the sub-nanopore (Fig. 1c). To account for the 

rapidity of the translocation, the electrical signal was amplified over a 75 kHz bandwidth and 

sampled at 500 kS/s. Accordingly, the signal was obscured by electrical noise.  

Clusters of blockades were selected in a range demarcated by the Nyquist sampling rate 

corresponding to at least 0.5 samples per AA (with a blockade duration Dt > 42 µs for Ab1-42 and 

SAb1-42 amplified with a 75-100 kHz bandwidth, and then sampled at 500 kS/s). To facilitate 

comparisons, the selected blockades of Ab1-42 were classified by the duration of the blockade (Dt) 

and the fractional blockade, which is the ratio between in the blockade current and the open sub-

nanopore current (DI/I0). The aggregate data was then represented by normalized heat maps of 

the probability density functions (PDFs) reflecting the number and distribution of blockades (Fig. 

1e). Almost all the blockades have a duration longer than 42 µs, whereas about half had a 

duration >170 µs (Fig. 1e). Blockades that were too short in duration could not realistically inform 

on all the residues with the limited bandwidth of the amplifier and the 500 kS/sec sampling rate. 

On the other hand, blockades that were too long would likely muddle the interpretation of the 

signal because of (slip-stick) translocation kinetics [3]. In data preprocessing, blockades with a 

long duration were still included because they can provide some information of AAs, and all 
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blockades with a duration < 170 µs were removed, resulting in 475 and 2,000 nanospectra for 

Ab1-42 and S Ab1-42, respectively (Methods). 

3.3 Consensus nanospectra  
The orientations of nanospectra were determined using the PCCs between empirical 

nanospectra and theoretical ones generated from the 1AAV model. Of the 475 Aβ1-42 nanospectra, 

the orientations of 268 were forward and 207 were backward. Of the 2,000 SAβ1-42 nanospectra, 

950 were forward and 1,050 were backward. Many empirical spectra have a small difference 

between the PCCs of the original nanospectrum and the flipped one, making it challenging to 

confidently determine their orientations (Supplemental Fig. 3). 

An average consensus nanospectrum of the peptide was formed to recover reproducible 

fluctuations in the blockade signal from irreproducible noise. The average consensus nanospectra 

were aligned with the corresponding theoretical nanospectra (1AAV) using DTW. It was 

compelling that the amplitude fluctuations in the average consensus nanospectra (Figs. 2a,b; 

orange lines) were highly correlated to the theoretical nanospectra (Figs. 2a,b; blue lines). 

Strikingly, the amplitude of the fluctuations tracked the AA volumes ascribed to the primary 

structure of Ab1-42 with PCC = 0.896 (Fig. 2a). A sub-nanopore assay of SAb1-42, consisting of a 

different sequence of the same residues produced conspicuous differences in the fluctuation 

pattern (Fig. 2b), however, and was correlated (PCC = 0.880) to the corresponding 1AAV model 

for the scrambled sequence.  

The average consensus nanospectra for Ab1-42 and SAb1-42 were further improved by using 

the progressive alignment method with the parameter u set to 30 (Methods). The PCCs for the 

alignment consensus nanospectra and the theoretical nanospectra (1AAV) were 0.919 and 0.876 

for Ab1-42 and SAb1-42, respectively (Supplemental Fig. 4). The progressive alignment method 

increased the quality of the Ab1-42 consensus nanospectrum but lowered slightly the quality of the 

SAb1-42 consensus nanospectrum. It is likely that the top empirical nanospectra of Ab1-42 forming 

the consensus might be of higher quality than those of SAb1-42, so they could improve the 

consensus. 

The correlations that developed between the consensus nanospectra and the corresponding 

volume models were important for two reasons. The fluctuations translated to reads with (nearly) 

single residue resolution, which could facilitate calling AAs as it alleviates the analytical and 

computational burden associated with ferreting out the identity of multiple monomers producing a 

fluctuation in a blockade.  Second, it was also important because the fidelity proves that the signal-

noise ratio can be improved with a reduction of the parasitic capacitance and with enough signal 
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averaging, even with a high sampling frequency and no filtering. The correlation between the 

empirical consensuses and the corresponding volume models used for AA calls was still imperfect. 

3.4 Prediction of blockade currents 
Seeking further refinement of the model, the alignment consensus and theoretical (1AAV) 

nanospectra of Ab1-42 were normalized using zero mean and unit variance to form the Z-score, 

and then 42 data points were extracted from the alignment between the consensus and theoretical 

nanospectra. Each data point corresponded to an AA in the peptide. Likewise, 42 data points 

were extracted from the SAb1-42 alignment consensus nanospectrum. Then linear regression was 

used to predict blockade signals with six encoding methods: 1AAV, 3AAV, AAG, 1AAV-P, 3AAV-

P, and AAG-P (see Methods). Prediction accuracy was evaluated using 2-fold cross-validation:  

first, the training data were the Ab1-42 data points and the validation data were the SAb1-14 data 

points, and then the training and validation data sets were swapped. The error function was the 

mean squared error (MSE).  

The methods with the position feature outperformed those without the feature, showing that 

the positions of AAs affect their current blockade signals, especially for those near the N- or C-
terminus (Table 1). The AAs near the N- or C-terminus tend to have lower blockade signals than 

those in the middle. The 1AAV-P method obtained the best validation error. 3AAV-P and AAG-P 
reported better training errors than 1AAV-P, but their validation errors were worse than 1AAV-P, 

showing that they might have an overfitting problem due to the limited size of the training data. 

We also tested support vector machine (SVM) regression and random forest regression, but their 
performance was not as good as linear regression. 

The AA positions and volumes were incorporated (1AAV-P) into revised estimates for the 

theoretical nanospectra of Ab1-42 and SAb1-42. When the position feature xP of an AA is less than 

5, the volume of the AA was adjusted by −11.3(5 − xP). The parameter -11.3 was estimated based 

on the coefficients reported by linear regression. With the adjusted volumes, the PCCs between 

theoretical and consensus nanospectra were improved to 0.954 and 0.903 for Ab1-42 and SAb1-42, 

respectively (Figs. 2c,d). 

3.5 Statistical significance of nanospectral identifications 
Finally, 10,000 random peptides 42 acids long and their corresponding theoretical 

nanospectra were generated using the 1AAV-P method. Subsequently, DTW was used to align 

the theoretical spectra and the alignment consensus nanospectrum of Ab1-42. The average and 

best PCCs of the random peptides were 0.839 and 0.959, respectively (Supplemental Fig. 5). 

Based on the PCCs of the random peptides, the estimated p-value of the match between the 
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theoretical and alignment consensus nanospectra of Ab1-42 was about 0.0003, which is statistically 

significant enough for peptide identification when the database is not very large. 

4. Conclusions and discussion 
Various computational methods for signal processing, blockade current prediction, and 

identification of nanospectra using Ab1-42 and SAb1-42 peptides have been scrutinized for protein 

sequencing and identification. Since raw nanospectra are noisy, an indispensable pre-processing 

step is to use average nanospectra and alignment to obtain a high-quality consensus 

nanospectrum. Progressive alignment between the average consensus and top raw nanospectra 

could further improve the consensus of Ab1-42, but not SAb1-42. Apparently, the performance of the 

alignment method depends on the quality of raw nanospectra.  

 Six methods for predicting blockade signals of AAs were tested and benchmarked. By adding 

the positional information into blockade signal prediction, the PCCs between theoretical and 

empirical nanospectra were improved. Because only 84 data points were used for training and 

validation, only the 1AAV method showed similar accuracy in training and validation. The 3AAV 

and AAG methods obtained small prediction errors in the training data, but their validation errors 

were large. These methods have the potential to improve prediction accuracy, but more training 

data are needed to address the overfitting problem.    

The estimated p-value of the match between the theoretical and alignment consensus 

nanospectra of Ab1-42 was 0.0003. Thus, peptides can be identified unambiguously using the 

nanospectra from a database of thousands of peptides, showing the potential of sub-nanopore 

sequencing to identify peptides from a peptide mixture.     

       There are many computational problems in nanospectral data analysis that have not been 

well studied. Nanospectral clustering is an important pre-processing step for analyzing 

nanospectra of peptide mixtures. Predicting the peptide length of nanospectra is needed to 

identify truncated proteoforms. There are still no software tools for these problems. Accurate 

theoretical nanospectra can significantly increase the statistical significance of identifications in 

database search. So further improvement in the accuracy is needed for predicting theoretical 

nanospectra of peptides and those with PTMs—molecular dynamics simulations may be useful 

in this endeavor. De novo peptide sequencing from nanospectra is a challenging problem with 

high impact. A large nanospectral data set is also needed for training machine learning models 

and test the performance of nanospectral data analysis methods. 
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FIGURE 1. Improved read resolution and fidelity using a sub-nanopore through a thin 
laminated a-Si membrane. (a) A TEM image is shown in vacuo of a nanopore immediately after 
sputtering through a nominally 5 nm thick a-Si membrane. The cross-section of the pristine pore 
was estimated from the shot noise associated with electron transmission through the pore to be 
about 1.0 ́  1.5 nm2 (dotted circle). (b, top) An HAADF-STEM image, acquired with an aberration-
corrected microscope is shown of the pore in (a) after exposure to the ambient. (b, bottom) The 
profile of the mass-density under the probe beam is shown taken along the dashed (horizontal) 
line in (d, top). The cross-section shrunk to about 0.65 nm ´ 0.87 nm, indicative of the growth of 
a native oxide in the pore waist. (c) A schematic representation is shown depicting a translocation 
of Ab1-42 impelled by an electric force through a sub-nanopore. The actual pore is ghosted in the 
figure; only the peptide is represented. (d) Current traces (negative raw current) are shown that 
illustrate the distribution of the duration of the blockade currents associated with translocations of 
single molecules of Ab1-42 through a sub-nanopore spanning an a-Si membrane at 0.6 V. The 
pore current was amplified over a >75 kHz bandwidth and sampled at 500 kHz (gray line) to detect 
each residue in the peptide in a Dt = 170 µs blockade.  Another version of the same data, filtered 
with a 10 kHz eight-pole Bessel filter (black line), is also shown. The definition of the blockade 
current, DI, the blockade duration, Dt, and the open pore current, I0, are indicated. Higher current 
(negative raw current) values correspond to larger blockade currents. (e) A heat map is shown 
that illustrates the distribution of fractional blockades relative to the open pore current (ΔI/I0) 
versus the blockade duration (Dt) associated with single denatured Ab1-42 molecules translocating 
through a sub-nanopore acquired at 0.6 V. The red dotted line shows the position of 170 µs. 
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FIGURE 2. (a) A plot of a 475-blockade average consensus nanospectrum acquired at 0.6 V by 
forcing denatured Ab1-42 through a sub-nanopore is shown versus normalized duration (orange 
line). Aligned with the empirical data is the corresponding 1AAV model (blue line) using DTW. 
The blockade current was correlated (PCC = 0.896) with the corresponding volume model. (b) A 
plot of a 2000-blockade average consensus nanospectrum acquired at 0.6 V by forcing denatured 
SAb1-42 through a sub-nanopore is shown versus normalized duration (orange line). Aligned with 
the empirical data is the corresponding 1AAV mode (blue line) with DTW. The empirical 
consensus was correlated (PCC = 0.880) with the corresponding 1AAV model. (c) The alignment 
consensus nanospectrum (orange line) of Ab1-42 is aligned with the 1AAV-P model (blue line) with 
PCC = 0.954. (d) The alignment consensus nanospectrum (orange line) of SAb1-42 is aligned with 
the 1AAV-P model (blue line) with PCC = 0.903.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.17.464717doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464717


 
TABLE 1. Comparison of six encoding methods for predicting blockade signals  

 1AAV 3AAV AAG 1AAV-P 3AAV-P AAG-P 
Training error (MSE) 0.256 0.229 0.221 0.193 0.186 0.169 
Validation error (MSE) 0.256 0.259 0.289 0.211 0.223 0.241 
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