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Abstract

In this work, we propose a new deep learning model,
MHCrank, to predict the probability that a peptide will be
processed for presentation within the MHC Class I pathway.
We find that the performance of our model is significantly
higher than two previously published baseline methods:
MHCflurry and netMHCpan. Gains in performance result
from the utilization of cleavage site-specific kernels and
learned representations for amino acids. By visualizing
the site-specific amino acid enrichment among top-ranked
peptides, we find MHCrank’s top-ranked peptides are
enriched at biologically relevant positions with amino acids
that are consistent with previous work. Furthermore, the
cosine similarity matrix derived from MHCrank’s learned
embeddings for amino acids correlate highly with physio-
chemical properties that have been experimentally shown
to be important in determining a peptide’s favorability to
be processed. Altogether, the results reported in this work
indicate that the proposed MHCrank demonstrates strong
performance compared to existing methods and could have
vast applicability to aid drug and vaccine development.

Keywords: artificial intelligence, machine learning,
immunology, antigen processing, MHC Class I

Introduction
The major histocompatibility complex (MHC) Class I pro-
tein is a vital part of the immune system’s response to
intracellular invasion by viruses, bacteria and parasites
and against tumorigenesis.1 Its primary responsibility is to
present antigens – short peptides eight to ten amino acids
in length that are cleaved from proteins – into the extracel-
lular environment to be recognized by cytotoxic (CD8+) T
cells, which subsequently eliminate compromised cells via
apoptosis.2 Thus, these peptides can be leveraged for the de-
velopment of both vaccines that prime CD8+ T cells against
a pathogen and drugs that elicit cytolytic activity in tumor
cells.

There is not a single MHC Class I molecule. Rather,
multiple versions can be produced based on the human
leukocyte antigen (HLA) alleles present in an individual’s
genome. HLA is the portion of the MHC class I molecule
that binds presented peptides; hypermutability in HLAs’
binding groove yields variability in the binding affinity of

processed peptides and affords greater coverage of the num-
ber of pathogens that can be recognized.3

The peptides which are presented by MHC Class I
molecules must first undergo a series of processing steps
to make the peptide more favorable for presentation. Pep-
tidases digest proteins into fragments based on identified
consensus sequences that indicate where to cleave proteins.4
Fragments from digested protein are then translocated across
the rough endoplasmic reticular membrane by the TAP pro-
tein.5, 6 TAP filters these peptides based on which are most
likely to have high affinity for the MHC Class I molecule.
Specifically, TAP has a higher affinity for peptides be-
tween 8–16 amino acids in length,7 as well as peptides
with either hydrophobic or basic C-terminal amino acids.2, 5

Once in the RER, longer peptides may be further cleaved
from the N-termini to optimize its binding affinity,4 but the
C-terminus remains untouched as this is the primary an-
chor point between the antigen and MHC molecule. Thus,
leveraging these peptides for vaccine and drug development
requires an understanding on which peptides will have the
greatest opportunity to bind to any given HLA allele.

As a result, computer-aided methods have been devel-
oped to identify candidate peptides.1, 8–12 Among them, deep
learning (DL) models that rank peptides’ binding affinities
to MHC class I molecule(s) have achieved superior perfor-
mance.9 These models are created with the goal of predict-
ing which peptides will have the highest binding affinity
for the HLA alleles. However, there is no guarantee that
highly ranked peptides will be selected for presentation by
upstream proteins,8 meaning that these models may lack
biological relevance. Recent attempts have been made to
develop models that rank the likelihood of peptides being
processed within the MHC class I presentation pathway.8, 9

These are considered HLA-independent as they do not re-
quire any information about the HLA alleles, making them
a more generalized approach. By training on peptides that
have been confirmed to be processed for and presented by
MHC Class I molecules, in combination with the amino acid
residues immediately flanking the peptides in their original
protein, such models can–in theory–learn the features that
make a peptide more likely to be cleaved and processed for
presentation. This incorporates the biological information
missing from binding affinity models and has the potential
to enable superior performance on predicting presentation.
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In this work, we propose a novel DL, antigen process-
ing (AP) prediction model, denoted MHCrank, that has been
developed to rank candidate peptides by their likelihood to
be processed for MHC Class I presentation. Based on the
architecture used by O’Donnell et al,8 our model imparts
additional biological relevance, focusing on the carboxyl
(C)-terminal cleavage site of the antigen and pre-processing
antigen sequences to simulate what is observed in vivo.8 In
our development of MHCrank, we elect to forgo the use of
the widely used BLOSUM62 matrix for amino acid rep-
resentations. Instead, MHCrank learns a problem-specific
embedding for each amino acid. Our experiments on the
benchmark data set demonstrate MHCrank achieves a signif-
icant performance improvement over the compared baseline
methods: netMHCpan-4.0 eluted ligand and MHCflurry-
2.0 antigen processing, denoted netMHCpan-EL and
MHCflurry-AP, respectively.

Materials
Data
We used the exact data sets as those used in O’Donnell et al.8
for our training, validation and testing of MHCrank. Specif-
ically, we used the data which was employed to create and
evaluate their MHCflurry-AP predictor. A more comprehen-
sive description of the data is present below:

Training data Our training data set was identical to
that which was used by O’Donnell et al. to train their
MHCflurry-AP predictor.8 This data set was compiled from
two studies13, 14 and comprised the aggregate data from 100
mass spectroscopic (MS) experiments, including measure-
ments on 8,537,960 distinct peptides and 92 different HLA
alleles. Based on the nature of the MS experiments, bound
peptides (hits) must have first underwent processing for
MHC Class I presentation. Hits with a sequence length be-
tween eight and fifteen amino acids were selected as this
range is optimal for presented peptides. O’Donnell et al.
randomly generated 99 negative decoys per hit. Each decoy
was the same length and was extracted from the same pro-
tein as the hit to which it corresponds. O’Donnell et al. used
their binding affinity predictor to select decoys most simi-
lar to hits in terms of their predicted binding affinities. The
hits and decoys selected were within the top 2% of predicted
binding affinities for hits and decoys, respectively. The ex-
clusion of weak binding hits and decoys from the data set
was aimed at facilitating the model’s ability to learn features
that strongly influence a peptide’s likelihood to be processed
for presentation as opposed to learn features associated with
binding affinity. This yielded 399,392 peptides in the train-
ing data, 44% of which were hits.8 The data was split into
4 training subsets (folds) by randomly withholding 10 MS
experiments from each. As a result, the number of samples
in each fold was 365,746; 352,144; 361,864 and 358,374,
respectively. Additionally, each fold had 10% of its samples
randomly withheld for validation.

Testing data processing We used the same testing set to
evaluate our MHCrank model as was used by O’Donnell et
al. to evaluate their model.8 The data in the testing data set

was compiled from 2 studies published in 2019; these stud-
ies comprised 20 experiments and identified 27,007 binding
peptides.14, 15 According to O’Donnell et al., these specific
experiments were withheld for testing as they were not yet
published when their baseline methods, such as netMHCpan,
were created.8 Therefore, none of the models being evalu-
ated would have been exposed to the testing data for their
training. 99 decoys were introduced for each hit in the test-
ing set, bringing the total number of testing peptides up to
2,700,700. The testing set was also used by O’Donnell et al.
to benchmark their binding affinity predictors. This required
each peptide to be paired with multiple, distinct HLA alleles.
However, for HLA-independent models, such as MHCrank
and our baselines, which do not use HLA allele informa-
tion, these distinct combinations are instead interpreted as
duplicated samples that achieve identical scores. As a result,
duplicated samples dominate the results and can either neg-
atively or positively bias ranking performance. To prevent
this, we removed any duplications of a peptides from the test
set, leaving a remaining 2,409,183 peptides. Approximately,
0.73% of the remaining peptides were hits.

Baseline methods
MHCrank was compared to two baseline methods:
MHCflurry-AP and netMHCpan-EL. Both the base-
lines, similar to MHCrank, are AP prediction models.
MHCflurry-AP was selected for its high performance. Note
that because MHCrank architectures were leveraged from
MHCflurry-AP, by comparing MHCrank to MHCflurry-AP,
any improvements in performance exhibited by MHCrank
may be associated with the introduced architectural alterna-
tions. The other baseline, netMHCpan-EL, was selected as it
was identified by O’Donnell et al. to be the best performing
AP predictor available.8 The predictions we used to evaluate
the performance of MHCflurry-AP and netMHCpan-EL
were those reported by O’Donnell et al.8

Methods
The MHCrank architecture is presented in Figure 1b. The
proposed MHCrank takes three types of information as in-
put: 1) uniform-length sequence N-flank+peptide+C-flank,
2) C-flank cleavage site sequence, and 3) the peptide’s orig-
inal length. The N- and C-flanks are defined as the first five
amino acids adjacent to a peptide on its amine (N-) and car-
boxyl (C-) terminal ends, respectively.

The C-flank cleavage site sequence is comprised of the
terminal r amino acids of the peptide and the initial r amino
acids of the C-flank. In the following subsections, we present
how MHCrank learns from a peptide and its N- and C-flanks
to predict antigen processing.

Peptide pre-processing
As in other methods, all input N-flank+peptide+C-flank se-
quences are first processed to obtain uniformity in length
before being passed to MHCrank. Peptides of various lengths
(8-15 amino acids as in our data set) can bind to MHC Class
I molecules because only their termini interact with and an-
chor to the molecules2. The central amino acids of a bound
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Figure 1: Peptide processing and model architecture
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Figure 1a: Peptides undergo pre-processing to ensure they all possess a uniform length. (A) Peptides shorter than the desired length are
padded with a number of ambiguous amino acid ’X’ to their center. Raw peptides with an odd length have padding offset from their center
by one amino acid towards the N-flank. (B) Peptides longer than the desired length are trimmed at their center. Trimming peptides from an
odd-length to an even-length and vice versa requires the trim to be offset from their center by one amino acid towards the N-flank.
Figure 1b: MHCrank takes a uniform-length N-flank+peptide+C-flank sequence, C-terminal cleavage site (see gray box), and the peptide’s
original length before padding or trimming as input. The amino acids comprising the sequence and CSSK undergo feature embedding. A
convolution layer is applied to the embedding of the entire sequence. The remainder of the MHCrank architecture can be split into six
components. Component (1) applies a mean pool to the convolution output corresponding to the N-flank. Component (2) applies a mean
pool to the convolution output corresponding to the C-flank. The convolution output corresponding to the peptide sequence is forwarded to
2 stacked convolution layers. Components (3) and (4) each have 2 outputs (A and B) obtained from the output of these convolution layers.
(3A) extracts the output corresponding to the peptide’s N-terminal amino acid. (4A) extracts the output corresponding to the peptide’s
C-terminal amino acid. (3B) applies a mean pool to the peptide’s non-N-terminal amino acids. (4B) applies a mean pool to the peptide’s
non-C-terminal amino acids. Component (5) applies a global kernel to the embedded CSSK. Component (6) is a single node that takes the
peptide’s original length as input. Two dense layers are applied to the concatenated output of each component. The output from the second
dense layer enters an output layer that predicts the probability of the input peptide undergoing antigen processing.

peptide create an arch-like formation as the peptide bows in-
creasingly away from the pocket with increased length.16 As
the central amino acids do not contribute directly to bind-
ing, their inclusion in MHCrank may be uninformative and
ultimately detract from the model’s predictive ability. Thus,
unlike other methods, the sequence processing and repre-
sentation in MHCrank was designed to favor the amino acids
near an antigen’s termini – it unifies the sequences of various
lengths to length 10 (MHC Class I molecules favor peptides
with 8-10 amino acids). Figure 1a presents the antigen rep-
resentation process.

Specifically, if the peptide sequence is shorter than 10
amino acids, additional pseudo amino acids, represented
by an ambiguous ’X’, are added at the center positions
of the peptide (Figure 1a (A)). When the peptide’s orig-
inal length is odd, one amino acid is padded offset to-
wards theN-terminal side. This was motivated by past stud-
ies demonstrating that the C-terminal amino acids of a candi-
date antigen are more influential than the N-terminal amino
acids with respect to whether or not a peptide will be pro-
cessed for presentation.2, 5 If the peptide sequence is longer
than 10 amino acids (Figure 1a (B)), a number of amino
acids will be trimmed from the center of the peptide se-
quence, with one amino acid offset from the center towards
the N-terminal if necessary.

Amino acid representation
Once the peptide sequences are processed into uniform
length, their remaining amino acids will be represented in
various ways to capture the sequence contents. MHCrank
has three distinct amino acid representation methods, de-
noted as BLOSUM, embedding and em-BLO, respectively. In
the BLOSUM method, each amino acid is represented by
its corresponding 21-dimension vector extracted from the
BLOSUM62 substitution matrix.17 That is, the amino acid
representation is hard coded as input to MHCrank. In the
embedding method, each amino acid is first represented
by an initial, random 21-dimension embedding vector; the
embeddings will be learned18 in MHCrank so as to max-
imize their presentation power and facilitate optimal per-
formance. 21 dimensions was selected to control for length
given that this is also the same dimensions as the BLOSUM
method. In the em-BLO method, an aggregate of both the non-
learned vectors and learned embeddings (dimension 42) will
be used. Note that the padded pseudo amino acid, X, is rep-
resented as a zero vector by embedding.

MHCrank learning
Given the amino acid representations in a processed peptide,
each peptide’s embedding matrix is further padded, follow-
ing MHCflurry-AP,8 and forwarded to a 1-D convolutional
layer with nk1

kernels of size k, which aggregates different
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local information (k-mers) in the peptide. The output feature
mapping is then forwarded to a number of components as
described below that capture various signals from the train-
ing peptides and learn how each peptide’s flanking regions
affect the probability that a peptide will undergo antigen pro-
cessing.

Convolution over N-flank and C-flank As was done in
MHCflurry, the portion pertaining to the N-flank sequence
is extracted from the feature mapping output of the first
1-D convolution layer. Mean pooling is conducted over
the N-flank’s specific feature mapping to achieve the per-
channel average for each amino acid in the N-flank. The re-
sults are then forwarded to a dense layer, which outputs a
single value representing the flank’s favorability as a cleav-
age site. Identical operations are applied to the C-flank se-
quence.

Convolution over Peptide Following MHCflurry-AP,8
convolutions are also applied to the peptide to learn
the relationship between the cleavage favorability of its
N-terminus/C-terminus and the cleavage favorability of its
central amino acids. The intuition is that peptides with a
higher cleavage favorability at their terminal position rela-
tive to their central amino acids are more likely to be pro-
cessed for presentation than peptides in which this is not the
case. To learn this relationship near the N-terminus, the por-
tion pertaining to the peptide sequence is extracted from the
feature mapping output of the first 1-D convolution layer and
is subsequently forwarded to two stacked 1-D convolutional
layers. The first layer has nk2 channels; the second layer has
1 channel. Both of the stacked convolutional layers employ
kernels of size 1. The output of the second layer contains
a score for each amino acid in the peptide that represents
the residue’s likelihood of being an N-terminal cleavage site.
The scores corresponding to the N-terminal and C-terminal
amino acids within the peptide (A in Figure 1b) are for-
warded to the downstream learning. A max pool is applied
over the non-N-terminal amino acids to identify the overall
highest favorability for N-terminal cleavage to occur within
the central amino acids. A max pool is also applied over the
non-C-terminal amino acids to identify the overall highest
favorability for C-terminal cleavage to occur within the cen-
tral amino acids.

Convolution over C-terminal cleavage site A novel
component of MHCrank is the global-kernel based convolu-
tion over the C-terminal cleavage site. The C-terminal cleav-
age site is comprised of the terminal r amino acids of the
peptide and the initial r amino acids of the C-flank, where
r is the cleavage radius. The global kernel, referred to as
a cleavage site-specific kernel and denoted as CSSK, is ap-
plied on amino acid representations of the cleavage site se-
quence to capture global signals useful for cleavage and pro-
cessing. This was motivated by the fact that the C-terminal
end of the peptide is more influential than the N-terminal
with respect to cleavage and processing.2, 5 Because the
C-terminus is the primary anchor point between the antigen
and MHC molecule during binding, explicitly learning from
the C-terminal cleavage site could enable additional, useful

signals to predict a peptide’s favorability to be processed.
The global kernel is used with the intuition that there are
motifs located in this region, which are recognized by the
peptidases and proteases that process peptides for presenta-
tion, that would be more easily learned and recognized by a
global kernel.

Incorporating original peptide length Compared to
other methods, MHCrank has a novel, single node whose in-
put is the peptide’s original length before padding or trim-
ming. The downstream convolution’s use of the peptide’s
original length in MHCrank is motivated by the fact that pep-
tide length is a significant contributing factor to both pro-
cessing and presentation.1, 2

Combing all information Two fully-connected layers are
applied in succession to the concatenated output of all the
above components. Each layers possess nk2 nodes. The
output is then forwarded to an output layer that predicts
the probability of a peptide undergoing antigen processing.
Peptides more likely to undergo antigen processing receive
higher probabilities.

Ensemble methods and model selection
Ensembles19 have been an effective strategy in making more
accurate predictions compared to that of a single model by
reducing prediction variance. We developed the following
six ensemble strategies to leverage and integrate multiple
models, where the model performance on each fold was ac-
cessed using AUC score on each fold’s validation data, and
overall model performance was accessed using the average
AUC score across all four folds.
• Fw-top1 (fold-wise top-1): for each fold, we identified its

best model and then combined these models. That is, the
final ensemble consists of 4 total models – 1 from each
of 4 folds. Please note that 4 models may correspond to
different hyperparameters.

• Fw-top2 (fold-wise top-2): for each fold, we identified its
top-2 best models and then combined these models. That
is, the final ensemble consists of 8 total models – 2 from
each of 4 folds. Please note that 8 models may correspond
to different hyperparameters.

• Ba-top1 (best average top-1): we first identified the best
performing hyperparameter set that had the best average
AUC over the 4 folds. We then trained a model on each
fold using the hyperparameter set. The final ensemble
consists of 4 total models – 1 from each of 4 folds. Please
note that these 4 models correspond to the same set of
hyperparameters.

• Ba-top2 (best average top-2): we first identified the top-2
best performing hyperparameter sets that had the best av-
erage AUC over the 4 folds. We then trained a model on
each fold using the hyperparameter set. The final ensem-
ble consists of 8 total models – 2 from each of 4 folds.
Please note that 4 models (1 from each of 4 folds) corre-
spond to a single set of hyperparameters; the remaining
4 models (1 from each of 4 folds) correspond to another
single set of hyperparameters. Furthermore, the set of hy-
perparameters belonging to the first 4 models is distinct
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from the set of hyperparameters belonging to the second
4 models.

• C-top1 (combo top-1): we combined the Fw-top1 and
Ba-top1 models. That is, the final ensemble consists of
8 total models, 4 from Fw-top1 and 4 from Ba-top1.

• C-top2 (combo top-2): we combined the Fw-top2 and
Ba-top2 models. That is, the final ensemble consists of
16 total models, 8 from Fw-top2 and 8 from Ba-top2.
The predicted scores from the ensemble models are cal-

culated as the mean of the predicted scores from each of its
component models. Table S1 outlines the specific hyperpa-
rameter sets of the models selected for each of the ensem-
bles. The hyperparameters listed in Table S1 are only those
that underwent tuning. The full set of hyperparameter op-
tions used to construct our MHCrank models can be found in
Table S2. The training and validation AUC of the models se-
lected for inclusion in each ensemble is detailed in Table S3.

Model training
Three distinct model variations, each corresponding to one
of the embedding, BLOSUM, em-BLO amino acid representa-
tion methods, combined with each hyperparameter set, were
trained on each of the four training data folds. More in-
formation on the amino acid representations can be found
in the ’Amino acid representation’ section. See ’Training
data’ section for details regarding how the data was split
into folds for training and validation. All hyperparameters
utilized are listed in Table S2. Optimization was achieved
using an Adam optimizer and a binary cross-entropy loss
function. Models were trained for 500 epochs with an early
stopping patience of 30 epochs.

Evaluation metrics
Model were evaluated for ensemble selection by the AUC
they achieved on validation folds. The fold and valida-
tion AUC for any model included in a MHCrank en-
semble is presented in Table S3. MHCrank ensembles
were compared to the MHCflurry-AP and netMHCpan-EL
baselines via AUC, precision@k, and NDCG@k for
k = {10, 25, 50, 100, 250, 500}.
• AUC: It is the area underneath a receiver operating char-

acteristic (ROC) curve designed for binary classification
problems. ROC a probability curve depicting true positive
rates vs false positive rates over various prediction thresh-
olds. Thus, AUC measures how well a model is capable
of distinguishing between two classes (e.g., hits and de-
coys). Higher AUC values indicate better distinguishing
capacity.

• Precision@k: It measures the proportion of top-k ranked
peptides that are also hits. It is calculated as follows,

Precision@k =
Rk ∩H

Rk
,

where Rk is the set of top-k ranked peptides, and H is
the set of hits. Higher precision@k scores indicate higher
probabilities of correctly detecting hits within the top-
k peptides. Note that precision@k is equivalent to the
‘PPV’ metric reported in O’Donnell et al.8

• NDCG@k: It is the normalized discounted cumulative
gain (DCG) for top-k ranking. DCG@k is calculated as
follows:

DCG@k =
k∑

i=1

2reli−1

log2(i+ 1)
,

where reli is the relevance of an peptide at position i indi-
cating whether the recommended peptide is a hit (1) or a
decoy (0); the numerator of the DCG@k equation awards
relevant peptides and punishes decoys; the denominator
gives more weight to higher ranked recommendations.
NDCG@k is the normalized DCG@k. Higher NDCG@k
scores indicates better performance.

Statistical analysis
We obtained 1,000 sets of 100,000 peptides via bootstrap
resampling of our testing data. Processing likelihood scores
were obtained for each of these peptides from both our en-
sembles and the baseline methods. 95% confidence inter-
vals (CIs) of our evaluation metrics were calculated to com-
pare our ensemble models against both MHCflurry-AP and
netMHCpan-EL. Non-overlapping CIs indicate a significant
difference in performance at a threshold of at least p=0.05.
Overlapping CIs indicate there was not a significant differ-
ence in performance at a significance level of p=0.05.

Site-specific amino acid enrichment
A set of 50,000 randomly selected hits were obtained from
the training peptides. For each model, the set of the top
100-recommended peptides were selected. The peptides in
each set were processed to a length of 9 amino acid residues
via the method outlined in Figure 1a and the ’Peptide pre-
processing’ section. We produced a site-specific amino acid
enrichment visualization from each set of peptides using the
R package: ggseqlogo.20

Cosine Similarity
Cosine similarity uses inner product space to measure the
similarity between two vectors. The cosine similarity was
calculated for the embedding vectors of each amino acid-
pair and is given by the following:

Cosine Similarity(a, b) = 1−
−→a ·
−→
b

||−→a || ||
−→
b ||

,

where−→a ·
−→
b is the dot product of two vectors. Higher values

indicate higher similarities.

Experimental results
Performance Evaluation
Tables 1, 2, and 3 present the performance of all six
MHCrank ensembles, MHCflurry-AP, and netMHCpan-EL,
in terms of mean AUC, precision@k, and NDCG@k, re-
spectively. The corresponding 95% CIs used to measure sig-
nificance (see Evaluation metrics section) are presented in
Table S4. All (100%) of the models selected for inclusion in
the ensemble utilized the embedding amino acid represen-
tation method (Table S1).
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Table 1: Performance comparison of mean AUC

MHCflurry-AP netMHCpan-EL MHCrank ensembles

Fw-top1 Fw-top2 Ba-top1 Ba-top2 C-top1 C-top2

0.9106 0.9050 0.9073 *0.9120 0.9102 *0.9147 *0.9121 *0.9153

Bold values for MHCrank ensembles indicates an improvement in performance compared to both
MHCflurry-AP and netMHCpan-EL. Statistical significance is denoted by ’*’. See also Table S4.

Table 2: Performance comparison of mean precision@k

k MHCflurry-AP netMHCpan-EL MHCrank

Fw-top1 Fw-top2 Ba-top1 Ba-top2 C-top1 C-top2

10 0.6717 0.7065 *0.7260 *0.7251 0.6492 0.6980 0.7089 0.7116

25 0.5901 0.6434 0.6544 0.6517 0.6314 0.6246 0.6496 0.6452

50 0.5482 0.5971 0.5973 0.5971 0.5891 0.5922 *0.6063 0.6035

100 0.4827 0.5495 0.5284 0.5360 0.5182 0.5304 0.5491 0.5434

250 0.3994 0.4344 0.4202 *0.4410 0.4198 0.4359 *0.4412 *0.4482

500 0.3215 0.3288 *0.3413 *0.3544 *0.3409 *0.3552 *0.3550 *0.3604

Bold values for MHCrank ensembles indicates an improvement in performance compared to
netMHCpan-EL. Statistical significance of improvement over netMHCpan-EL is denoted by ’*’. All
MHCrank ensembles performed significantly better than MHCflurry-AP for all values of k excluding
Ba-top1 at k = 10. See also Table S4.

Table 3: Performance comparison of mean NDCG@k

k MHCflurry-AP netMHCpan-EL MHCrank ensembles

Fw-top1 Fw-top2 Ba-top1 Ba-top2 C-top1 C-top2

10 0.6884 0.7253 * 0.7451 *0.7544 0.6705 0.7166 0.7265 0.7357

25 0.6230 0.6712 *0.6846 *0.6877 0.6486 0.6547 0.6761 0.6770

50 0.5802 0.6272 0.6317 0.6344 0.6113 0.6198 0.6346 0.6348

100 0.5179 0.5795 0.5658 0.5735 0.5486 0.5621 0.5805 0.5770

250 0.4328 0.4712 0.4202 *0.4780 0.4538 0.4701 *0.4772 *0.4833

500 0.3545 0.3685 *0.3779 *0.3909 *0.3743 *0.3891 *0.3909 *0.3961

Bold values for MHCrank ensembles indicates an improvement in performance compared to
netMHCpan-EL. Statistical significance of improvement over netMHCpan-EL is denoted by ’*’. All
MHCrank ensembles performed significantly better than MHCflurry-AP for all values of k excluding
Ba-top1 at k = 10. See also Table S4.

Table 4: Performance comparison (% change)

k
Precision@k NDCG@k AUC

MHCflurry-AP netMHCpan-EL MHCflurry-AP netMHCpan-EL MHCflurry-AP netMHCpan-EL

10 7.95 2.63 9.58 4.00

0.15 0.77

25 10.45 1.29 10.39 2.47

50 8.92 0.00 9.34 1.15

100 11.04 -2.47 10.72 -1.05

250 10.39 1.51 10.45 1.45

500 10.23 7.77 10.26 6.09

Table values represent the percentage change in precision@k, NDCG@k, and AUC of MHCrank’s Fw-top2
ensemble over MHCflurry-AP and netMHCpan-EL. Bold values denote statistical significance. See also Table S4.
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Table 1 shows that for all the methods, their mean AUC
values were higher than 0.9. This suggests all methods
have learned to distinguish between hits and decoys Among
the evaluated methods, C-top2 achieves the best perfor-
mance (0.9153). All the MHCrank ensembles outperform
netMHCpan-EL, and four of the six MHCrank ensembles
– Fw-top2, Ba-top2, C-top1, and C-top2 – outperform
MHCflurry-AP with statistical significance. This demon-
strates the strong power of MHCrank ensembles in learning
from the training data to score hits above decoys. However,
note that the high perceived accuracy as demonstrated by
AUC may be optimistically inflated as a result of the class
imbalance between hits and decoys in the test data. The AUC
scores may indeed be inflated given the general reduction in
relative performance for all methods when considering pre-
cision (Table 2) and NDCG (Table 3).

Table 2 illustrates that all MHCrank ensembles con-
sistently outperform MHCflurry-AP across all k val-
ues with statistical significance. Furthermore, four of the
six MHCrank ensembles (Fw-top1, Fw-top2, C-top1 and
C-top2) outperform netMHCpan-EL for small values of k
(10, 25). For k=500, all MHCrank ensembles outperform
netMHCpan-EL with a significance of at least p = 0.05.
Among the six MHCrank ensemble methods, Ba-top1 and
Ba-top2 are generally the worst performing ensembles
in terms of precision. On average, neither ensemble im-
proves upon the performance of netMHCpan-EL. Further-
more, Ba-top1 is the only ensemble to achieve a signifi-
cantly worse precision than MHCflurry-AP for any value of
k (10). These two ensemble methods used the overall best
hyperparameters across all the 4 folds. Thus, the models
trained on each fold using these hyperparameter sets were
not necessarily optimized for that fold. Consequently, the
combination of these sub-optimal models did not produce
the best performance. On the contrary, Fw-top2 and C-top1
were the two ensemble methods that achieved the overall
best precision. Both methods incorporated at least the best
model (C-top1) or two best models (Fw-top2) for each of
the 4 folds, allowing the ensemble to integrate the most pre-
dictive power possible from the data.

Table 3 displays very similar trends to those in Ta-
ble 2. That is, all the MHCrank methods outperform
MHCflurry-AP, and four of the six ensemble meth-
ods (Fw-top1, Fw-top2, C-top1 and C-top2) outperform
netMHCpan-EL. Again, Ba-top1 and Ba-top2 are the worst
performing ensemble methods. Unlike Table 2, Fw-top1 and
Fw-top2 are the two best performing ensembles, with each
achieving significant improvement over netMHCpan-EL for
3 and 4 values of k, respectively. This indicates that Fw-top2
is able to rank more hits at higher positions in the ranking.
C-top1 and C-top2 combine Fw-top1 and Ba-top1, and
Fw-top2 and Ba-top2, respectively. This grants C-top1 and
C-top2 both pros and cons of both types of ensembles. Thus
it is intuitive that they, in consequence, achieved mid-level
performance.

Table 4 summarizes the performance improvement of
MHCrank as a percentage of its best performing ensem-
ble: Fw-top2, over MHCflurry-AP and netMHCpan-EL on
mean AUC, precision@k and NDCG@k. For both pre-

cision and NDCG, the percent improvement garnered by
Fw-top2 over both netMHCpan-EL and MHCflurry-AP ex-
hibits generally increasing performance with increasing val-
ues of k (e.g., k=10 vs k=500). All percent improvements
over MHCflurry-AP are significant for both metrics. This
again indicates Fw-top2 is able to more effectively rank
peptides likely to be processed for presentation among the
very top of ranking lists when compared to netMHCpan and
MHCflurry. One surprising result is the dip in both preci-
sion and NDCG of Fw-top2 relative to netMHCpan-EL for
k=50, 100, followed by rapid improvement between k=250,
500. One plausible explanation is netMHCpan-EL learned to
highly rank peptides with a specific motif that is highly en-
riched within hits (Figure 2). After exhausting all peptides
containing the learned motif, the accuracy of subsequently
ranked peptides would likely deteriorate.

Enrichment of top-ranked peptides
Figure 2 shows the position-specific enrichment in various
sets of peptides. The 2nd and 9th positions are underscored in
each figure with yellow boxes. These positions correspond
to the canonical anchor residues for binding to the MHC
Class I molecule. Figure 2a illustrates the position-specific
enrichment for 50,000 randomly selected hits from the train-
ing data. In this figure, position 9 exhibits a high level of en-
richment. The amino acids that are enriched at this position
are either hydrophobic (L, V, I, etc.) or aromatic (F, Y, W)
and are all enriched to comparable levels. This conforms to
the biological relevance affirmed by previous studies3 that
hydrophobic residues tend to be favored in the C-terminal
position. Position 2 also has slightly elevated enrichment
when compared to the low levels of enrichment that exist
for positions 1 and 3 – 8. Taken together, this demonstrates
that the peptides selected for training can represent a large
range of different peptides.

Figure 2b depicts the position-specific enrichment for
the set of the top 100-ranked peptides by the best
MHCrank ensemble Fw-top2. The top 100 peptides were
selected for each model as k=100 is the threshold where
MHCrank’s performance rapidly improves compared to
netMHCpan-EL. By examining the general composition of
peptides ranked highly by MHCrank and the netMHCpan-EL
and MHCflurry-AP baselines, we believe we may be able
to elucidate the reason for the drastic shift in performance
at k=100 that we observed in Table 4. The position-specific
enrichment of Fw-top2’s recommended peptides shows an
enhancement in the enrichment at the 2nd and 9th positions
relative to Figure 2a. Their enhancement in the Fw-top2 en-
semble’s top-100 ranked peptides indicates that our method
is capable of discerning both anchor positions within the
peptides. Moreover, similar to the enrichment of the training
peptides, the patent enrichment at the 9th position features
uniform enrichment of mostly hydrophobic amino acids.
This suggests that Fw-top2 learned to identify the features
and physiochemical properties of the residues versus spe-
cific sequences. Note there was also a slight increase in
the enrichment of the central amino acids (positions 3-9)
compared to Figure 2a, indicating that MHCrank may have
learned some motif(s) that convey processing favorability

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.17.464741doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464741
http://creativecommons.org/licenses/by/4.0/


Figure 2: Position specific amino acid enrichment
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(a) Enrichment for training peptides
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(b) Enrichment for MHCrank

N C0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8 9

B
its

(c) Enrichment for MHCflurry-AP
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(d) Enrichment for netMHCpan-EL

Enrichment of amino acids in (2a) 50,000 randomly sampled hits from training data set and in the top 100 peptides from the testing
data ranked by (2b) MHCrank’s Fw-top2 ensemble and both the (2c) MHCflurry-AP and (2d) netMHCpan-EL baseline methods. Yellow
boxes covering positions 2 and 9 in each figure highlights the enrichment of the peptides at their typical anchor positions.

within the central amino acids.
Figure 2c depicts the position-specific enrichment for

the set of top-100 ranked peptides by MHCflurry-AP. Like
MHCrank, MHCflurry-AP exhibited enhanced enrichment of
the 2nd position. However, this is overshadowed by simi-
lar enrichment levels of its central amino acids (positions
3-9). Additionally, Figure 2c displays a reduction in enrich-
ment for the vital C-terminal position. Thus, It appears there
was not any position for which MHCflurry-AP was able to
learn meaningful features nor trends. This lack of fit might
explain why MHCflurry-AP’s performance was worse than
MHCrank’s performance.

Figure 2d depicts the position-specific enrichment for the
set of the top-100 ranked peptides by netMHCpan-EL. The
enrichment of the 9th position is higher than any position-

specific enrichment from both MHCrank and MHCflurry-AP.
Unlike the enrichment at this position present in MHCrank’s
top peptides, only three amino acids (Y, L, F) are enriched
for netMHCpan-EL. This is an important distinction because
rather than learning properties of the amino acids that oc-
cupy this position in hits, it is likely that netMHCpan-EL
learned to prefer peptides that ended in one of the three en-
riched amino acids. In fact, 91% of netMHCpan-EL’s top-
100 peptides feature either Y, L, or F in the C-terminal po-
sition, suggesting that netMHCpan-EL’s performance may
decline when testing it with peptides that do not match
this pattern. This adds credence to our explanation under-
lying the dip in both precision and NDCG of Fw-top2 rel-
ative to netMHCpan-EL for k=50,100, followed by rapid
improvement between k=250, 500 (Table 4). Also note
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Figure 3: Cosine similarity matrix of learned amino acid em-
beddings

 

 

Hydrophobic

A I L V M
Aromatic

W Y F
Basic

H K R
Acidic

D E
Polar

N Q S T
Other

P G C

A
I
L
V
M

H
yd

ro
ph

ob
ic

W
Y
F A

ro
m

at
ic

H
K
R

B
as

ic

D
E A

ci
di

c

N
Q
S
T

P
ol

ar

P
G
C

O
th

er

 

−0.2

0

0.2

0.4

netMHCpan-EL’s enhanced enrichment at positions 2, 3, and
4. The enrichment of positions 2-4 suggests netMHCpan-EL
was able to learn that there is an important feature near those
positions, but not which position was most informative.

Similarities of learned amino acid embeddings

We extracted the 21-dimension embedding vector for each
amino acid from a representative MHCrank model. Figure 3
illustrates the cosine similarities among the embeddings
learned by MHCrank for each amino acid. Amino acids in
Figure 3 have been grouped according to their types: hy-
drophobic, aromatic, basic, acidic, polar, and other. We ob-
served that, in general, the learned embeddings of amino
acids within the same groups (i.e., of the same types) are
more similar than those of amino acids from different groups
(i.e., of different types). This indicates that MHCrank was ca-
pable of learning meaningful information from amino acids
that may correlate with their physiochemical properties, and
thus facilitate better predictions. This is further demon-
strated by the similarities of learned embeddings of amino
acids between certain groups. Figure 3 shows that the em-
beddings of aromatic and hydrophobic amino acids are more
similar to each other than the other amino acid types. Like-
wise, the embeddings of basic, acidic, and polar amino acids
are more similar to each other than they are to other amino
acid types. This distinction suggests that MHCrank is capa-
ble of learning information that corresponds to an amino
acid’s hydrophilicity, an important physiochemical property
involved in identifying peptides likely to be processed.

Discussion
We observed that the all but two of the models included in
the MHCrank ensembles processed peptides to a length of 9
or 10 amino acids, and all models utilized the embedding
amino acid representation. These findings demonstrate that
peptide representations are improved through the enhanced
biological relevance of our pre-processing method and the
inclusion of learned embeddings. For pre-processing, we be-
lieve that our leveraging the knowledge that central amino
acids of longer peptides often do not interact with the MHC
Class I molecule enabled processed peptides to retain only
the most relevant information. The dearth of enrichment in
the central amino acids both in the training peptides (Fig-
ure 2a) and in the top-100 ranked peptides from MHCrank
(Figure 2b), paired with our improved performance over
MHCflurry-AP (Table 4), further strengthens the claim that
central amino acids are not necessarily relevant features and,
their removal can improve model performance.

With respect to the unique embedding learned for each
amino acid, the enrichment we observed in Figure 2 also
highlights their capability to identify features and informa-
tion that may not have been imparted by the BLOSUM ma-
trix. As observed in Figure 2b, all but one of the hydropho-
bic amino acids are enriched to comparable levels at the
C-terminal position in Fw-top2’s top predicted peptides. Not
only does this coincide with biological observations, but as
we observed in Figure 3, it also suggests that MHCrank has
learned to identify, and favor, certain physiochemical prop-
erties of amino acids, such as hydrophobicity, despite no a
priori knowledge.1 Furthermore, the relative enrichment of
MHCrank’s 9th position versus its 7th and 8th positions (Fig-
ure 2b), suggests that the implementation of the CSSK aids in
the identification of commonalities among protease cleavage
site motifs. This is especially apparent when considering the
enrichment of the same positions from peptides ranked by
MHCflurry-AP.

Thus, even for different numbers of top-k ranked peptides
based on predictions, where the performance of MHCrank
and netMHCpan were not significantly different, we be-
lieve MHCrank might still be considered superior as it
achieves better performance using more unique peptides.
MHCrank also achieved superior performance compared to
MHCflurry-AP for all evaluated metrics. In addition, the
amino acid learned embeddings and enrichment was highly
correlated with biological observations. Altogether, the pro-
posed MHCrank demonstrates strong performance compared
to existing methods, and could have vast applicability to aid
drug and vaccine development.

Limitations and future directions
Despite MHCrank’s strong performance, there are multiple
improvements that might further strengthen its relevance and
applicability for drug and vaccine development. First, the
implementation of a combinatorial approach that incorpo-
rates binding affinity as well – similar to O’Donnell et al’s
presentation score predictor8 – might improve upon the cur-
rent presentation predictions achieved for the MHC class I
molecule.
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Secondly, given that the purpose of predicting MHC Class
I presentation is to aid in the development of drugs and vac-
cines that stimulate the adaptive immune response through
the activation of T-cells, future endeavors may benefit from
creating models that predict both the magnitude and type
of response a specific antigen will elicit. For MHC Class I
presented antigens in particular, this might be accomplished
by training models to identify complementary sequences be-
tween the presented peptide’s central amino acids and the
T-cell receptor’s (TCR) active site to which it binds.

A final limitation of not only of MHCrank, but also of other
MHC binding prediction models, is their inability to effec-
tively utilize protein structure for predictions. While BLO-
SUM6217 and other popular embedding schemes aim to en-
capsulate sequence homology and dissimilarities or similar-
ities between amino acids, this is a sub-optimal approach.
The sequence of a peptide is not, in and of itself, deter-
ministic of an antigen’s ability to be processed, presented,
and recognized. Rather, it is a product of physiochemical
properties of individual amino acids interacting with one an-
other.3 The utilization of structural data requires a structure
to first be resolved in a lab setting, rendering the approach
infeasible. However, as structural prediction algorithms im-
prove and become increasingly biologically relevant, aban-
doning sequences for structures will likely improve model
performance. Specifically, the use of geometric deep learn-
ing models seem poised to yield the highest probability of
success.21 We will investigate along these lines in our future
research.

Reproducibility
Data and code availability
MHCrank source code, training and testing data as
well as the trained neural networks used to cre-
ate MHCrank ensembles are freely available here:
https://github.com/ninglab/mhcrank.

Computing resources
Data processing and model training, validation, and testing
were all executed on Pitzer clusters of the Ohio Supercom-
puter Center.22 We implemented models using Python-3.6.6
and TensorFlow-2.2.1. We trained models with 1 Intel Xeon
8268s Cascade Lakes CPU node and 1 NVIDIA Volta V100
GPU totaling 32 GB of memory.

Hyperparameters
A total of 729 models were trained across each of the 4 folds
and evaluated. Each model was produced using a unique
combination of hyperparameters. The specific hyperparam-
eter options evaluated is presented below in Table S2. Note
that while the table presents only 243 unique combinations,
these would be applied to each of the 3 amino acid represen-
tation methods: embedding, BLOSUM, and em-BLO.
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munology: Structure and Function of TAP, the Trans-
porter Associated with Antigen Processing. Physiol-
ogy, 19(4):216–224, August 2004. Publisher: American
Physiological Society.

[8] Timothy J. O’Donnell, Alex Rubinsteyn, and Uri Laser-
son. Mhcflurry 2.0: Improved pan-allele prediction of
mhc class i-presented peptides by incorporating antigen
processing. Cell Systems, 11(1):42 – 48.e7, 2020.

[9] Vanessa Jurtz, Sinu Paul, Massimo Andreatta,
Paolo Marcatili, Bjoern Peters, and Morten Nielsen.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.17.464741doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464741
http://creativecommons.org/licenses/by/4.0/


Netmhcpan-4.0: Improved peptide–mhc class i interac-
tion predictions integrating eluted ligand and peptide
binding affinity data. The Journal of Immunology,
199(9):3360–3368, 2017.

[10] Poomarin Phloyphisut, Natapol Pornputtapong, Sira
Sriswasdi, and Ekapol Chuangsuwanich. MHCSeqNet:
a deep neural network model for universal MHC binding
prediction. BMC Bioinformatics, 20(1):270, May 2019.

[11] Kevin Michael Boehm, Bhavneet Bhinder, Vi-
jay Joseph Raja, Noah Dephoure, and Olivier Elemento.
Predicting peptide presentation by major histocompat-
ibility complex class I: an improved machine learning
approach to the immunopeptidome. BMC Bioinformat-
ics, 20(1):7, January 2019.

[12] Haoyang Zeng and David K Gifford. DeepLigand:
accurate prediction of MHC class I ligands using pep-
tide embedding. Bioinformatics, 35(14):i278–i283, July
2019.

[13] Jennifer G. Abelin, Dewi Harjanto, Matthew Malloy,
Prerna Suri, Tyler Colson, et al. Defining HLA-II lig-
and processing and binding rules with mass spectrom-
etry enhances cancer epitope prediction. Immunity,
51(4):766–779.e17, 2019.

[14] Siranush Sarkizova, Susan Klaeger, Phuong M. Le,
Letitia W. Li, Giacomo Oliveira, et al. A large pep-
tidome dataset improves HLA class I epitope prediction
across most of the human population. Nature Biotech-
nology, 38(2):199–209, February 2020. Number: 2 Pub-
lisher: Nature Publishing Group.

[15] Bracha Shraibman, Eilon Barnea, Dganit Melamed
Kadosh, Yael Haimovich, Gleb Slobodin, et al.
Identification of Tumor Antigens Among the HLA
Peptidomes of Glioblastoma Tumors and Plasma.
Molecular & Cellular Proteomics, 18(6):1255–
1268, 2019. Publisher: American Society for
Biochemistry and Molecular Biology eprint:
https://www.mcponline.org/content/18/6/1255.full.pdf.

[16] Hwai-Chen Guo, Theodore S. Jardetzky, Thomas P. J.
Garrettt, William S. Lane, Jack L. Strominger, and
Don C. Wiley. Different length peptides bind to HLA-
Aw68 similarly at their ends but bulge out in the middle.
Nature, 360(6402):364–366, November 1992. Number:
6402 Publisher: Nature Publishing Group.

[17] S. Henikoff and J. G. Henikoff. Amino acid substitu-
tion matrices from protein blocks. Proceedings of the
National Academy of Sciences, 89(22):10915–10919,
1992. Publisher: National Academy of Sciences Sec-
tion: Research Article.

[18] Ziqi Chen, Martin Renqiang Min, and Xia Ning.
Ranking-Based Convolutional Neural Network Models
for Peptide-MHC Class I Binding Prediction. Frontiers
in Molecular Biosciences, 8:128, 2021.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. The MIT Press, Cambridge, Mas-
sachusetts, illustrated edition edition, November 2016.

[20] Omar Wagih. ggseqlogo: a versatile R pack-
age for drawing sequence logos. Bioinfor-
matics, 33(22):3645–3647, July 2017. eprint:
https://academic.oup.com/bioinformatics/article-
pdf/33/22/3645/25167657/btx469.pdf.

[21] P. Gainza, F. Sverrisson, F. Monti, E. Rodolà,
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Supplementary Materials

Table S1: Hyperparameters for each of the best performing MHCrank models selected for inclusion in ensembles

Ensemble method Fold A.A. peptide length r k nk1 nk2

Fw-top1

0 embedding 10 2 9 512 64

1 embedding 10 2 11 512 32

2 embedding 10 2 11 512 64

3 embedding 15 2 11 512 64

Fw-top2

0 embedding 9 2 11 512 64

1 embedding 10 1 11 512 32

2 embedding 10 2 11 512 32

3 embedding 15 1 11 512 64

Ba-top1 - embedding 10 2 9 512 64

Ba-top2 - embedding 10 2 11 512 64

A.A. refers to the amino acid representation method used by the model. Addition-
ally, peptide length is the number of amino acids to be included in the processed
peptide; r is the cleavage radius; k denotes kernel size; nk1 is the number of fil-
ters employed in convolutional layers; and nk2 is the dimension of the final two
dense layers. Fw-top2 includes those listed as well as those in Fw-top1. Likewise,
Ba-top2 includes the models possessing the hyperparameters from Ba-top1. Be-
cause Ba-top1 and Ba-top2 use the models trained on each of the folds for the
listed, no folds are listed.

Table S2: Hyperparameter options employed by MHCrank

Hyperparameter Values

Peptide length 9, 10, 15

Flank length 5

r 1, 2, 3

nk1 128, 256, 512

k 7, 9, 11

Convolution activation function ReLU

`1 `2 regularization [0.0, 0.0]

nk2 16, 32, 64

Dropout rate 0.5

Loss function Binary cross-entropy

Optimizer Adam

Learning rate 0.001

MHCrank training results
Table S3 presents the training and validation AUC for any models included in any of the MHCrank ensembles (see ’Ensemble
methods and model selection’ section). We observe a decrease in AUC from training to validation for all models. This is
expected as models will have learned information from the peptides in the training set, while the peptides in the validation
set can be considered novel. Interestingly, we observed larger drops in AUC from the training to the validation set for the two
best performing models of those trained on fold 3 compared to the top performing models from other folds. Furthermore, the
best performing model of those trained on fold 3 exhibits a large standard deviation in both mean training and validation AUC
compared to all other selected models. This is because the model with this set of hyperparameters achieved poor performance
when trained on fold 0. This suggests that the hyperparameters used by this model are not conducive to learning the important
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features of fold 0’s data. Moreover, the only hyperparameter that is shared by the best performing models from fold 3 and not
present in any of the other top models is that those from fold 3 use a input peptide length of 15. This indicates that perhaps a
larger proportion of peptides in fold 3 have central amino acids that contribute to MHC Class I processing or binding than those
of the other folds.

Table S3: Training and Validation AUC of models included in MHCrank ensembles

Ensemble Model Fold 0 Fold 1 Fold 2 Fold 3 Mean (STD)

Train Val Train Val Train Val Train Val Train Val

Fw-top1

fold01 0.9371 *0.8119 0.9298 0.8249 0.9428 0.8354 0.9467 0.7986 0.9391 (7.4e-3) 0.8177 (1.6e-2)

fold11 0.9476 0.7858 0.9462 0.8304 0.9451 0.8362 0.9507 0.7937 0.9459 (4.4e-3) 0.8115 (2.5e-2)

fold21 0.9469 0.8039 0.9492 0.8269 0.9515 *0.8433 0.9518 0.7939 0.9499 (2.3e-3) 0.8170 (2.2e-2)

fold31 0.5000 0.5000 0.9308 0.8141 0.9353 0.8287 0.9522 0.8012 0.8296 (2.2e-1) 0.7360 (1.6e-1)

Fw-top2

fold02 0.9471 0.8092 0.9434 0.8219 0.9382 0.8272 0.9530 0.7956 0.9454 (6.2e-3) 0.8134 (1.4e-2)

fold12 0.9407 0.7998 0.9432 0.8302 0.9489 0.8314 0.9399 0.7975 0.9432 (4.1e-3) 0.8147 (1.9e-2)

fold22 0.9476 0.7858 0.9462 0.8304 0.9451 0.8362 0.9507 0.7937 0.9459 (4.4e-3) 0.8115 (2.5e-2)

fold32 0.9384 0.7980 0.9479 0.8255 0.9528 0.8346 0.9472 0.7988 0.9465 (6.0e-3) 0.8142 (1.9e-2)

Ba-top1 0.9371 *0.8119 0.9298 0.8249 0.9428 0.8354 0.9467 0.7986 0.9391 (7.4e-3) 0.8177 (1.6e-2)

Ba-top2 0.9469 0.8039 0.9492 0.8269 0.9515 *0.8433 0.9518 0.7939 0.9499 (2.3e-3) 0.8170 (2.2e-2)

Values represent the training (Train) and validation (Val) AUC calculated for the model created by training a distinct hyperparameter set on
each fold. Mean (STD) is calculated by averaging the AUC for all 4 models obtained from training a single hyperparameter set on each fold.
Bold values indicate which models were included in the ensembles. A ”∗” next to a selected model indicates that the model was included in
multiple ensembles. To that end, Ba-top1 is the same set of hyper-parameters as fold01 and Ba-top2 is the same set of hyper-parameters
as fold21.
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Table S4: Mean precision and NDCG@k and AUC (± a 95% CI)

k
MHCflurry-AP netMHCpan-EL

precision@k NDCG@k precision@k NDCG@k

10 0.6717±9.2e-3 0.6884±9.9e-3 0.7065±9.0e-3 0.7253±9.3e-3
25 0.5901±6.1e-3 0.6230±6.5e-3 0.6434±5.8e-3 0.6712±6.2e-3
50 0.5482±4.4e-3 0.5802±4.8e-3 0.5971±4.3e-3 0.6272±4.6e-3
100 0.4827±3.2e-3 0.5179±3.5e-3 0.5495±3.2e-3 0.5795±3.4e-3
250 0.3994±1.9e-3 0.4328±2.1e-3 0.4344±2.1e-3 0.4712±2.2e-3
500 0.3215±1.4e-3 0.3545±1.5e-3 0.3288±1.4e-3 0.3685±1.5e-3

AUC 0.9106±.7e-4 0.905±3.8e-4

k
MHCrank Fw-top1 MHCrank Fw-top2

precision@k NDCG@k precision@k NDCG@k

10 0.7260±9.0e-3 0.7451±9.2e-3 0.7251±9.3e-3 0.7544±9.3e-3
25 0.6544±6.2e-3 0.6846±6.4e-3 0.6517±6.1e-3 0.6877±6.3e-3
50 0.5973±4.4e-3 0.6317±4.6e-3 0.5971±4.3e-3 0.6344±4.5e-3
100 0.5284±3.2e-3 0.5658±3.4e-3 0.5360±3.2e-3 0.5735±3.3e-3
250 0.4202±1.9e-3 0.4596±2.1e-3 0.4410±2.0e-3 0.4780±2.1e-3
500 0.3413±1.3e-3 0.3779±1.4e-3 0.3544±1.4e-3 0.3909±1.5e-3

AUC 0.9073±4.0e-4 0.9120±4.0e-4

k
MHCrank Ba-top1 MHCrank Ba-top2

precision@k NDCG@k precision@k NDCG@k

10 0.6492±9.3e-3 0.6705±1.0e-2 0.6980±9.3e-3 0.7166±9.6e-3
25 0.6314±6.0e-3 0.6486±6.5e-3 0.6246±6.1e-3 0.6547±6.5e-3
50 0.5891±4.3e-3 0.6113±4.7e-3 0.5922±4.3e-3 0.6198±4.7e-3
100 0.5182±3.0e-3 0.5486±3.7e-3 0.5304±3.0e-3 0.5621±3.3e-3
250 0.4198±2.0e-3 0.4538±2.1e-3 0.4359±2.0e-3 0.4701±2.1e-3
500 0.3409±1.4e-3 0.3743±1.5e-3 0.3552±1.4e-3 0.3891±1.5e-3

AUC 0.9102±4.0e-4 0.9147±3.8e-4

k
MHCrank C-top1 MHCrank C-top2

precision@k NDCG@k precision@k NDCG@k

10 0.7089±9.0e-3 0.7265±9.5e-3 0.7116±9.4e-3 0.7357±9.5e-3
25 0.6496±6.0e-3 0.6761±6.5e-3 0.6452±6.0e-3 0.6770±6.3e-3
50 0.6063±4.4e-3 0.6346±4.7e-3 0.6035±4.4e-3 0.6348±4.6e-3
100 0.5491±3.1e-3 0.5805±3.4e-3 0.5434±3.1e-3 0.5770±3.3e-3
250 0.4412±2.0e-3 0.4772±2.1e-3 0.4482±2.0e-3 0.4833±2.1e-3
500 0.3550±1.4e-3 0.3909±1.5e-3 0.3604±1.4e-3 0.3961±1.5e-3

AUC 0.9121±3.9e-4 0.9153±3.8e-4
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