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Summary 

 

When reminded of an unpleasant experience, people often try to exclude the unwanted 

memory from awareness in an effort to forget it, a process known as retrieval suppression.  

Yet, how fast can individual memories be targeted and controlled, and the neural dynamics in 

modulating cortical traces of individual memories, remain elusive. Here, using multivariate 

decoding analyses on time-domain and time-frequency-domain EEGs, we found that retrieval 

suppression of aversive memories was distinct from retrieval and passive viewing, when 

given a reminder. Specifically, early elevation of mid-frontal theta power during the first 500 

ms distinguished retrieval suppression from passive viewing, suggesting that suppression 

recruited early active control processes. On an item-level, we could discern activities relating 

to individual memories during active retrieval - initially, based on perceptual responses to 

reminders (0-500 ms) and later, via the reinstatement and maintenance of the target aversive 

scenes (500-3000 ms). Critically, suppressing retrieval significantly weakened (during 420-

600 ms) and eventually abolished these item-specific cortical patterns till cue disappeared 

(1200-3000 ms), suggesting the successful exclusion of the unwelcome memory from 

awareness. Suppression of item-specific cortical patterns bore behavioral consequences in 

predicting subsequent episodic forgetting. These findings provide unique insight into the 

neural dynamics underlying the control of unwelcome memories: upon perceiving an 

unwelcome reminder, people rapidly deploy inhibitory control to truncate retrieval within 500 

ms, which likely terminate the reminder-to-memory conversion at around 500 ms that would 

ordinarily arise through hippocampal pattern completion. We concluded that both rapid and 

sustained control are critical in abolishing cortical patterns of individual memories, limiting 

unwelcome awareness, and precipitating later forgetting. 
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Introduction  

 

Following a painful or traumatic event, the past may come back to mind uninvitedly. 

Oftentimes, even seemingly innocuous objects can remind us of the trauma, triggering 

intrusive images, fear and avoidance behaviors. When this happens, people tend to recruit 

top-down control processes to terminate unwelcome retrieval, a process known as retrieval 

suppression. Ideally, control processes need to be fast and to target individual memories well 

before they fully unfold in our mnemonic awareness. However, the precise timing and neural 

dynamics of retrieval suppression in weakening individual memories remains elusive. 

Specifically, how fast can people stop retrieving a specific memory, and how timely retrieval 

suppression contributes to successful forgetting?  

 

Employing techniques bearing millisecond temporal resolution including M/EEG, 

intracranial EEG and single-unit recording in humans, research on cued memory recall 

suggests a staged cued recall process: initially, a memory reminder undergoes perceptual 

analysis within 500 ms. After the perceptual information reaches the hippocampus, pattern 

completion processes occur at around 500 ms, driving cortical reinstatements of the target 

memory during the 500-1500 ms time window [1]. In particular, successful recall was 

associated with enhanced encoding-retrieval neural pattern similarities in the hippocampus 

during 1000-1500 ms [2]. Moreover, neural firing in the hippocampus preceded and predicted 

spikes in the adjacent entorhinal cortex (EC) between 500-1500 ms, during which memory 

traces can be identified [3]. These results provide strong evidence suggesting that 

hippocampus pattern completion and subsequent cortical reinstatement occur during the 500-

1500 ms time window, supporting successful episodic recall.  

 

While these findings delineate how a simple reminder gives rise to vivid remembering, there 

are scenarios when retrieval is unwelcome and needs to be stopped. Neuroimaging evidence 

suggests that when seeing cues of unwanted memories, the prefrontal cortex exerts top-down 

inhibitory control over the hippocampus and the medial temporal lobes to down-regulate 

unwanted retrieval [4, 5]. Furthermore, retrieval suppression weakens neural activities in the 

neocortex that are implicated in reinstating original memories [5-8]. However, it remains 

elusive exactly when top-down control processes weaken individual memories. To achieve 

timely control of unwanted memories, we hypothesize that inhibitory control needs to be 

engaged during or before the time window when cue-to-memory conversion occurs, i.e., 

within 500 ms after the cues. This early inhibitory control process should disrupt pattern 

completion to prevent the full-blown recollection experience, via weakening and eventually 

abolishing item-specific cortical patterns during the memory reinstatement time window 

(500-1500 ms) and till the memory cue disappears.  

 

Despite EEG’s unparalleled temporal resolution, its relatively poor spatial resolution posits 

particular challenges in isolating item-specific memory representations. To tackle this 

challenge, we applied a relatively new multivariate pattern analysis method to scalp EEGs [9] 

when participants voluntarily retrieve or suppress the retrieval of unwanted memories 

(aversive scenes) in an emotional think/no-think paradigm [5, 10, 11]. Using data from all 

EEG sensors at once, we first applied multivariate EEG analysis to distinguish between 

different conditions, to identify suppression-related activity and its time course. In particular, 

we not only compared voluntary retrieval (Think) versus retrieval suppression (No-Think), 

but also compared think/no-think manipulations with a perceptual baseline condition, in 

which no retrieval was involved. Pairwise condition-level decoding could unravel neural 

dynamics associated with retrieval and retrieval suppression, relative to the no-retrieval 
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baseline. Driven by our research question, we are particularly interested in the role of early 

frontal theta within the first 500 ms, given frontal theta power increase has been related to 

top-down inhibitory control processes [12-14]. 

 

To examine time-dependent evolution of item-specific neural representations, we next 

employed item-level multivariate pattern analyses within each condition. We then compared 

item-level decoding in the think condition with that from the perceptual baseline, no retrieval 

condition, to establish cue-to-memory processing during voluntary retrieval. Afterwards, we 

delineated how item-specific cortical patterns may evolve during retrieval suppression, 

particularly focusing on the 0-500 ms and the 500-1500 ms windows. We focused on theta 

activity during the early time window, given its roles in sensory intake and feedforward 

information flow originating from the sensory cortex [15, 16]. For memory reinstatement, we 

examined alpha activity given it has been implied in working memory maintenance and 

reinstatement [17, 18]. Comparing time-dependent evolution of item-specific cortical patterns 

between retrieval and retrieval suppression conditions, we could establish the timeline of 

inhibitory control in truncating individual memory traces.  

 

To anticipate, we found that for successful forgetting, retrieval suppression enhanced early 

control and attenuated item-specific cortical patterns within the first 500 ms, probably 

disrupting the perception-to-memory conversion processes. Retrieval suppression then 

weakened and abolished item-specific cortical patterns during the 500-1500 ms memory 

reinstatement window in a sustained manner. In contrast, less successful forgetting was 

associated with insufficient mobilization of early control, and relapse of the unwanted 

memory during retrieval suppression.  
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Results  

 

Suppressing Retrieval Induces Forgetting of Emotional Memories  

 

Following the emotional Think/No-Think (TNT) task, participants completed a cued recall 

test during which they verbally described the aversive scene that they thought was linked to 

that cue. We coded and scored verbal descriptions of negative emotional scenes on 

Identification, Gist and Detail. Each of the three memory scores was submitted to a one-way 

repeated-measure (Think, No-Think and Baseline) analysis of variance (ANOVA). Results 

showed a significant condition effect on Identification F(1.87,72.93) = 7.35, p = .002, 

ηp
2=.159; Detail (F(1.93,75.2) = 13.79, p < .001, ηp

2=.261 and Gist (F(1.92,74.95) = 6.22, p 

= .004, ηp
2=.138). Planned contrasts showed that, confirming our hypotheses, participants 

showed significant below-baseline, suppression-induced forgetting on Identification, t(39) = -

2.07, p = .045, dz = 0.33, and Details, t(39) = -2.16, p = .037, dz = 0.34; whereas the 

forgetting effect on Gist was not significant t(39) = -1.58, p = .123, dz = 0.25, see Figure 1B).  

 

 
Figure 1. Experimental Procedure, Suppression-Induced Forgetting, Decoding Approaches 

and Condition-level Time-domain EEG Decoding Results. 
(A) The emotional Think/No-Think task (eTNT) included three sessions. 1) Encoding: Participants first learnt 

object-aversive scene stimuli pairings; and they also viewed object without any scene pairings (i.e., Perceptual 

Baseline); 2) Think/No-Think (TNT): Participants either retrieve (Think) or suppress the retrieval (No-Think) of 

negative scene memories. Participants were also presented with Perceptual Baseline trials without any memory 

retrieval; 3) Cued Recall: Participants viewed object cues and verbally described their associated scenes. 

(B) Suppression-Induced Forgetting on Identification, Gist and Detail from the Cued Recall.  

(C-D) An illustration of trial flow in the EEG-based eTNT, and the logic of decoding analyses. 

(E) Condition-level decoding based on time domain EEG revealed significant differences in all three pairwise 

comparisons. Colored disks along x-axis indicate significant clusters (permutation cluster corrected): No-Think 
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vs Perceptual Baseline, 40-2460 ms, pcorrected < .001; Think vs Perceptual Baseline, 40-2800 ms, pcorrected < .001; 

Think vs No-Think, 140-2960 ms, pcorrected < .001. Shaded areas indicate standard errors of the mean (S.E.M). 

(F) Time domain Think vs. Perceptual Baseline decoding accuracies during 500-3000 ms was positively 

correlated with subsequent memory recall on Identification score (Think normalized by Baseline). 

 

 

Stopping Retrieval is Distinct From Not-Retrieving 

 

Retrieval suppression impaired unwanted memories, inducing forgetting of the aversive 

scenes and their episodic details. We next examined EEG activities that could distinguish 

between No-Think, Think, and Perceptual Baseline (i.e., no-retrieval) conditions. Based on 

time-domain EEGs, condition-level multivariate decoding analysis successfully distinguished 

retrieval from no-retrieval (T vs. PB, pcorrected < .001, Figure 1E, green). Confirming 

participants’ engagement in retrieving scene memories during Think trials, the Think vs. 

Perceptual Baseline decoding accuracies during 500-3000 ms predicted retrieval-induced 

facilitation in Identification: r = 0.33, p =.036; and Detail: r = 0.33, p =.041 (Figure 1F, also 

see Figure S2A). Furthermore, multivariate decoding not only distinguished retrieval 

suppression from voluntary retrieval (NT vs. T, pcorrected < .001, Figure 1E, purple), but also 

from perceptual baseline in which no cue-elicited retrieval was involved (NT vs. PB, pcorrected 

< .001, Figure 1E, red). Strikingly, the Think vs. No-Think differences started as early as 140 

ms and persisted during the entire epoch until ~3000 ms.  

 

Similarly, when using time-frequency-domain EEGs, between-condition decoding revealed 

significant differences among all pairwise comparisons (Figure 2A-F). Seeking EEG 

evidence for an early, active control process, we found that within the first 500 ms, 

significant NT vs. PB decoding was driven by 4-8 Hz theta activities over the frontal and 

posterior brain regions (Figure 2E, 2H), which continued throughout the 3000 ms. Since 500 

ms, 9-15 Hz alpha/beta activities drove significant condition-level decoding performances till 

3000 ms in addition to theta (Figure 2D-F).  

 

More specifically, retrieval suppression (vs. retrieval or no-retrieval) enhanced midline and 

right prefrontal theta activity between 200-400 ms after the onset of the cue (NT > T, pcorrected 

= .007, Figure 2I; NT > PB, pcorrected = .002, Figure S1G). After this early theta enhancement, 

retrieval suppression reduced theta and alpha/beta power from 500 to 3000 ms (NT < T, 

theta: pcorrected = .004; alpha/beta: pcorrected < .001; NT < PB, theta: pcorrected < .001; alpha/beta: 

pcorrected = .002, Figure S1A-F). Specifically, during the 1000-2000 ms time window that was 

selected based on a recent study [17], we found that alpha-based decoding accuracies (No-

Think vs. Perceptual Baseline) significantly predicted suppression-induced forgetting on 

Identification (r = -0.34, p =.034, Figure 2G, also see Figure S2B). This negative correlation, 

together with significant NT vs. PB decoding, suggest that reduced alpha power during 1000-

2000 ms contributed to forgetting. Intriguingly, while alpha-based NT vs. PB decoding 

accuracies predicted suppression-induced forgetting, alpha-based T vs. PB decoding 

accuracies predicted retrieval-induced facilitation, with the difference being significant 

(Detail: z = 2.06, p =.039; Figure S2C). Together, these evidences suggested that early theta 

power elevation and subsequent theta/alpha power reduction supported active suppression 

that is distinct from not-retrieving. 
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Figure 2. The Condition-Level Time-Frequency Domain Decoding  
(A-C) Condition-level time-frequency decoding results. Frequency is log scaled with colorbar denoting 

decoding accuracy. Black outline highlights significant clusters against chance level (both cluster and 

permutation α are set at 0.05). 

(D-F) Decoding accuracies in A-C are averaged on theta (4-8 Hz) and alpha (9-12 Hz) bands. Disks at the 

bottom denote significant clusters of averaged accuracy against chance level (50%) with permutation correction. 

 (G) The alpha-based No-Think vs. Perceptual Baseline decoding accuracies during 1,000-2,000 ms negatively 

predicted subsequent memory recall. 

(H) Theta power on 0-500 ms distinguished NT vs. PB over frontal and posterior brain regions in channel 

searchlight decoding. Significant electrodes were cluster corrected and highlighted. 

(I) Theta power averaged on 200-400 ms was higher in NT than T. The increased theta power showed a frontal-

central distribution. Significant electrodes were cluster corrected and highlighted. 

 

 

Spatial Patterns in EEG Discern Individual Memories During Retrieval 

 

Whereas significant condition-level decoding indicates that retrieval, retrieval suppression 

and no-retrieval engaged distinct spatial-temporal EEG patterns, it remains unknown whether 

the scalp distribution of EEGs can discern individual memory traces of object-aversive scene 

pairings. We approached this question by conducting multivariate item-level decoding 

analyses in each condition, respectively.  

 

We first sought to establish whether scalp-EEG patterns can distinguish among individual 

items during retrieval. Indeed, time-domain EEG significantly distinguished between 

individual memories across the entire 0-3000 ms window (Figure 3A, pcorrected < .001). In 

sharp contrast, for Perceptual Baseline trials, above-chance decoding arose only in the 0-500 
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ms (to be precise, 60-640 ms, pcorrected < .001), but not in the subsequent 500-3000 ms time 

window (Figure 3C). To directly compare item-level decoding between retrieval and no-

retrieval, we repeated the analyses with 6 randomly sampled items from the Think condition, 

to match the item number in Perceptual Baseline (see Methods). We found that Think trials 

showed significantly higher item-level decoding accuracies than Perceptual Baseline trials 

during 360-1180 ms (pcorrected < .001) and 1220-1540 ms (pcorrected = .022, Figure 3K, purple 

disks).  

 

Given that participants learnt about object-scene pairings during Think trials but not during 

Perceptual Baseline trials, the pre 360 ms significant item-level decoding across both Think 

and Perceptual Baseline trials may reflect visual-perceptual processing of object cues. In the 

later 360-1540 ms window, significantly higher decoding during Think trials than during 

Perceptual Baseline trials may reflect reinstatement and maintenance of distinct unpleasant 

scenes in mnemonic awareness. Another possibility, however, is that item-level decoding in 

the Think condition may simply reflect sustained attention to the unique object cues.  

 

To disambiguate these two possibilities, we examined brain regions giving rise to above-

chance decoding in Think trials using searchlight decoding (see Methods). Results showed 

that during the early 0-500 ms time window, occipital EEGs primarily drove the significant 

decoding, suggesting that visual-perceptual processing of the cue was the basis for item 

distinction (Figure 3D). In contrast, during the subsequent 500-3000 ms, significant decoding 

involved the contributions of a distributed set of regions implicated in memory retrieval such 

as the right prefrontal and parietal-occipital cortex (Figure 3E). This finding suggests that 

decoding beyond the first 500 ms may be dominated not by object cue perception, but rather 

the reinstatement of the associated scene memories implicated by the involvement of frontal-

parietal-occipital network. Consistent with this explanation, item-level decoding performance 

during the latter 500-3000 ms time window predicted Detail measure of scene memory (r = 

0.34, p = .034, Figure 3J), whereas the early 0-500 ms time window did not (r = 0.01, p 

= .946).  

 

In Perceptual Baseline trials, the same searchlight analysis showed that significant 0-500 ms 

decoding arose over a small cluster of occipital electrodes, which suggested that the 

classification relied on visual object processing (Figure 3H). In contrast, during the 500-3000 

ms time window, no significant decoding was found at any electrode (Figure 3I, note that 

similar searchlight results were obtained when using 0-360 and 360-1540 ms time windows, 

see Figure S3A).  

 

In sum, during retrieval, the spatial patterns of time domain EEG showed a staged cued-recall 

processing: during 0-500 ms, EEGs could discern perceived items over occipital region; 

during 500-3000 ms, EEGs could distinguish among retrieved items over fronto-parietal-

occipital regions, with the item-level decoding accuracies predicting memories only in this 

later, 500-3000 ms time window. 
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Figure 3. Item-level Time Domain Decoding 
(A-C) The item-level decoding patterns (averaged across participants) in each retrieval condition. Disks at the 

bottom indicate significant time clusters against chance level, with permutation cluster correction (αs = 0.05). 

(D-I) Channel searchlight analyses of time domain decoding during an early (0-500 ms) and a later time window 

(500-3000 ms). Colorbar indicates decoding accuracy. Electrodes with significant decoding accuracies are 

highlighted (permutation cluster corrected, αs = 0.05).  

(J) During Think trials, decoding accuracies averaged on 500-3000 ms predicted details of recalled emotional 

scenes. 

(K) Item-level decoding in Think (using 6 resampled items) is higher than Perceptual Baseline on 360-1180 ms, 

pcorrected < .001; 1220-1540 ms, pcorrected = .022. Disks at the bottom indicate cluster-corrected significant time 

clusters against chance level (green and blue for Think and Perceptual Baseline) or difference between the two 

conditions (purple). 

(L) Item-level decoding in No-Think (using 6 resampled items) is not significantly different from Perceptual 

Baseline. Disks at the bottom indicate significant time clusters against chance level (red and blue for No-Think 

and Perceptual Baseline). 

(M) Retrieval suppression significantly reduced item-level decoding accuracies on 420-600 ms compared to 

retrieval, with the right panel showing channel searchlight analyses on this time window. 
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Suppressing Retrieval Weakens and Abolishes Item-specific Cortical Patterns  

 

Building on these results, we next examined our key question: when and how does retrieval 

suppression modulate item-specific cortical EEG pattern? 

 

Examining time domain item-level decoding patterns in the No-Think trials revealed that 

decoding accuracy was significantly above-chance until 1160 ms (pscorrected < .028). However, 

item-level decoding accuracies then became non-significant till 3000 ms when the cue 

disappeared. Consistent with Think and Perceptual Baseline analyses, we used a priori 

defined time window 0-500 vs. 500-3000 ms to examine EEGs scalp distributions that 

contributed to decoding. We found that during 0-500 ms, item-level decoding was driven by 

occipital region activities, which resembled scalp distributions of Perceptual Baseline EEGs 

during the same 0-500 ms window (Figure 3F, 3H). During the subsequent 500-3000 ms, no 

brain regions played a significant role in item-level decoding (Figure 3G).  

 

In addition to scalp EEG distributions revealed by channel searchlight, confusion matrices of 

item-level decoding provided consistent evidence supporting the hypothesized staged 

retrieval suppression: while we found significant above-chance classifications among items in 

all three conditions during the 0-500 ms time window, distinctive classification patterns only 

remained in the Think condition in later time windows (Figure S3C-E).  

 

To gain a more precise understanding of the neural dynamics in suppressing individual 

memories, it is crucial to compare time-dependent evolution of item-specific cortical patterns 

between retrieval suppression and retrieval/no-retrieval conditions. A direct Think vs. No-

Think comparison of item-level decoding revealed that the retrieval suppression significantly 

reduced decoding accuracies on 420 to 600 ms (pcorrected < .05, Figure 3M left panel). 

Searchlight channel analyses during 420-600 ms revealed that, while voluntary retrieval 

engaged brain activities over frontal-parietal-occipital regions, retrieval suppression was only 

associated with occipital activity (Figure 3M right panel).   When No-Think was directly 

compared to Perceptual Baseline (using 6 randomly sampled items from the No-Think 

condition), there were no significant differences in terms of item-level decoding during the 

entire 0-3000 epoch (none of the differences survived permutation correction, see Figure 3L). 

 

Linking weakened item-level decoding with the early active control processes, we found that 

in the No-Think (vs. Think) trials, reduction of item-level decoding during 420-600 ms was 

preceded by enhanced 200-400 ms theta power over midline and right prefrontal cortex 

(Figure 2I). Critically, theta power elevation across this region were positively correlated 

with the 420-600 ms decoding accuracy reduction (r = 0.30, p = .064, Figure S3F), 

suggesting that higher theta power (No-Think > Think) was associated with lower item-

specific decoding accuracies (No-Think < Think).  

 

Together, beyond the active suppression evidence found on condition level, these item-level 

decoding results revealed a precise timeline on how retrieval suppression unfolded:  

inhibitory control was engaged within the first 500 ms upon encountering a cue object, 

presumably before the cue-to-memory conversion process to obstruct retrieval, resulting in a 

weakened and eventually abolished memory-specific cortical pattern during 500-3000 ms. 

 

 

Rapid and Sustained Suppression Led to Successful Epidosic Forgetting  
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To understand how timing of suppression contributed to subsequent forgetting, we divided 

our participants into High- vs. Low-Suppression Groups based on the median of NT-minus-

BL Detail scores (we used Detail given that it is a continuous measure, see Methods).  

 

We then compared the item-level decoding accuracies between Think and No-Think in High-

Suppression Group (Figure 4A). This comparison revealed that significant reductions of 

decoding during No-Think (vs. Think) trials emerged on two time windows: during 300-680 

ms (pcorrected = .006) and 1140-1400 ms (pcorrected = .031). These differences may reflect the 

early top-down disruption of cue-to-memory conversion process around 500 ms, and the later 

weakening of item-specific cortical reinstatement patterns between 1000-1500 ms. In 

contrast, the same comparison in the Low-Suppression Group revealed no significant NT vs. 

T difference (Figure 4B), suggesting comparable item-level decoding efficiencies between 

retrieval and retrieval suppression in this group. Corroborating the putative role of early and 

timely suppression in forgetting, we found that item-level decoding accuracy during 300-680 

ms was correlated with subsequent suppression-induced forgetting across all participants (r = 

0.35, p = .027, Figure 4C), suggesting that the more effectively the participants suppressed 

unwanted memories during 300-680 ms, the more likely suppression would cause later 

forgetting.  

 

We next compared item-level decoding between No-Think (using 6 randomly sampled items) 

and Perceptual Baseline, in the High- and Low-Suppression Groups respectively. While no 

differences emerged in the High-Suppression Group (Figure 4D), we found that low-

suppression participants showed significantly higher item-level decoding accuracies in No-

Think trials than Perceptual Baseline trials during 2300-2560 ms (pcorrected = .029, Figure 4E, 

purple dashed outline). Thus, less successful forgetting was associated with relapses during 

sustained control of unwanted memories. Together, these results provided intriguing evidence 

that both early rapid, and later sustained control may be necessary in successful forgetting. 
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Figure 4. Item-level Decoding Results in High- and Low-Suppression Group 

(A, B) Comparisons between Think and No-Think item-level decoding in High-/Low-Suppression Group, 

respectively. In the High-Suppression Group, Think vs. No-Think difference was significant on 300-680 ms and 

1140-1400 ms, while no difference was found in the Low-Suppression Group. 

(C) Across both groups, the averaged decoding accuracy on 300-680 ms positively correlated with participant’s 

suppression-induced forgetting, i.e. No-Think minus Baseline Detail score. 

(D, E) Resampled item-level decoding comparisons between No-Think and Perceptual Baseline in High- and 

Low-Suppression Group, respectively. In the High-Suppression Group, No-Think did not differ from Perceptual 

Baseline in item-level decoding accuracy, despite both showing above chance decoding within 0-500 ms. In the 

Low-Suppression Group, a significant difference between No-Think and Perceptual Baseline was observed on 

2300-2560 ms. 

Color disks at the bottom of each figure denote time clusters significantly above chance (permutation corrected, 

one-sided αs = 0.05). Purple dashed outlines denote significant time clusters between conditions/groups 

(permutation corrected, two-sided αs = 0.05). 
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Theta and Alpha Oscillations Track Item-Level Perception and Reinstatement 

Processes, Respectively  

 

While theta and alpha/beta activities were associated with top-down retrieval suppression vs. 

retrieval and no-retrieval, it remains unclear how retrieval suppression modulates item-

specific  EEG activity. We found that within all three conditions, theta activity  during 0-500 

ms significantly distinguished among individual items (pscorrected < .001, Figure 5 A-C, also 

see Figure 5 D-F). Channel searchlight analyses during 0-500 ms revealed that significant 

decoding was driven by theta activity over the occipital cortex, suggesting theta’s role in 

visual processing of individual items  (Figure 5G). During 500-3000 ms, we found that both 

theta and alpha power drove  significant above-chance decoding during voluntary retrieval 

(theta: pscorrected < .027; alpha: pscorrected < .039, Figure 5D),  but not during retrieval 

suppression (Figure 5E). There was short-lived late theta-driven decoding in Perceptual 

Baseline trials, which may reflect occasional perceptual processing of object cues (theta: 

pscorrected < .011, Figure 5F). Channel searchlight analyses during 500-3000 ms revealed that 

alpha activity over the posterior regions contributed to decoding performance only in Think, 

but not in the other conditions (see Figure 5H), further suggesting that alpha activity is linked 

with item-specific memory reinstatement processes. Hence, the lack of significant alpha-

based decoding in No-Think might reflect a suppression-induced abolition of reinstatement. 

Together, on an item level, occipital theta and posterior alpha activities may support visual 

sensory intake and memory reinstatement, respectively.    
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Figure 5. The Item-level Time-Frequency Domain Decoding 
(A-C) Item-level time-frequency decoding results. Frequency is log scaled and colorbar denotes decoding 

accuracy. Black outline highlights significant clusters against chance levels (both cluster alpha and permutation 

α are 0.05, one-sided). 

(D-F) Decoding accuracies in A-C are averaged on theta and alpha bands. Disks denote significant clusters of 

the band-averaged accuracies against chance level (cluster corrected, one-sided αs = 0.05). 

(G) Item-level theta searchlight on 0-500 ms showed an occipital distribution in all three conditions. Significant 

channels are highlighted (permutation cluster corrected with one-sided αs = 0.05). 

(H) Item-level alpha searchlight on 1500-2000 ms showed that only in Think was alpha power able to 

distinguish among items. The alpha searchlight decoding in Think originated from the posterior region. 

Significant channels are highlighted (permutation cluster corrected with one-sided αs = 0.05). 
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Discussion 

 

Oblivion can be a blessing: suppressing unwanted memories frees our minds from troubling 

past, facilitates subsequent learning and planning, and promotes resilience following trauma 

exposure [6-8, 19]. Particularly, avoiding retrieval of an unwelcome memory requires effort; 

it is not simply neglecting to engage an optional retrieval process when an unwelcome 

reminder appears, but rather requires an active inhibition mechanism that countermands 

automatic retrieval [14]. Ideally, the act of inhibition should happen rapidly, especially when 

automatic retrieval of the unwelcome memory is to be prevented. Our results support this 

idea: active forgetting requires 1) rapid deployment of inhibitory control and suppression of 

individual memory traces within the first 500 ms and 2) sustained control in weakening and 

abolishing item-specific cortical EEG patterns during 500-3000 ms.  

 

Integrating unparalleled temporal resolution afforded by EEG, and enhanced spatial 

resolution offered by multivariate analyses, we provide three pieces of evidence suggesting 

an early, active control process was critical in truncating retrieval of highly specific, 

individual memories. First, on a condition level, spatial EEGs distinguish retrieval 

suppression from no-retrieval within the first 500 ms, with significant decoding performance 

contributed by enhanced midfrontal and right prefrontal theta activity during retrieval 

suppression. Given the well-established evidence linking frontal theta and inhibitory control 

processes, [12] [13], this result provides convergent evidence that retrieval suppression 

engaged early inhibitory control processes in the first 500 ms upon seeing an unwelcome 

memory cue. Substantiating theta’s putative role in the early top-down inhibitory control, we 

found that this 200-400 ms frontal theta power elevation predicted subsequent reduction of 

item-level decoding accuracies during 420-600 ms, which we discuss below.  

 

Second, retrieval suppression (vs. retrieval) significantly weakened item-level decoding 

during 420-600 ms. This result supports our hypothesis that retrieval suppression would 

disrupt the perception-to-memory conversion process at around 500 ms, when hippocampus-

dependent pattern completion would otherwise occur. Indeed, given that hippocampus-

dependent pattern completion would trigger reinstatement of target memories in the 

neocortex and give rise to vivid recollection [1, 20, 21], effective retrieval suppression should 

precisely target this process to truncate retrieval and limit mnemonic awareness from 

occurring.  

Third, an early attenuation of item-specific cortical pattern was associated with later 

forgetting. Specifically, among High-Suppression participants, they showed significantly 

reduced item-level decoding accuracies (No-Think < Think) on 300-680 ms. Such reduction 

was not observed among low-suppression participants. Across all participants, reduction of 

No-Think item decoding accuracies within 300-680 ms time window were correlated with 

suppression-induced forgetting. This result provides direct evidence supporting the critical 

role of an early suppression effect for participants to forget unwanted memories. Given that 

the hippocampus-dependent pattern completion processes occur at around 500 ms [1], this 

finding also suggests that for successful forgetting, top-down inhibitory control shall be 

engaged well before episodic memories reinstatement during 500-1500 ms.  

 

Examining time-dependent evolution of item-specific cortical patterns suggests that not only 

early, rapid control is important, but also sustained control is necessary for successful 

forgetting. While retrieval suppression significantly weakened item-specific cortical patterns 

starting from 400 ms, individual memories could still be identified till 1200 ms. Reduced yet 

still above-chance item-specific cortical patterns during 420-1200 ms may call for sustained 
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control processes to implement goal-directed suppression, supported by reduced condition-

level alpha/beta power during later stages of retrieval suppression. Item-specific cortical 

patterns were eventually weakened to be indiscernible from 1200 ms, till the cue disappeared 

at 3000 ms. Together, these temporal characteristics revealed a fine-grained timeline in 

retrieval suppression of aversive scenes:  early control processes truncated retrieval during 

the perception-to-memory conversion time window (e.g., ~420-600 ms), with sustained 

control processes down-regulating unwanted memories (e.g., ~1200 ms) and eventually 

abolishing item-specific cortical patterns (1200-3000 ms).  

 

Intriguingly, during the time window of 500-3000 ms when cortical reinstatement would 

ordinarily occur and give rise to full-blown memories, two specific time windows bore 

relevance with active forgetting. First, during 1140-1400 ms, among high-suppression 

participants, retrieval suppression (vs. retrieval) significantly reduced item-level decoding 

accuracies. Second, during 2600-2800 ms, low-suppression participants showed an ironic 

rebound effect: retrieval suppression was associated with significantly higher decoding 

accuracies than no-retrieval perceptual baseline trials. This rebound effect suggests that 

participants who later showed less successful forgetting had relapses in controlling unwanted 

memories, particularly towards the end of retrieval suppression [22]. These results suggest 

that successful forgetting roots in sustained suppression of individual memories during the 

cortical reinstatement time window.  

 

Our item-level decoding results of voluntary retrieval (i.e., during Think trials) provides 

further support to the staged model of cued memory recall. To rule out the possibility that 

sustained item-level decoding during retrieval may simply reflect sustained attention devoted 

to each individual object cue, we showed that 1) the early (0-500 ms) vs. late (500-3000 ms) 

decoding patterns are characterized by distinct spatial distributions of EEGs, and 2) only the 

500-3000 ms decoding accuracy predicts retrieval-induced memory facilitation. These results 

suggest that the early vs. late decoding patterns reflect perceptual vs. retrieval processes, 

respectively. Consistent with these results, both theta and alpha/beta power contributed to 

item-level decoding throughout the entire epoch during voluntary retrieval, with an early 

onset of occipital theta activity followed by parietal-occipital alpha/beta activity. Theta and 

alpha/beta activity may reflect sensory intake [15, 16], hippocampo-cortical communication 

loops that support perception-to-memory conversion and neocortex-dependent memory 

reinstatement processes [1, 3]. Decoding patterns of Perceptual Baseline trials provided clear, 

additional support for this account: when participants viewed object cues that lacked any 

associated memory, decoding was significant only in the early 0-500 ms time window and 

was driven by occipital theta activity, ruling out any contribution of scene retrieval.  

 

In addition to theta, we found that different retrieval conditions significantly modulated alpha 

power during the extended 500-3000 ms time window. Previous research showed that 

memory reinstatements are tightly associated with alpha oscillations. For example, Fellner, et 

al. [17] reported that alpha power increased during 1000-2000 ms following to-be-remember 

cues, which were associated with selective rehearsal [see also 23, 24, 25]. Consistent with 

these studies, we found that voluntary retrieval enhanced alpha power during the same 1000-

2000 ms when memory reinstatement would be expected (Figure S1H-M). In contrast, 

retrieval suppression reduced alpha power and abolished alpha-based item-level decoding 

performance, presumably reflecting abolished memory reinstatement [23, 26]. Critically, 

between-condition (retrieval suppression vs. no-retrieval) alpha-based decoding accuracies 

predicted subsequent forgetting, highlighting the critical role of alpha power reduction in 

suppression-induced forgetting. Together, reduced theta/alpha power and abolished item-
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level decoding during 1000-2000 ms suggested that retrieval suppression engaged active 

control processes to disrupt the feedforward/feedback cross-region information flow that 

would otherwise support cue-to-memory conversion and cortical reinstatement as in 

voluntary retrieval.  

 

Collectively, we showed that for successful forgetting, top-down retrieval suppression needs 

to be fast and sustained: early frontal theta disrupted cue-to-memory conversion and 

truncated individual memory traces within the first 500 ms upon seeing the cues, preventing 

the aversive scenes from being fully reinstated in mnemonic awareness. Sustained control 

would then weaken and eventually abolish item-specific cortical EEG patterns during 500-

3000 ms, supported by reduced alpha activity. In contrast, poor deployment of early control 

and relapses during sustained control resulted in less successful voluntary forgetting. By 

offering new insights into the precise timing and neural dynamics of retrieval suppression in 

modulating individual memories, our results may inform future research on when and how to 

intervene along the information processing stream to help people forget unwanted memories 

and have a spotless mind.  

 

Methods 

 

Experimental Subject Details 

Participants 

41 participants (mean age = 19.57, age range: 18-23 years, 26 females) were recruited from 

The University of Hong Kong. One participant was excluded due to non-compliance of task 

instructions (details see Materials and Procedure). Ethical approval was obtained from the 

Human Research Ethics Committee of The University of Hong Kong. 

 

Method Details 

Materials and Procedure 

We used 42 object-scene picture pairs from Küpper, et al. [11]. Scenes depict aversive 

contents such as natural disasters, assault, injury, etc. Each object resembled an item from its 

paired negative scene, thus establishing naturalistic and strong associations. Six pairs were 

used for instruction and practice purposes. The remaining 36 pairs were equally divided into 

3 sets, with 12 pairs in each of three following conditions: Think, No-Think, and Baseline. 

Picture pairs used in the three conditions were matched on valence and arousal, and were 

counterbalanced across participants. Another 6 objects without any paired scenes were used 

as Perceptual Baseline trials, which did not involve any memory retrieval. Participants 

completed the following sessions in order: Encoding, Think/No-think (TNT) and Cued 

Recall. Participants also completed a 3-item, instruction compliance questionnaire at the end 

of the TNT session (see the OSF for the questionnaire).  

 

Encoding: Participants were presented with 42 object-scene pairings, plus 6 objects from 

Perceptual Baseline. Each object-scene pair was presented on an LCD monitor for 6 s with an 

inter-trial-interval (ITI) of 1 s. Participants were instructed to pay attention to all the details of 

each scene, and to associate the left-sided object and the right-sided scene. They were then 

given a test-feedback session, in which each object was presented up to 4 s until participants 

pressed a button indicating whether they could recall the associated scene or not. If 

participants gave a ‘yes’ response, they were presented with three scenes from the learning 

phase and needed to identify the correct one within another 4 s. Regardless of accuracy, the 

correct pairing would be presented again for 2.5 s. This test-feedback cycle repeated until 

participants reached 60% accuracy. Twenty-six participants reached this criterion in the first 
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cycle, 13 participants in two, and 1 in three. Following the test-feedback cycles, participants 

were given a recognition-without-feedback test, to assess their memory before the TNT 

session. Items from different conditions were encoded at comparable levels (ps > .104). 

 

TNT: Participants were presented with 24 objects from the 36 object-scene pairings, with 12 

objects in each of the Think or No-think conditions, respectively. The remaining 12 objects 

were not shown in the TNT and would be in the Baseline condition. These 24 objects were 

presented in either yellow- or blue-colored frames indicating think and no-think conditions, 

with colors counterbalanced across participants. The 6 objects (without any pairing scenes) 

were presented in white-colored frames and served as Perceptual Baseline trials. Thus, 30 

unique objects were shown in the TNT session. Each object was presented for 10 times, 

resulting in a total of 300 trials. Each trial began with a fixation cross (2-3s), followed by the 

object in a colored frame for 3s. The ITI was 1 s.  

 

For Think trials, participants were instructed to try their best to think about the objects’ 

associated scenes in detail, and to keep the scenes in mind while the objects remained on the 

monitor. For No-Think trials, participants were given direct-suppression instructions: they 

were told to pay full attention to the objects while refraining from thinking about anything. If 

any thoughts or memories other than the objects come to mind, they need to try their best to 

push the intruding thoughts/memories out of their mind and re-focus on the objects. 

Participants were also prohibited from using any thought substitution strategies (i.e., thinking 

about a different scene). For Perceptual Baseline trials, participants were simply instructed to 

focus on the object.  

 

Cued Recall: Following the TNT session, participants were presented with each of the 36 

objects from Think, No-Think and Baseline conditions. Each object was presented at the 

center of the monitor, alongside a beep sound prompting participants to verbally describe the 

associated scenes within 15 s. The ITI was 3 s. Participants’ verbal descriptions were 

recorded for later scoring. Perceptual Baseline objects were not shown in this recall test 

because they were not paired up with any scenes. 

 

Cued Recall Analyses: Two trained raters who were blind to experimental conditions coded 

each of the verbal descriptions along three dimensions following the criteria used in Küpper 

et al., 2014, namely Identification, Gist and Detail. Each measure focused on different 

aspects of memories: Identification referred to whether the verbal description was clear 

enough to correctly identify the unique scene, and was scored as 1 or 0. Inconsistent ratings 

were resolved by averaging 0 and 1, resulting in a score of 0.5. Gist measured whether 

participants could correctly describe the scene’s main themes, and was scored on how many 

correct gists were given. Detail measured how many correct meaningful segments were 

provided during the verbal description, and was scored on the number of details. Interrater 

agreement for the scoring of all three measures was high: Identification r = 0.71, Gist r = 

0.90, Detail r = 0.86.  

 

EEG Recording and Preprocessing: Continuous EEGs were recorded during the TNT 

session using ANT Neuro eego with a 500 Hz sampling rate (ANT B.V., Enschede, The 

Netherlands), from 64-channel ANT Neuro Waveguard caps with electrodes positioned 

according to the 10-5 system. The AFz served as the ground and CPz was used as the online 

reference. Electrode impedances were kept below 20 kilo-ohms before recording. Eye 

movements were monitored through EOG channels. 
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Raw EEG data were preprocessed in MATLAB using EEGlab Toolbox [27] and ERPlab 

Toolbox [28]: data were first downsampled to 250 Hz, and were band-passed from 0.1 to 60 

Hz, followed by a notch filter of 50Hz to remove line noise. Bad channels were identified via 

visual inspection, and were removed and interpolated before re-referencing to common 

averages. Continuous EEG data were segmented into -1000 to 3500 ms epochs relative to the 

cue onset, and baseline corrected using -500 to 0 ms as baseline period. Next, independent 

component analyses (ICAs) were implemented to remove eye blinks and muscle artifacts. 

Epochs with remaining artifacts (exceeding ± 100 µV) were rejected. The numbers of 

accepted epochs used in all following analyses were comparable across Think (Mean ± SD, 

100.33 ± 11.57) and No-think (103.18 ± 10.61) conditions. Valid trials number in Perceptual 

Baseline is 56.58 ± 3.23. All EEG analyses were based on 61 electrodes, excluding EOG, 

M1, M2, AFz (ground) and CPz (online reference). 

 

Condition-/Item-level Decoding with Time Domain EEG: Decoding analyses were 

conducted in MATLAB using scripts adapted from [9], which used a support vector machine 

(SVM) and error-correcting output codes (ECOC). The ECOC model combined results from 

several binary classifiers for prediction output in multiclass classification. 

 

In condition-level decoding, we used one-vs-one SVMs to perform pairwise decoding among 

the three conditions (Think vs. Perceptual Baseline, No-Think vs. Perceptual Baseline, and 

Think vs. No-Think). For Think vs. Perceptual Baseline and No-Think vs. Perceptual 

Baseline condition-level decoding, we first subsampled trials in T/NT to be comparable with 

Perceptual Baseline so that each condition had about 56 trials. We next divided EEG trials 

from each condition into 3 equal sets and averaged EEG epochs within each set into sub-

ERPs to improve signal-to-noise ratio. The decoding was achieved within each participant 

from -500 to 3000 ms using these sub-ERPs in a 3-fold cross validation: each time 2 of the 3 

sub-ERPs are used as training dataset with the condition labels, and the remaining one was 

used as testing dataset. After splitting training and testing datasets, sub-ERPs were both 

normalized using the mean and standard deviation of training dataset to remove ERP-related 

activity. This process was conducted on every 20 ms time point (subsampled to 50 Hz), and 

repeated for 10 iterations. We were comparing condition-level decoding accuracy against its 

chance level, 50%, given two conditions were involved in each pairwise decoding. 

 

For item-level decoding, we used one-vs-all SVMs to decode each individual stimulus within 

each condition, separately. Decoding procedures were the same as condition-level decoding. 

Thus, the trial numbers of each stimulus are first matched to the least one within each 

participant (at most 10 trials, if no trial was rejected). Then, all trials of each stimulus were 

divided into 3 sets before averaging and the 3-fold cross validation. Both training dataset and 

testing dataset were normalized using the mean and standard deviation of training dataset. 

The decoding process was conducted on every 20 ms time point and for 10 iterations (results 

remained the same for up to 100 iterations, see supplementary Figure S3G). For Think and 

No-Think conditions, the chance levels were 1/12 (8.33%) given that there were 12 unique 

stimuli in each of these two conditions. For PERCEPTUAL BASELINE trials, the chance 

level was 1/6 (16.67%). 

 

Given we have different item numbers in Perceptual Baseline (6 items) and Think/No-Think 

(12 items), in order to directly compare the decoding accuracy in Think or No-Think with 

Perceptual Baseline, we conducted a resampled decoding in Think and No-Think, 

respectively. The resampled decoding is similar to the normal decoding, except that during 

each iteration we randomly selected 6 out of all 12 items before dividing and averaging into 3 
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sets. Considering the randomization used only half of the items, we increased iterations to 20 

times. An item-level decoding with 20-iterations was also rerun in Perceptual Baseline, to be 

compared with the resampled decoding. 

 

Condition-/Item-level Decoding with Time-Frequency Domain EEG: Time domain EEG 

was wavelet transformed into time-frequency domain data in Fieldtrip Toolbox [29] before 

decoding. Frequencies of interest increased logarithmically from 2.8 Hz to 30 Hz, resulting in 

22 frequency bins. Wavelet cycles increased linearly along with frequencies from 3 to 7. 

Then the decoding was conducted for each frequency bin data across time in the same 

procedure as described in Channel-/Item-level Decoding with Time Domain EEG (as if 

treating each frequency bin data as a time domain data).  

 

Channel Searchlight Decoding: Both condition- and item-level decoding used EEGs from 

all 61 channels as features. To examine which electrodes contributed the most to the 

decoding accuracy, we conducted a channel searchlight decoding using subsets of the 61 

channels as features [30].  

 

Specifically, we first divided all channels into 61 neighbourhoods, centering each channel 

according to its location (conducted in Fieldtrip Toolbox [29] via ft_prepare_neighbours() 

function using ‘triangulation’ method). Immediately neighbouring channels were clustered 

together, resulting in 6.39±1.50 channel neighbours for each channel (with overlaps). Then 

the time domain EEG was averaged on time windows of interest, i.e., averaged on 0-500 ms, 

500-3,000 ms, etc., to inspect the decoding topographical distribution on different time 

windows. The rest of the procedure was the same as time domain EEG decoding: we divided 

data into 3 sets and averaged within each set before splitting training and testing datasets; 

then we normalized them using mean and standard deviation of training sets. Finally, the 

decoding was conducted with a 3-fold cross validation and 10 iterations. Theta/alpha 

searchlight was conducted in the same way as time-domain searchlight, after averaging time-

frequency power on respective oscillation range (theta: 4-8 Hz; alpha: 9-12 Hz). 

 

Time Frequency Analyses: Six electrode clusters were selected for Time Frequency 

analyses: left parietal (CP3/5, P3/5), parietal (Pz, CP1/2, P1/2), right parietal (CP2/4, P2/4), 

frontocentral (FC1/2, C1/2, FCz, Cz), left prefrontal (AF3, F3/5) and right prefrontal (AF4, 

F4/6).  

 

Time frequency transformation was performed using the same parameters as in decoding 

analyses in Fieldtrip [29], with additional decibel baseline normalization using power on -500 

to -200 ms. We focus on the early theta power change on 200-400 ms which is indicator of 

inhibitory control [12, 13], and theta and alpha power change on a post hoc late time window 

(500-3000 ms) following condition level decoding results. 

 

Correlation Analyses: We calculated Spearman’s Rho for all correlations. In condition-level 

decoding, memory of Think and No-think was normalized by subtracting and then divided by 

Baseline memory, then correlated with time domain condition-level decoding accuracy on 

500-3000 ms. To investigate the time course of these correlations, Spearman’s Rho was 

calculated at each time point. For condition-level alpha decoding, we investigated correlation 

between memory and decoding accuracy on 1,000-2,000 ms considering the findings from 

Fellner, et al. [17].  
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In item-level time-domain decoding, we investigated the correlations between decoding 

accuracy and absolute memory score of the same condition, on 0-500 ms and 500-3000 ms, 

respectively. To link item-level decoding with condition level inhibitory control theta power 

change, we calculated correlation between decoding accuracy difference between Think and 

No-Think on 420-600 ms, and theta power difference between Think and No-Think on 200-

400 ms. 

 

In the High- vs. Low-Suppression Grouping correlation, we calculated correlation between 

decoding accuracy on 280-420 ms and No-Think minus Baseline Detail memory score, to be 

consistent with the grouping measure.  

 

High- vs. Low-Suppression Grouping: We divided 40 participants into High- vs. Low-

Suppression Groups based on their No-Think-minus-Baseline Detail scores ranking, and 

median split into 20 participants in each group. Detail measure was used because it captured 

both variability and suppression effect compared to Identification (limited variability since it 

was a dichotomous measure) and Gist (did not show suppression effect). The pre-TNT 

learning was not different between Think and No-Think in neither group (ps > .116). 

 

Quantification and Statistical Analysis 

Behavioral Analyses: We conducted separate one-way ANOVAs with three within-subject 

conditions (Think vs. No-Think vs. Baseline) on the percentage of Identification, percentage 

of correctly recalled Gist, and number of correctly recalled Details. We then examined the 

suppression-induced forgetting effect by conducting planned pairwise t test between No-think 

and Baseline, with a negative difference (i.e., when subtracting Baseline scores from No-

think scores) being indicative of forgetting due to retrieval suppression, below the baseline 

level. 

 

We report findings with p < .05 as significant. Within-subject analyses of variance 

(ANOVAs) are reported with Greenhouse-Geisser corrected p-values whenever the 

assumption of sphericity was violated. In terms of effect sizes, we report Cohen’s dz given 

our within-subjects design [31]. 

 

Condition-/Item-level Decoding with Time Domain EEG: Following the statistical 

analysis procedure reported by [9], decoding accuracy at each time point (on 0-3000 ms) was 

compared to chance level by one-tailed paired t test. Multiple comparisons were controlled by 

non-parametric cluster-based Monte-Carlo procedure. Specifically, the null distribution was 

constructed by assigning trial level classification results to random classes (as if the classifier 

has no knowledge of actual information), and then timepoint-by-timepoint t-tests were 

performed to obtain a maximum summed t-value of continuous significant time cluster, 

which then repeated for 1,000 times. The resulting null distribution contained 1,000 summed 

t-values, which would be the distribution of the cluster summed ts when there is no true 

difference between decoding results and chance level. Both the cluster alpha and the alpha to 

obtain critical values from the permutation null distribution were set at 0.05 (on the positive 

tail, one-tail against chance). 

 

The between-condition comparison of decoding accuracy along time were similar, except that 

the null distribution was constructed by randomly assigning condition labels to trial level 

classification results with two-tail repeated measure t-test and clusters were obtained on 

positive/negative tails, respectively. Thus, the critical values from the permutation null 
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distribution were at 2.5% on the negative clusters null distribution and 97.5% on the positive 

clusters null distribution. 

 

Channel Searchlight Decoding: We compared channel searchlight topographies between 

item-level decoding in Think and No-think with a two-tailed paired-sample t test at each 

channel. The multiple comparisons were controlled by cluster correction of channel 

neighbour clusters in Fieldtrip [29]. The neighborhood was defined in the exact same way as 

the channel searchlight analysis. Cluster alpha was set at 0.05. Observed clusters were 

compared to null distribution on positive/negative tails respectively. 

 

Channel-/Item-level Decoding with Time-Frequency Domain EEG: The statistical 

analyses for time-frequency domain decoding were similar to those of time domain decoding, 

except that here clusters were calculated in a 2-D matrix instead of on a 1-D time axis, and 

the cluster alpha was set at 0.05. Also, observed clusters were compared to the null 

distribution clusters of the same rankings. The statistical comparison of a single time-

frequency decoding was performed against chance level (one-tailed), and that of the 

difference between two time-frequency decoding was performed against 0 (two-tailed). Theta 

(4-8 Hz) and alpha (9-12 Hz) oscillations decoding were assessed after averaging across the 

corresponding frequency bin. 

 

Time Frequency Analyses: The early theta power at each electrode was compared between 

No-Think and Perceptual Baseline after averaging on 200-400 ms across 4 to 8 Hz, and then 

cluster corrected according to electrode positions in Fieldtrip [29]. The suppression-

associated reduction of theta and alpha power on later time window was examined by 

averaging on 500-3000 ms across 4-8 Hz (theta) and 9-12 Hz (alpha), and then compared 

between No-Think and Think/Perceptual Baseline with neighbour cluster correction in 

Fieldtrip. The channel neighbours were defined in the same way as in channel searchlight 

analysis. 

 

Correlation Analyses: The cluster correction for correlation time course was performed in 

this way: we first transformed Spearman’s Rho back to t-values to obtain the observed time-

course clustered t-values and a null distribution. The null distribution was obtained by 

randomizing labels of the two variables of interest before calculating the Spearman’s Rho and 

corresponding t value. The cluster alpha was set as 0.05, and the observed clusters were 

calculated for positive and negative clusters respectively. The critical values of null 

distribution were at the 2.5% on both tails. The comparison between 2 correlation coefficients 

was conducted through a two-sided z test controlling for dependence [32]. 

 

High- vs. Low-Suppression Groups Comparison: Decoding accuracy at each time point on 

0-3000 ms was compared between High- and Low suppression groups using two-tail 

independent t-test. The null distribution was constructed by randomly assigning group labels 

to each subject before by-timepoint t-test, to obtain the max summed-t of continuous 

significant time cluster when group labels are randomized, which repeated for 10,000 times. 

The resulting 10,000 summed-t values would be the null distribution when no true difference 

exists between the two groups. Critical values from the permutation null distribution were at 

2.5% on the negative clusters null distribution and 97.5% on the positive clusters null 

distribution (two-tail, αs = 0.05). 
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