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Abstract

Background: Biomedical translational science is increasingly leveraging computational reasoning
on large repositories of structured knowledge (such as the Unified Medical Language System
(UMLS), the Semantic Medline Database (SemMedDB), ChEMBL, DrugBank, and the Small
Molecule Pathway Database (SMPDB)) and data in order to facilitate discovery of new
therapeutic targets and modalities. Since 2016, the NCATS Biomedical Data Translator project
has been working to federate autonomous reasoning agents and knowledge providers within a
distributed system for answering translational questions. Within that project and within the field
more broadly, there is an urgent need for an open-source framework that can efficiently and
reproducibly build an integrated, standards-compliant, and comprehensive biomedical knowledge
graph that can be either downloaded in standard serialized form or queried via a public
application programming interface (API) that accords with the FAIR data principles.

Results: To create a knowledge provider system within the Translator project, we have developed
RTX-KG2, an open-source software system for building—and hosting a web API for querying—a
biomedical knowledge graph that uses an Extract-Transform-Load (ETL) approach to integrate
70 knowledge sources (including the aforementioned sources) into a single knowledge graph. The
semantic layer and schema for RTX-KG2 follow the standard Biolink metamodel to maximize
interoperability within Translator. RTX-KG2 is currently being used by multiple Translator
reasoning agents, both in its downloadable form and via its SmartAPI-registered web interface.
JavaScript Object Notation (JSON) serializations of RTX-KG2 are available for download of
RTX-KG2 in both the pre-canonicalized form and in canonicalized form (in which synonym
concepts are merged). The current canonicalized version (KG2.7.3) of RTX-KG2 contains 6.4M
concept nodes and 39.3M relationship edges with a rich set of 77 relationship types.

Conclusion: RTX-KG2 is the first open-source knowledge graph of which we are aware that
integrates UMLS, SemMedDB, ChEMBL, DrugBank, SMPDB, and 65 additional knowledge
sources within a knowledge graph that conforms to the Biolink standard for its semantic layer and
schema at the intersections of these databases. RTX-KG2 is publicly available for querying via its
API at arax.ncats.io/api/rtxkg2/v1.2/openapi.json. The code to build RTX-KG2 is publicly
available at github:RTXteam/RTX-KG2.
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1 Background

In biomedical informatics, there is an ongoing need to integrate structured knowledge for
translational reasoning, such as for drug repositioning or finding new therapies for monogenic
disorders. Progress towards making biomedical knowledge computable has to a large degree
tracked advances in information systems. Early steps in the 1950s and 1960s include the framing
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of clinical reasoning in terms of formal symbolic logic [1]; the creation of Medical Subject
Headings (MeSH) [2] for biomedical literature annotation; and the establishment of
MEDLINE [3], a database of abstracts that is a cornerstone of today’s PubMed. The 1980s
brought progress with the inception of (i) curated online biomedical encyclopedias such as Online
Mendelian Inheritance in Man (OMIM) [4]; and (ii) the Unified Medical Language System
(UMLS) [5], which integrates knowledge sources into a metathesaurus of concepts annotated by
semantic types. In the 1990s, the need for interoperability in health-related information systems
drove the development of biomedical controlled vocabularies and ontologies [6–9]. The aughts
brought frameworks and standards for knowledge representation, such as the Resource
Description Framework (RDF) Schema [10], the SemRep natural language-processing
algorithm [11], the Web Ontology Language (OWL) [12], the Open Biomedical Ontologies (OBO)
standard [13], the BioTop ontology [14], and the Semanticscience Integrated Ontology (SIO) [15].
In 2017, the National Center for Advancing Translational Sciences (NCATS) launched a
multi-institution consortium project to develop a universal Biomedical Data Translator [16] (the
“Translator”), a distributed computational reasoning and knowledge exploration system for
translational science. More recently, the Biolink metamodel [17, 18] advanced the field by
(i) providing comprehensive mappings of semantic types and relation types to other ontologies;
(ii) standardizing and ranking preferred identifier types for various biological entities; and
(iii) providing structured hierarchies of relation types and concept types needed to provide a
universal semantic layer for biological knowledge graphs. Knowledge cross-linking has been
accelerated by the establishment of ontology repositories and portals like OBO Foundry [19] and
the National Center for Biomedical Ontology (NCBO) [20]. Concomitantly, the World Wide Web
has fueled the development of online knowledge-bases updated by curation teams, such as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [21], PubChem [22], DrugBank [23],
ChEMBL [24], UniProt Knowledgebase (UniProtKB) [25], the Small Molecule Pathway Database
(SMPDB) [26, 27], and Reactome [28]. The last ten years brought large-scale natural-language
processing (NLP) of biomedical literature, including the establishment of SemMedDB [29], a
knowledge-base extracted by SemRep analysis of PubMed abstracts. The crowd-sourcing of
literature curation and the use of NLP together drove tremendous growth of structured
biomedical knowledge-bases, albeit in forms that are not semantically interoperable due to the use
of different systems of concept identifiers, semantic types, and relationship types.

In the last decade, there have been numerous efforts to address the siloing and lack of semantic
interoperability of structured biomedical knowledge. BIOZON [30], BioGraphDB [31], and
DRKG [32] used custom graph schemas and used standard sets of identifier types, with BIOZON
introducing a hierarchy of relationship types. The Bio4j system [33] provided a graph query
language with type-checking aligned with their custom schema. The Bio2RDF knowledge
repository [34] uses RDF and SIO for linking biomedical knowledge, while largely retaining
concept source vocabularies [35]. KaBOB [36], in contrast, uses OBO ontologies as a common
vocabulary. The Monarch Initiative [35, 37, 38] similarly leverages existing ontologies such as
Relation Ontology (RO) [39] and the Open Biomedical Annotations ontology (OBAN), while using
custom concept types. Monarch advanced the field by providing a clique detection-based method
for identifying semantically identical concepts (known as graph “canonicalization” [40]). The
Hetionet project [41] developed concept types and relationship types specifically for knowledge
representation for drug repurposing; these types were expanded in the Scalable Precision medicine
Knowledge Engine (SPOKE) database [42]. CROssBAR-DB [43] keeps its source datasets
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separate from one another and provides an interface for constructing a query-specific, integrated
knowledge graph. The Reasoning Over Biomedical Objects linked in Knowledge Oriented
Pathways (ROBOKOP) graph [44] uses concept and relationship types from the Biolink
metamodel. The EpiGraphDB system [45] uses SemMedDB semantic types for concepts and
source-specific relation types. The BioThings framework is unique in that it provides a single
Web-based application programming interface (API) (with a unified semantic model) that proxies
queries to many different knowledge source APIs. BioThings leverages the SmartAPI system [46]
for registering and documenting knowledge source APIs using standardized metadata. Prior to
the present work, as a part of the Biomedical Data Translator project [16], we developed an
open-source biomedical knowledge graph called RTX-KG1 [47]; we found that using Biolink for its
semantic layer facilitated interoperability by eliminating the need for translation software layers
and by allowing systems to use Biolink at the level of granularity appropriate to their application.
Notably, Biolink has been adapted as the semantic layer for concepts and relations for knowledge
representation within the Translator project. A second finding from our work on RTX-KG1 was
the importance of providing both a pre-canonicalized version and canonicalized version (see
Sec. 2.3) of the knowledge graph. To date, biomedical knowledge graphs of which we are aware
are either canonicalized or standardize on an identifier type for each semantic type, rather than
providing both canonicalized and pre-canonicalized graphs; the latter form is important in order
to support users that wish to apply their own canonicalization algorithm.

Previous efforts to develop integrated biomedical knowledge systems have used a variety of
database types, architectural patterns, and automation frameworks. For persistence, knowledge
systems have used relational databases [30], distributed graph databases [33], multimodal NoSQL
databases [31], RDF triple-stores [34, 36], document databases [35], document-oriented
databases [43, 48], and—with increasing frequency [35, 41, 42, 44, 45, 47]—the open-source graph
database Neo4j (github:neo4j/neo4j). Knowledge systems have also differed in terms of the
ingestion method used in their construction; many systems [31, 34–36, 43] utilized an
extract-transform-load (ETL) approach, whereas others [44, 47, 48] used API endpoints to query
upstream knowledge sources; one [45] blended both ETL and API approaches for knowledge
graph construction. While both approaches have their strengths, from our work on the
predecessor RTX-KG1 system and from the present work, we found that an ETL approach has
significant advantages in terms of scalability, reproducibility, and reliability. In terms of
automation frameworks, previous efforts have used general-purpose scripting
languages [34, 36, 41, 42, 44, 47, 49], batch frameworks [43], declarative rule-based build
frameworks [31, 33, 50], and parallel build systems such as Snakemake [51] (EpiGraphDB). Liu
et al. reported [50] choosing the Snakemake [51] build framework specifically because of its high
performance (i.e., parallel capabilities). While previous efforts have resulted in biomedical
knowledge graphs incorporating (individually) UMLS, SemMedDB, multiple major drug
knowledge bases (such as ChEMBL and DrugBank), a standards-compliant semantic layer, and a
high-performance build system, so far as we are aware, none have incorporated all of these
features in a single system providing both canonicalized and pre-canonicalized graphs.
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Introduction

As a successor to RTX-KG1 [47], we have developed RTX-KG2, an open-source biomedical
knowledge-base representing biomedical concepts and their relationships. RTX-KG2 is integrated
from 70 sources—including the major sources UMLS, SemMedDB, ChEMBL, DrugBank,
SMPDB, Reactome, KEGG, and UniProtKB—and its semantic layer is based on the Biolink
metamodel [17, 18]. To accommodate multiple use-cases, the RTX-KG2 build system produces
two knowledge graphs: a precursor knowledge graph (RTX-KG2pre) in which equivalent concepts
described using different identifier systems are not identified as a single node; and a canonicalized
knowledge graph (RTX-KG2c) in which equivalent concepts described using different identifier
systems are identified as a single node. Both RTX-KG2pre and RTX-KG2c are directed
multigraphs with node and edge annotations. The software repository for RTX-KG2 is publicly
available at the github:RTXteam/RTX-KG2 GitHub project. Users can access RTX-KG2 content via
any of three channels: (i) a single-file download version of the canonicalized RTX-KG2 knowledge
graph (KG2c) (or, if needed, the pre-canonicalized RTX-KG2pre knowledge graph) in JavaScript
Object Notation (JSON) format that is publicly available; (ii) a publicly accessible,
SmartAPI-registered API for querying RTX-KG2; and (iii) open source-licensed software code
and comprehensive instructions for building the knowledge graph from file exports of upstream
knowledge sources. The latter includes code for hosting an indexed RTX-KG2 within a Neo4j
database where it can be searched using the Structured Query Language (SQL)-like Cypher [52]
query language. RTX-KG2 uses an ETL approach for knowledge graph construction and it
automates builds using Snakemake; together, these enable efficient knowledge graph construction.
RTX-KG2 is a built-in knowledge database for ARAX (Autonomous Relay Agent X) [53], a
Web-based computational biomedical reasoning system that our team is also developing for
answering translational science questions such as questions related to drug repositioning,
identifying new therapeutic targets, and understanding drug mechanisms-of-action. We are
developing RTX-KG2 and ARAX as a part of the NCATS Translator project. Here, we enumerate
the knowledge sources that are incorporated into RTX-KG2 (Sec. 2.1); outline the processes for
building RTX-KG2pre from its upstream knowledge sources (Sec. 2.2) and for building the
canonicalized RTX-KG2c (Sec. 2.3); describe the schema for RTX-KG2 (Sec. 2.4); describe the
RTX-KG2 build system software (Sec. 2.7); provide statistics about the size and semantic breadth
of RTX-KG2 (Sec. 2.5); and discuss how RTX-KG2 is being used as a standalone knowledge-base
for translational reasoning as well as in conjunction with the ARAX system (Sec. 3).

2 Construction and Content

In this section, we describe how RTX-KG2 is constructed; provide an overview of its graph
database schema; and summarize its content in terms of sources, semantic breadth, and size. The
overall build process, along with the various outputs of RTX-KG2, is depicted in Figure 1.
Broadly speaking, the RTX-KG2 build system does four things: it (i) loads information from
source databases (blue triangles in Fig. 1) via the World Wide Web as described in Section 2.1);
(ii) integrates the knowledge into a precursor knowledge graph called RTX-KG2pre (upper green
hexagon in Fig. 1) and hosts it in a Neo4j database (upper orange cloud in Fig. 1) as described in
Section 2.2; (iii) coalesces equivalent concept nodes into a canonicalized knowledge graph called
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Figure 1: Overall Workflow of RTX-KG2. Blue triangle: individual external source; light blue
cloud: external API endpoint; yellow parallelogram: TSV file-set; green hexagon: JSON
File; orange cloud: API endpoint output; grey rectangle: SQLite [54] database; brown
circle: abstract object-model representation of KG2c; turquoise computer: user/client
computer; orange server: Translator knowledge graph exchange (KGE) server.
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RTX-KG2c (brown circle in Fig. 1) as described in Section 2.3, with a schema that is described in
Section 2.4; and (iv) provides various knowledge graph artifacts and services as described in
Section 2.5. We provide technical details of the RTX-KG2 build system in Section 2.7.

2.1 Sources and their file formats

Of the 50 RDF-based sources, the system ingests 27 in Terse RDF Triple Language (TTL [55])
format and 23 as OWL ontologies in RDF/XML format [56] (which we abbreviate here as
“OWL”). Of the 27 TTL sources, 26 are from the UMLS, obtained as described in Sec. 2.7.3; the
remaining TTL source is the Biolink metamodel, which defines the semantic layer for KG2,
including hierarchies of concept types and relation types (see Sec. 2.5). In addition to concept
type and relation type hierarchies, the Biolink metamodel provides equivalence mappings of the
Biolink types to classes in other high-level ontologies (such as biolink:Gene being equivalent to
SIO:010035) and of the Biolink concept types to prioritized lists of identifier types for the concept
type1. Each knowledge source’s concepts are assigned Biolink concept semantic types—which are
called “categories” in the Biolink metamodel—and relationships are assigned Biolink relationship
types at the time that the source is ingested. All but two of the 23 OWL-format sources are
ontologies from the OBO Foundry; the remaining two OWL-format sources are the Experimental
Factor Ontology (EFO) [57] and Orphanet Rare Disease Ontology [58].

In contrast to the RDF-based method which ingests sources in only TTL and OWL formats, the
direct-to-JSON method ingests sources in a variety of file formats (JSON, Structured Query
Language (SQL), tab-separated value (TSV), Extensible Markup Language (XML), Gene
Product Association (GPA), and SWISS-PROT-like DAT format). One source, KEGG, is queried
via an API (rather than using an ETL approach) due to license restrictions, and then saved to
JSON. For the 20 direct-to-JSON sources, the RTX-KG2 system has one ETL module for each
source, with each script producing a source-specific JSON file according to the RTX-KG2 JSON
schema (Sec. 2.4). In contrast, for the 50 RDF-based sources, the system has a single ETL
module for ingesting all of the sources together. The RDF-based method merges all of the OWL
and TTL sources and generates a single JSON file. The hybrid design for the ETL layer for
RTX-KG2 balances the benefits of modularity (where it is feasible in the direct-to-JSON method)
with the need for a monolithic ingestion module for ontologies due to their extensive use of
inter-ontology axioms [59]. RTX-KG2 integrates 70 knowledge sources (Table 1), 50 of them via a
resource description framework (RDF)-based ingestion method and 20 of them via a
direct-to-JSON ingestion method.

1An example prioritization would be for the semantic type “gene”, to prefer identifier types from Ensembl Gene,
National Center for Biotechnology Information (NCBI Gene), and Human Gene Nomenclature Committee (HGNC).
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Table 1: RTX-KG2 integrates 70 knowledge sources into a single graph. Each row represents a
server site from which sources were downloaded. Columns as follows: Name, the short
name(s) of the knowledge sources obtained or the distribution name in the cases of UMLS
and OBO Foundry; #, the number of individual sources or ontologies obtained from
that server; Format , the file format used for ingestion (see below); Method , the ingestion
method used for the source, either D2J for direct-to-JSON or RBM for the RDF-based
method. File format codes: CSV, comma-separated value; DAT, SWISS-PROT-like DAT
format; JSON, JavaScript object notation; OWL, OWL in RDF/XML [56] syntax; RRF,
UMLS Rich Release Format [60]; SQL, structured query language (SQL) dump; TSV, tab-
separated value; XML, extensible markup language.

Name # Description Format Method

Biolink [17, 18] 1 Biolink Metamodel (semantic layer) TTL RBM
ChEMBL [24, 61] 1 EMBL Chemogenomic Database SQL D2J
DGIdb [62] 1 Drug Gene Interaction Database TSV D2J
DisGeNET [63] 1 Disease-Gene Associations TSV D2J
DrugBank [23] 1 Pharmaceutical Knowledge Base XML D2J
DrugCentral [64] 1 Online drug Compendium SQL D2J
Ensembl Gene [65] 1 Ensembl Human Gene annotations JSON D2J
EFO [57] 1 Experimental Factor Ontology OWL RBM
GO [66, 67] 1 Gene Ontology annotations TSV D2J
HMDB [68–71] 1 Human Metabolite Database XML D2J
IntAct [72, 73] 1 IntAct Molecular Interaction Database TSV D2J
Jensen Lab Diseases [74] 1 Gene to Diseases Dataset TSV D2J
KEGG [21, 75, 76] 1 Kyoto Encyclopedia of Genes and Genomes API D2J
miRBase [77–81] 1 MicroRNAs Dataset DAT D2J
NCBI Gene [82] 1 NCBI Human Gene annotations TSV D2J
OBO Foundry 21 OBO Foundry Ontologies (Table S1) OWL RBM
Orphanet [83] 1 Orphanet Rare Disease Ontology OWL RBM
PathBank [84–86] 1 Wishart Lab Pathway Databases XML D2J
Reactome [87] 1 Pathway Database SQL D2J
SemMedDB [29] 1 Semantic Medline Database SQL D2J
SMPDB [26, 27] 1 Small Molecule Pathway Database CSV D2J
UMLS [88] 26 Unified Medical Language System (Table 3) TTL RBM
UniChem [89] 1 EBI Small Molecule Cross-refs TSV D2J
UniProtKB [25] 1 UniProt Knowledge Base DAT D2J

Total 70

2.2 Building RTX-KG2pre from upstream sources

The process by which the RTX-KG2 system builds its knowledge graph from its 70 sources—the
first stage of which is diagrammed in Fig. 2)—begins by executing validation scripts (the
“validationTests” task in Fig 2) that ensure that the identifiers used in the RTX-KG2 semantic
layer are syntactically and semantically correct within the Biolink metamodel. Next, the build
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process executes in parallel the 21 direct-to-JSON and RDF-based ETL scripts (see second and
third rows in Fig. 2 and Sec. 2.1) to produce a total of 21 JSON files (20 via the direct-to-JSON
method and one via the RDF-based method) in the RTX-KG2 knowledge graph schema
(described in Sec. 2.4). Next, those JSON files are loaded and their object models are merged (via
the “Merge” task) into a single self-contained graph that is then saved in an RTX-KG2-schema
JSON file in which relationships consist of triples (subject, relation, object) where the relation is
from any number of source-specific relationship vocabularies (totalling 1,228 source-specific
relationship types in all). The RTX-KG2 object model is then simplified (via the “Simplify”
task) by consolidating redundant relationships; a redundant relationship is where two or more
sources assert the same triple (ibuprofen, treats, headache), in which case, the multiple
relationships with identical triples are merged into a single relationship, with the multiple sources
noted in the list-type provided-by relationship attribute (see Sec. 2.4). Also in the Simplify

task, relationship types are simplified by mapping each of them to one of 77 standardized
relationship types (called “predicates”) in the Biolink metamodel. The Simplify task also maps
source identifiers to Biolink ”Information Resource” identifiers. In general, the Simplify task
standardizes the graph with the Biolink metamodel standards [17, 18]. We call the resulting
graph RTX-KG2pre in order to emphasize that it is the precursor graph to the canonicalized
RTX-KG2 graph (described below). In the final step of the build process, the nodes and edges of

Figure 2: Flowchart of tasks for building RTX-KG2pre (the precursor stage of RTX-KG2) from 21
upstream knowledge-base distributions.

RTX-KG2pre are imported into a Neo4j graph database (for details, see Sec. 2.7.2).

2.3 Building RTX-KG2c, the canonicalized version of RTX-KG2

Because the various ontologies that RTX-KG2pre ingests often represent the same concept using
multiple different identifiers, some of the nodes in RTX-KG2pre represent equivalent concepts.
For example, the concept of Parkinson’s disease is represented by several nodes in RTX-KG2pre,
such as the nodes with identifiers MONDO:0005180, DOID:14330, EFO:0002508, and MESH:D010300,
many of which are connected in RTX-KG2pre with relationships of type biolink:same as or
non-transitive generalizations of that relationship type. In our work on the predecessor knowledge
system RTX-KG1, we found—consistent with reports from other teams engaged in translational
reasoning—that coalescing nodes for semantically equivalent concepts into single nodes facilitates
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reasoning by reducing the complexity of graph paths that represent answers for common
translational questions. Thus, to enhance the utility of RTX-KG2 for translational reasoning, we
created a version of RTX-KG2 called RTX-KG2canonicalized (RTX-KG2c) in which semantically
equivalent nodes are coalesced to a single concept node. RTX-KG2c has its own automated
Python-based build process with similar hardware requirements to the RTX-KG2pre build
process. In brief, building RTX-KG2c from RTX-KG2pre proceeds in five steps:

1. RTX-KG2pre nodes and edges are loaded from the RTX-KG2pre TSV files;

2. the set of nodes is partitioned into disjoint subsets of equivalent nodes;

3. from each group of equivalent nodes, a canonical node is chosen, added to RTX-KG2c, and
decorated with the identifiers of its synonymous nodes (along with other information);

4. edges from RTX-KG2pre are remapped to refer only to canonical identifiers;

5. edges with the same subject, object, and predicate are merged.

For Steps 2–3, the RTX-KG2 build system uses the ARAX [53] system’s Node Synonymizer
service, which takes into account four sources of evidence in the following order: (i) concept
equivalence information obtained dynamically by querying a Translator web service API called
the Standards and Reference Implementations (SRI) Node Normalizer
(github:TranslatorSRI/NodeNormalization); (ii) biolink:same as edges in RTX-KG2pre between
RTX-KG2pre nodes; (iii) human-recognizable node (concept) name equivalence; and (iv) node
semantic type compatibility. For Step 2, the Node Synonymizer goes through three passes of
merging concepts in order to ensure that the partitioning of nodes is independent of the order in
which the nodes are loaded into the Node Synonymizer. For Step 3, the Node Synonymizer uses a
score-based system that flexibly enables incorporation of new heuristics. Compared to the
numbers of nodes and edges in RTX-KG2pre, the process of canonicalization reduces the number
of nodes by approximately 62% and edges by 73%. The RTX-KG2c graph is serialized in JSON
format (see Sec. 2.4) and archived in an AWS S3 bucket and in GitHub. From the latter, it is
imported into a custom-built in-memory graph database, PloverDB
(github:RTXteam/PloverDB).

2.4 RTX-KG2 schema and RTX-KG2pre Biolink compliance

The RTX-KG2 knowledge graph follows the Biolink metamodel (version 2.1.0) for its semantic
layer and (in RTX-KG2pre) its schema. RTX-KG2 uses Biolink’s category hierarchy for its
concept (node) types (Figure 3) and Biolink’s predicate hierarchy for its relationship (edge) types
(Figure 4). When mapping terms from their original sources to the Biolink terminology, the
RTX-KG2 build system consults the Biolink model’s internal mappings in order to detect any
inconsistencies between the two. Because relationship terms that are highly specific are often
mapped to more generalized terminology, the original source’s phrasing is preserved in the
relation property2. In addition to mapping upstream source relations to Biolink predicates, the
RTX-KG2 build process coalesces edges that have the same end nodes and the same predicate (it

2This will be transitioning to the original predicate property in the next release of RTX-KG2, for compatibility
with recent changes in the Biolink standard.
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Figure 3: Node concept types in RTX-KG2 are based on the Biolink metamodel [17, 18].

does, however, preserve the provenance information from both of the coalesced edges). The
schema of the JSON serialization of RTX-KG2pre is documented in detail in the RTX-KG2
project area github:RTXteam/RTX-KG2. In brief, RTX-KG2pre is serialized as a JSON object with
keys build, nodes, and edges. Under the build key, a JSON object stores information about the
version of RTX-KG2pre and timestamp of the build. Under the nodes key is a list containing a
JSON object or each node. Each node object contains 16 keys corresponding to the node property
types in RTX-KG2pre: category, category label, creation date, deprecated, description,
full name, has biological sequence, id, iri, knowledge source, name, provided by,
publications, replaced by, synonym, and update date. The id node property contains a
compact representation of the canonical uniform resource identifier, i.e., a CURIE identifier [90].
The category property of a node describes the node’s semantic type, such as biolink:Gene.
Similarly, edges key is a list containing a JSON object for each edge, with the edge JSON object
containing the keys id, knowledge source, negated, object, predicate, predicate label,
provided by, publications, publications info, relation, relation label, subject, and
update date.

The schema of the JSON serialization of RTX-KG2c is very close to that of RTX-KG2pre except
that the former does not contain the top-level build key/object and, for each node object,
RTX-KG2c contains some additional keys such as equivalent curies, which enumerates the
CURIE IDs of the nodes representing concepts that were semantically identified in the
canonicalization step; all names, which contains the name properties of the KG2pre nodes that
were canonicalized together for the given KG2c node; and all categories, which contains the
category properties of the nodes that were canonicalized together for the given KG2c node.
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Figure 4: Edge predicate types in RTX-KG2 are based on the Biolink metamodel.
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2.5 RTX-KG2 content and statistics

The latest released version of RTX-KG2pre as of this writing, RTX-KG2.7.3, contains 10.2 million
nodes and 54.0 million edges. Each edge is labeled with one of 77 distinct predicates (Biolink
relationship types) and each node with one of 56 distinct categories (Biolink concept semantic
types). In terms of frequency distribution, there is over six decades of variation across node
categories (Fig. 5) and edge predicates (Fig. 6), with the dominant category being
OrganismTaxon (reflecting the significant size of the NCBI organism classification ontology [91])
and the dominant predicate being has participant (reflecting the significant size of the
PathBank database [84]). Figure 6 shows a breakdown of edges in KG2.7.3 by their Biolink
predicate. KG2.7.3c contains 6.4 million nodes and 39.3 million edges, which is approximately
62% of the nodes and 73% of the edges of KG2.7.3pre. Figure 7 shows node neighbor counts by
category for the top 20 most common categories in RTX-KGc.

In terms of their total (i.e., in+out) vertex degree distributions, both KG2pre and KG2c appear
to be approximately scale-free (Figure 8) with a power law exponent of 2.43, meaning that the
frequency of concepts with connectivity k decreases as ∼ k−2.43. Figure 7 highlights the
frequencies of various combinations of subject node category and object node category appearing
together in edges in KG2c, indicating (1) high levels of cross-category axioms among “molecular
entity”, “small molecule”, and “chemical entity” and (2) high levels of connections between
“pathway” and “molecular entity”, “small molecule”, “molecular activity”, “organism taxon”,
“anatomical entity”, and “transcript”. Note that the category-category frequency heatmap is not
expected to be symmetric for a knowledge graph (such as RTX-KG2) with a high proportion of
relationship types that have non-reflexive subject-object semantics.

2.6 RTX-KG2 access channels

In addition to being open-source so that a researcher can opt to build their own RTX-KG2
knowledge graph, the content of the latest RTX-KG2 graphs that we have built can be accessed
via flat-file download or via a REpresentational State Transfer (REST) [92] API (i.e., a web API).
JSON serializations of RTX-KG2pre and RTX-KG2c are available in a public GitHub repository
(see Sec. 6.3) via the git-lfs file hosting mechanism, and their schemas are documented as
described in Sec. 2.4 and in the RTX-KG2 documentation sections that are linked therein.
RTX-KG2c can be queried via a REST API that implements the Translator API, or “TRAPI”
specification (github:NCATSTranslator/ReasonerAPI) and that is registered via the SmartAPI [46]
framework and therefore discoverable using SmartAPI-associated tooling such as Biothings
Explorer [48]. The RTX-KG2 API enables both one-hop and multi-hop querying of the knowledge
graph; queries are internally serviced by the PloverDB in-memory graph database (see Sec. 2.3).
Further, RTX-KG2c is archived in Biolink Knowledge Graph eXchange [17] TSV format
(documented at github:biolink/kgx) through the Knowledge Graph Exchange (KGE; see
Figure 1) archive and registry system for the NCATS Biomedical Data Translator project
(github:NCATSTranslator/Knowledge Graph Exchange Registry) (currently in testing phase).
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Figure 5: Number of nodes in RTX-KG2.7.3pre by category.
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Figure 6: Number of edges in RTX-KG2.7.3pre by predicate.
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Figure 7: Node neighbor counts by category for the top 20 most common categories in RTX-
KG2.7.3c. Each cell captures the number of distinct pairs of neighbors with the specified
subject and object categories.
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Figure 8: KG2.7.3c has a scale-free degree distribution.

Table 2: Upstream source files that must be staged in S3 in order to build RTX-KG2

DrugBank XML Download Requires browser to download
RepoDB TSV Download Requires browser to download
SemMedDB MySQL Download Requires browser to download
SMPDB Pubmed IDs CSV Download Obtained via private URL courtesy of Wishart Lab
UMLS Metathesaurus ZIP Download Requires browser to download

2.7 RTX-KG2 build system and software

2.7.1 Requirements

The software for building RTX-KG2pre is designed to run in the Ubuntu Linux version 18.04
operating system on a dedicated system with at least 256 GiB of memory, 1 TiB of disk space in
the root file system, ≥ 1 Gb/s networking, and at least 20 cores (we use an Amazon Web Services
(AWS) Elastic Compute Cloud (EC2) instance of type r5a.8xlarge). The software for building
RTX-KG2 makes use of AWS Simple Storage Service (S3) for network storage of both build
artifacts and input knowledge source distribution files that cannot be retrieved by a scripted
HTTP GET from their respective providers (see Table 2). These build files must be pre-staged in
an AWS S3 bucket before the build process for RTX-KG2pre is started.

For hosting RTX-KG2 in a Neo4j server, the system requirements are 64 GiB of system memory,
8 virtual CPUs, and ∼200 GiB of root filesystem storage (we use a r5a.2xlarge instance).
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2.7.2 RTX-KG2 uses Snakemake for building RTX-KG2pre

RTX-KG2pre is built by a series of Python modules and bash scripts that extract, transform and
load (ETL) 45 data downloads (corresponding to the rows of Table 1, with the “OBO Foundry”
row counting for 21 separate downloads) from 24 source websites (Sec. 2.1) into a standardized
property knowledge graph format integrated with the Biolink metamodel as the semantic layer.
To maximize the reproducibility of RTX-KG2 builds, the build system is fully automated,
including scripts for (i) setting up and configuring the build system to run, (ii) downloading and
transforming data, and (iii) exporting the final graph to the graph database Neo4j. RTX-KG2
utilizes the Snakemake [51] workflow management tool to schedule multicore execution of the
RTX-KG2pre build process. In addition to reducing the computational costs of the build and the
amount of time it takes to run, Snakemake increases modularity by enabling individual
components (and their upstream dependencies) to be executed, when necessary. This is
particularly useful for allowing failed builds to resume at the point of failure (via a so-called
“partial” build), once the root cause (which could be a parsing error from an upstream ontology,
for example) has been fixed.

The build process starts with parallel source extractions, in which all of the source databases are
downloaded and prepared for the format that their respective conversion script uses. Then, each
upstream source’s dataset is processed by a Python conversion module. This converts each
source’s data into the RTX-KG2pre JSON format (Sec. 2.4). Once all of the upstream data
sources are converted into their RTX-KG2pre JSON file, a module merges all of them into a
cohesive graph, such that no two nodes have the same CURIE ID. One of the challenges in this
step is when different upstream sources provide different names for the same concept CURIE ID;
the RTX-KG2pre build system addresses such name conflicts by having a defined order of
precedence of upstream sources. After the merge step, edge source relation types (as described in
Sec. 2.2) are each mapped to one of 77 predicate types in the Biolink predicate hierarchy (see
Sec. 2.2), and redundant edges (same combination of subject node ID, object node ID, and
Biolink predicate) are coalesced, with source relation information and source provenance
information added to lists in the coalesced edge. The graph is then serialized as JSON (see
Sec. 2.4) and to TSV format. In total, the full RTX-KG2pre build process takes approximately
50 hours to produce the RTX-KG2pre JSON and TSV build artifacts. The build artifacts,
including the unprocessed and processed JSON files and the TSV files, are uploaded into an AWS
S3 bucket. RTX-KG2pre is then hosted in Neo4j on a smaller AWS instance (see Sec. 2.7.1); the
Neo4j endpoint is mainly used in the construction of the canonicalized RTX-KG2c graph (see
Sec. 2.3).

2.7.3 umls2rdf and owltools

In the RTX-KG2pre build process, the 26 UMLS sources are ingested as TTL files that are
generated in the extraction stage of the build process from the Rich Release Format (RRF [60])
UMLS distribution using two software programs, Metamorphosys [93] (to load the RRF files into
the relational database system, MySQL) and umls2rdf [20] (to extract TTL files Sec. 2.7.3). Thus,
a local MySQL database is used as an intermediate data source in the build process, from which
TTL files are generated via umls2rdf. The build system uses the owltools package to convert
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Table 3: UMLS sources that are integrated into RTX-KG2. See Sec. 5 for definitions of abbrevia-
tions.

UMLS Semantic Network
Anatomical Therapeutic Chemical Classification System ATC

DrugBank database DRUGBANK

Foundational Model of Anatomy FMA

Gene Ontology GO

Healthcare Common Procedure Coding System HCPCS

Human Gene Nomenclature Committee HGNC

Health Level Seven version 3.0 HL7V3.0

Human Phenotype Ontology HPO

ICD-10 Procedure Coding System ICD10PCS

ICD-9, Clinical Modification ICD9CM

Logical Observation Identif. Names & Codes LNC

Medication Reference Terminology MED-RT

MEDLINE Plus MEDLINEPLUS

Medical Subject Headings (MeSH) MSH

Metathesaurus MTH

NCBI Taxon NCBI

National Cancer Institute Thesaurus NCI

National Drug Data File NDDF

National Drug Data File - Reference Terminology NDFRT

Online Mendelian Inheritance in Man OMIM

Physician Data Query PDQ

Psychological Index Terms PSY

RxNorm (normalized drug names) RXNORM

National Drug File VANDF
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biomedical ontologies (see Table 1 and Table S1) in OWL format and the UMLS TTL files into
OBO (Open Biological and Biomedical Ontology) JSON format for processing. The ontologies in
OBO-JSON format are then loaded using the Python package ontobio and processed/merged
together, enabling use of cross-ontology axioms in determining concept semantic types.

3 Utility and Discussion

Due to its comprehensiveness and/or its speed, RTX-KG2 is already being used as a core
knowledge provider (see github:NCATSTranslator/Translator-All/wiki/KG2) or knowledge graph
by four diverse reasoning agents within the Translator system: ARAX [53] (which our team
developed and which provides sophisticated workflow operations capabilities and overlay of
virtual edges for associations based on literature co-occurrence or network structural equivalence);
mediKanren (which provides sophisticated network motif-finding and path-finding using the
miniKanren logic programming language); Biothings Explorer (the engine for autonomous
querying of distributed biomedical knowledge, described in Section 1); and ARAGORN
(github:ranking-agent/aragorn). Key to the utility of RTX-KG2 in Translator is that RTX-KG2
can be (1) queried via a RESTful, Translator-standard API (Sec. 2.6) and (2) downloaded from
the Translator Knowledge Graph Exchange (KGE; see Figure 1) registry in Biolink KGX
format [17] (see Sec. 2.6). Both access channels comply with information standards—TRAPI and
Biolink in the case of the REST API, and KGX and Biolink in the case of the KGE
registry—that ensure interoperability with any other standards-compliant agent operating within
the Translator system.

In designing RTX-KG2, we developed five design principles that guided our selection of knowledge
sources to incorporate as well as the architecture of the RTX-KG2 build system:

1. Source is publicly available in a flat-file (e.g., TSV, XML, JSON, DAT, or SQL dump) that
can be downloaded via a script

2. Source is being maintained and updated periodically

3. Source provides knowledge triples that complement (i.e., not duplicate) what is already in
RTX-KG2

4. Source connects concept identifier types that are already in RTX-KG2

5. Ideally, source provides knowledge based on human curation (favored over computational
text-mining)

Principle 1, and the deliberate choice of using an ETL approach, theoretically would allow
RTX-KG2 to be reconstructed consistently and independently of the state of external APIs3. This
is useful for reproducibility, since each knowledge source is stored in its original downloaded form
as a build artifact. Using flat files instead of API interfaces also increases the probability that a
future build can be completed successfully at any time, since it does not rely on multiple web
services to be up for an extended period of time. Additionally, it is in many (though by no means
all) cases computationally faster to ETL a file than to dynamically query an API over the

3Note however, that one API is used in constructing RTX-KG2; see Sec. 2.1.
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Internet. Development of RTX-KG2 is ongoing and our team welcomes recommendations of new
knowledge sources to include, via issue reports on the RTX-KG2 GitHub project page (see
Sec. 6.3).

Our selection of the 70 sources for RTX-KG2 generally adhered to the aforementioned principles,
but we made a few exceptions based on specific trade-offs. For Principle 1, for one source (as
described in Sec. 2) we used an API rather than a flat file download, and for the “via a script”
part of Principle 1, we manually downloaded source dump files for DrugBank, UMLS, and
SemMedDB (due to those three sources’ comprehensiveness) and RepoDB (due to its information
on drug approval status). For Principle 2, an exception was miRbase, due to the lack of a clear
alternative source. For Principle 3, partial exceptions were made for the various pathway
databases such as Reactome, PathWhiz/SMPDB, and KEGG, which have many overlapping
pathways but which also had systems of pathway identifiers that needed to be included in
RTX-KG2. Further, each of the pathway databases has different strengths: PathWhiz/SMPDB
offer useful links to HMDB and DrugBank; Reactome is popular, trusted, and is well connected
with sources like GO and CHEBI; and KEGG CURIEs are popular with users and link to
CHEMBL, CHEBI, and GO. The primary exception to Principle 5 is SemMedDB which is based
on natural-language processing of biomedical research article abstracts to extract knowledge
triples. SemMedDB is particularly useful for downstream reasoning because of its breadth across
biomedical literature and because it includes source article references for each triple.

In addition to its primary intended use-case for on-demand knowledge exploration and
concept-specific reasoning, the RTX-KG2 knowledge graph can be used as a structure prior for
data-driven network inference, for example, causal network learning. We have recently described a
computational method, Kg2Causal [94], for using a general-purpose biomedical knowledge graph
to extract a network structure prior distribution for data-driven causal network inference from
multivariate observations. Using the predecessor graph, RTX-KG1, we found that using a general
knowledge graph as a prior significantly improved the accuracy of data-driven causal network
inference compared to using any of several uninformative network structure priors [94].

To the extent that it incorporates a variety of graph structural variations, RTX-KG2 can also be
used as a test-bed for evaluating the performance of structurally generalizable graph analysis
methods such as a subset of us have done for the case of a structurally generalizable node-node
similarity measure [95].

Finally, our observation that RTX-KG2c has a scale-free degree distribution is consistent with
previous reports from empirical studies of text-based semantic networks [96] and ontologies [97]
and generalizes the scale-free phenomenon into the realm of large-scale knowledge graphs.

Using Neo4j to host RTX-KG2 has both benefits (specifically, the flexibility of the Cypher query
language [52]) and its drawbacks (namely, slow JSON loading performance and slow response
times in comparison to an in-memory, less full-featured database). It was due to its drawbacks
that we ultimately switched to hosting RTX-KG2c using PloverDB (Sec. 2.3). On the other hand,
our standard procedure of hosting a Neo4j database server for RTX-KG2pre has been invaluable
as a diagnostic aid and for developing graph queries and analysis workflows.

We have found it challenging to balance the importance of manually curated knowledge resources
with those that provide numerical data and provenance (such as supporting publications) of their
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assertions. While these two are not mutually exclusive per se, relatively few knowledge sources
seem to provide both. Increasingly, reasoning agents in the Translator system will use structured
provenance and confidence information/annotations for edges in knowledge graphs such as
RTX-KG2; the catch-22 of knowledge sources that are important “connectors” in translational
reasoning but do not yet provide provenance information is an ongoing problem in the field.

4 Conclusions

Despite the advances in the field outlined in Sec. 1, no open-source software toolkit was available
that could integrate UMLS, SemMedDB, ChEMBL, DrugBank, SMPDB, and other core
biomedical knowledge-bases into a single Biolink-compliant knowledge graph. To fill this gap and
to provide a comprehensive knowledge-base to serve as as an efficient knowledge-substrate for a
biomedical reasoning engine, we constructed RTX-KG2, comprising a set of ETL modules, an
integration module, a REST API, and a parallel-capable build system that produces and hosts
both pre-canonicalized (RTX-KG2pre) and canonicalized (RTX-KG2c) knowledge graphs for
download and for querying. RTX-KG2 is currently extensively used by multiple reasoning agents
in the NCATS Biomedical Data Translator project, validating the ETL-focused, monolithic-graph,
standards-based design philosophy that guided the development of RTX-KG2.

5 List of Abbreviations

• ARAX: Autonomous Relay Agent X

• AWS: Amazon Web Services

• D2J: direct-to-JSON method

• EC2: Elastic Compute Cloud

• ETL: extract–transform–load paradigm

• GO: Gene Ontology

• ICD: International Classification of Diseases

• JSON: JavaScript Object Notation

• KEGG: Kyoto Encyclopedia of Genes and Genomes

• NCATS: National Center for Advancing Translational Sciences

• NCBI: National Center for Biotechnology Information

• OBO: Open Biomedical Ontologies

• OWL: Web Ontology Language

• RBM: RDF-based method

• RDF: Resource Description Framework
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• REST: REpresentational State Transfer

• RTX-KG2: Reasoning Tool X, Knowledge Graph Generation Two

• RTX-KG2c: Reasoning Tool X, Knowledge Graph Generation Two, Canonicalized

• RTX-KG2pre: Reasoning Tool X, Knowledge Graph Generation Two, Pre-canonicalization

• S3: Simple Storage Service

• SemMedDB: Semantic Medline Database

• SMPDB: Small Molecule Pathway Database

• SQL: Structured Query Language

• Translator: NCATS Biomedical Data Translator

• TSV: tab-separated value

• TTL: Terse RDF Triple Language

• UMLS: Unified Medical Language System

• XML: eXtensible Markup Language

(See also Table 2.1, Table 3, and Table S1).
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7 Supplementary Material

Table S1: Ontologies from the OBO Foundry that are included in RTX-KG2.

Basic Formal Ontology BFO
Chemical Entities of Biological Interest (ChEBI) CHEBI [98]
Gene Ontology, with external relationships go-plus

Relation Ontology RO
Uberon multi-species anatomy ontology, extended with external relationships UBERON
Foundational Model of Anatomy FMA
Dictyostelium discoideum anatomy DDANAT [99–103]
Cell Ontology CL [104]
Food Ontology FOODON
Human Developmental Anatomy, abstract EHDAA2 [105]
Biological Spatial Ontology BSPO
Human Phenotype Ontology HPO
Neuro Behavior Ontology NBO
NCBI organismal classification, taxslim subset ncbitaxon [91]
Phenotype and Trait Ontology PATO
Mondo Disease Ontology MONDO
Disease Ontology DO
Protein Ontology PRO [106]
Interaction Network Ontology INO
Genomic Epidemiology Ontology GENEPIO
Molecular Interactions Controlled Vocabulary MI
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