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ABSTRACT 

The medical and scientific response to emerging pathogens is often severely hampered by 

ignorance of the genetic determinants of virulence, drug resistance, and clinical outcomes that 

could be used to identify therapeutic drug targets and forecast patient trajectories 1–5. Taking 

the newly emergent multidrug-resistant bacteria Mycobacterium abscessus as an example 6, 

we show that combining high dimensional phenotyping with whole genome sequencing in a 

phenogenomic analysis can rapidly reveal actionable systems-level insights into bacterial 

pathobiology. Using in vitro and in vivo phenotyping, we discovered three distinct clusters of 

isolates, each associated with a different clinical outcome. We combined genome-wide 

association studies (GWAS) with proteome-wide computational structural modelling 7 to define 

likely causal variants, and employed direct coupling analysis (DCA) 8 to identify co-evolving, 

and therefore potentially epistatic, gene networks. We then used in vivo CRISPR-based 

silencing to validate our findings, defining a novel secretion system controlling virulence in M. 

abscessus, and illustrating how phenogenomics can reveal critical pathways within emerging 

pathogenic bacteria. 

 

INTRODUCTION 

Over the last two decades, M. abscessus, a rapid growing species of nontuberculous 

mycobacteria (NTM), has emerged as a major threat to individuals with Cystic Fibrosis (CF) 

and other chronic lung disease 9. Rates of infection of CF patients have increased around the 

World 9–11, in part due to hospital-based person-to-person transmission 12,13 and the 

emergence of globally-spread dominant circulating clones that are associated with increased 

virulence and worse clinical outcomes 14. Infections with M. abscessus are challenging and 

sometimes impossible to treat 9,15,16, lead to accelerated inflammatory lung damage 17,18, and 

may prevent safe transplantation 19.  

To date, very little is known about how M. abscessus infects humans 6, how it causes 

inflammatory lung damage, and how it resists antibiotics 6. There is thus an urgent need to 

better understand the pathophysiology of M. abscessus, to define optimal drug targets, and to 

predict the virulence and antibiotic susceptibility of clinical isolates.   

We therefore sought to combine detailed in vitro and in vivo phenotyping, whole genome 

sequencing, computational structural modelling, and epistatic analysis to provide a 

phenogenomic map of M. abscessus that might define critical pathways involved in virulence 

and drug resistance.  
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RESULTS 

We first characterised 331 clinical M. abscessus isolates across 58 phenotypic dimensions 

exploring five key pathogenic traits: planktonic growth in different carbon sources; antibiotic 

resistance (at early and late time points) against a selection of drugs recommended by clinical 

treatment guidelines 9; in vitro infection of a human macrophage cell line model (differentiated 

THP1 cells), monitored using high content confocal microscopy; in vivo infection of Drosophila 

melanogaster, measuring host survival and inflammatory responses; and clinical outcomes 

following infection, available through previously collected metadata 14 (Figure 1a, 
Supplementary Figure 1).  

We examined the relationship between phenotypes, finding correlations within, and 

sometimes between, pathogenic traits (Figure 1b, Supplementary Figure 2). To explore 

whether there were distinct patterns of bacterial behaviours, we used experimentally-derived 

data to plot individual isolates in phenotypic space, identifying three discrete groups, each 

associated with different clinical outcomes (Figure 1c,d, Supplementary Figure 3), 

representing distinct heritable traits (Supplementary Figure 4). Isolates in Groups 1, 2, and 

3 demonstrated progressively faster growth in liquid culture and within macrophages, higher 

rates of macrophage and Drosophila death, and greater inflammatory responses. While Group 

2 isolates were associated with the most favourable clinical outcome, potentially related to 

their macrolide susceptibility (a key determinant of treatment response 20,21), we found that 

Group 1 and Group 3 isolates, although similarly macrolide resistant, had very different clinical 

outcomes, highlighting the importance of other phenotypic characteristics in determining 

prognosis, and suggesting that more virulent (and thus immunogenic) isolates might be 

cleared more easily by patients (as previously reported for other pathogenic bacteria 22–25). 

To understand the genetic basis for these important variations in M. abscessus behaviour, we 

used whole genome sequence data to perform a genome-wide association study (GWAS) for 

each phenotype (Figure 2a), evaluating approximately 270,000 genetic variants comprising 

single nucleotide polymorphisms (SNPs), insertions, and deletions. We used mixed models 

corrected for population structure 26 to identify locus effects, as well as uncorrected linear 

models to ensure we captured lineage effects 27. In total, we identified 1926 hits (involving 

1000 genes) across 46 phenotypes (Supplementary Table 1). These included previously 

known genetic determinants, such as the 16S and 23S rRNA mutations associated with 

constitutive aminoglycoside and macrolide resistance (p = 1.3 x 10-75 and p = 1.5 x 10-54 

respectively; Supplementary Figure 5), thereby confirming the effectiveness of our approach. 

Current GWAS approaches are limited in their ability to accurately identify causal variants by 

both the presence of linkage disequilibrium, which in the case of M. abscessus (as with other 
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bacteria 28,29) is extensive and genome-wide (Figure 2a, Supplementary Figure 6), and by a 

failure to consider the impact of mutations on protein function 30,31. 

We therefore applied proteome-wide computational structural modelling to evaluate the likely 

functional impact of all nonsynonymous SNPs across the genome, by applying our graph-

based machine learning method mCSM 7 to our comprehensive M. abscessus structural 

database Mabellini 32 (Figure 2b), in order to identify likely causal mutations.  

As an example, the GWAS for intracellular replication of M. abscessus within macrophages 

identified a number of hits at genome-wide significance including a cluster of variants within 

the mycobactin operon (Figure 2c), containing genes involved in iron scavenging 33,34. 

Structural modelling predicted that one variant, a missense mutation (Ile256Thr) in the 

mycobactin polyketide synthetase (mbtD) gene, was most likely to result in loss of protein 

function and therefore be causally related to the phenotypic change, probably through altering 

the ability of intracellular M. abscessus to access iron.  

To understand whether mutations across the genome might have co-evolved, indicating 

potential epistatic interactions between genes, we deployed correlation-compressed direct 

coupling analysis (ccDCA 8) on whole genome sequences from 2366 clinical isolates of M. 

abscessus to identify whether variant co-occurrence deviated from the expected frequencies 

based on linkage disequilibrium 35,36, and thus indicate evolutionary co-selection. We 

evaluated 1012 potential couplings (resulting from approximately 106 genetic variants), and 

identified 1,168,913 that were significantly enriched (accepting a false discovery rate of 10-6; 

Figure 3a, Supplementary Figure 7). We found many enriched couplings between known or 

predicted virulence genes (Figure 3b, Supplementary Table 2), indicating pathogenic 

evolution of M. abscessus (as previous identified 14,37). We used the ranked outputs from the 

ccDCA analysis to establish discrete networks of genes that have co-evolved, and thus 

probably functionally interact (Figure 3c). As examples, we find highly connected clusters of: 

mammalian cell entry (MCE) genes (Figure 3d), implicated in controlling adhesion, uptake, 

and intracellular survival within macrophages 38,39; mycobactin synthesis genes (Figure 3e), 

including some identified through GWAS analysis (Figure 2c,d); and genes involved in 

bacterial secretion systems. 

Finally, we sought to integrate outputs from our detailed multidimensional phenotyping, 

structure-guided GWAS analysis, and DCA-based epistatic mapping, to achieve a systems-

level understanding of the genetic basis for important pathological processes in M. abscessus.  

We focused on in vivo infection in Drosophila, a model that replicates many of the features of 

human mycobacterial infection (Figure 4a) 40–43. Amongst the top hits from our structure-

guided GWAS analysis (Figure 4b, Supplementary Figure 8) were a deletion in a component 
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of a putative Type II secretion system (MAB_0471) and a deleterious mutation in a non-

ribosomal peptide synthetase (MAB_3317c). Both variants had independently arisen as 

homoplastic mutations across the M. abscessus phylogenetic tree (Figure 4c), including 

within the ancestor of one of the dominant circulating clones (DCC2) of M. a. abscessus, 

responsible for several transmission networks amongst CF patients 13,14. We found that 

isolates with deletions in the Type II secretion system were associated with prolonged survival 

of infected Drosophila and more persistent clinical infection of CF patients (Figure 4d).  

We sought to experimentally validate both these GWAS hits through inducible CRISPR-based 

transcriptional silencing (CRISPRi) as previously described 44. Although we found no effect of 

gene silencing on growth in liquid media, silencing of either MAB_0471 or MAB_3317c during 

in vivo infection significantly increased Drosophila survival (Figure 4e, Supplementary 
Figure 9), indicating that these genes regulate M. abscessus virulence.  

Our DCA analysis revealed that both these GWAS hits were part of a discrete network of 

probably epistatic genes involved in bacterial secretion, cell wall biosynthesis, metabolism, 

and transcriptional regulation (Figure 4f, Supplementary Figure 10). To experimentally test 

this prediction of epistasis, we selected another gene from the same network (MAB_0472) 

and transcriptionally silenced it during in vivo infection. We found that Drosophila survival was 

also increased by its CRISPRi knockdown (Figure 4g), suggesting that all three genes are 

functionally interacting.  

Thus, phenogenomic analysis can accurately identify critical gene networks responsible for 

virulence and other characteristics in poorly understood bacterial pathogens such as M. 

abscessus. Our approach of integrating computational structural modelling with conventional 

GWAS analyses and DCA-driven mapping of gene interaction networks has revealed key 

determinants of M. abscessus antibiotic resistance and virulence.  

Importantly we have identified a novel and important gene network, involving a previously 

unidentified peptide synthetase and type 2 secretion system regulating, that regulates the 

pathogenic potential of M. abscessus and could be targeted therapeutically. Phenogenomic 

analysis should be readily applicable to any pathogen, permitting rapid identification of 

prognostic indicators and novel potential drug targets.  
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FIGURE LEGEND 
 
Figure 1: Multidimensional phenotyping of M. abscessus 
(a) Phenotypic variability of clinical M. abscessus isolates was assessed across multiple 

dimensions (described in Supplementary Methods) including:  (i) Planktonic growth (assessed 

by serial OD measurement) in a range of different carbon sources; (ii) Minimal inhibitory 

concentrations (MIC) of a range of clinically relevant antibiotics were assessed on day 3 (MIC 

early) and day 11 (MIC late) to quantify intrinsic and inducible drug resistance; (iii) Macrophage 

infection (4h post infection), intracellular replication (2d post infection) and death (2d post 

infection) were quantified using high-content imaging of differentiated THP-1 cells incubated 

with tdTomato-expressing clinical isolates; (iv) Survival and immune response of Drosophila 

melanogaster infected with clinical isolates; and (v) Clinical outcomes (lung function decline 

and clearance of M. abscessus from sputum samples) of infected patients (b) Pearson 

correlations within and across phenotypic groups shown as a matrix, with non-significant (p > 

0.05) associations shown in white. (c) Clustering of clinical isolates, using k-means and T-

stochastic neighbour embedding, based on (i) experimentally observed phenotypes only, 

demonstrate three distinct groups that (ii) differ in their clinical outcomes. (d) Distribution of 

specific phenotypes across the three phenotypic groups. P values calculated using Chi-

squared test or one-way analysis of variance, as appropriate.  

 

Figure 2: Integrating computational structural modelling into genome-wide association 
studies.  
(a) Genome-wide associations were performed for all phenotypes with the top variants 

extracted (up to 5 per association) and ordered using hierarchical clustering (red linear model; 

blue mixed model). Pairwise r2 measurements of the identified genetic variants (grey scale) 

show extensive genome-wide linkage (LD). (b) To identify causal variants and overcome LD, 

the functional impacts of genetic variants were classified as having high effects (large 

deletions, frameshifts, start/stop alterations; red); moderate effects (inframe 

insertions/deletions; blue and green); and low effects (synonymous and intergenic variants; 

grey). The impact of missense mutations were estimated using proteome-wide computational 

structural modelling with variants considered as having high (red), moderate (blue) or low 

(green) functional effects based on terciles of the change in protein stability, estimated using 

mCSM. (c) Manhattan plot of the mixed model GWAS analysis of 264,122 genetic variants for 

intracellular M. abscessus replication. Several loci in mbtD, including 4 missense mutations, 

were identified as potential mechanisms relevant for intracellular M. abscessus survival. Inset: 

Protein model of MbtD with the high effect missense mutation Ile256Thr shown in red.  
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Figure 3: Analysis of genome-wide epistasis through mutational co-evolution.  
Direct coupling analysis (ccDCA) was used to identify coevolving variants among ~1012 

potential variant combinations of 2,366 clinical M. abscessus isolates. (a) Circos plot of the M. 

abscessus chromosome showing the 100,000 top variant-to-variant couplings with a distance 

of >100bp (black lines), coupling density (green; range 0-56307 couplings per 5kb) and SNP 

density (red; range 14-1961 SNPs per 5kb). (b) Significant variant-variant couplings identified 

through DCA were pooled as gene-gene couplings and ranked by the number of couplings. 

(c) Networks of co-evolving (and therefore likely epistatic) genes, based on DCA derived gene-

gene couplings, colour coded by functional class. The strength and number of couplings 

shown by edge colour and thickness respectively. (d, e) Examples of highly coupled gene 

networks, highlighted by circles in (c), involving (d) mammalian cell entry proteins, and (e) 

components of the mycobactin biosynthesis pathway.  

 
Figure 4: Defining genetic determinants of in vivo virulence in M. abscessus. 
(a) Drosophila melanogaster infected with M. abscessus (magenta) resembles mycobacterial 

infection in other organisms; with infection of phagocytes (green) and formation of granuloma-

like structures (inset). (b) Genome-wide association (using a linear model) reveals a putative 

secretion-system protein and a peptide synthetase to be highly associated with Drosophila 

survival. (c) Both variants align to clinical isolates with long survival, including a dominant 

circulating clone, within the subspecies M. a. abscessus. (d) Deletion in MAB_0471 was 

associated with persistent respiratory infection in cystic fibrosis patients. (e) CRISPR/dCas9 

knockdown of MAB_0471 and MAB_3317 (unlike the essential gene yidC) did not affect 

growth in liquid culture (left panel) but in vivo silencing did lead to prolonged survival of infected 

Drosophila, as shown by Kaplan-Meier survival curves generated from data from at least 18 

infected flies per bacterial strain. (f) Epistatic gene network, derived from DCA outputs, 

revealed direct coupling of MAB_0471 with other putative secretion system proteins including 

MAB_0472 and a distant connection to the peptide synthetase MAB_3317. (g) In vivo silencing 

of MAB_0472 replicated virulence attenuation.  
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