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Abstract 

Tissue homeostasis and regeneration depend on the reversible transitions between quiescence (G0) 

and proliferation. The liver has a remarkable capacity to regenerate after injury or resection by cell 

growth and division. During regeneration, the liver needs to maintain the essential metabolic tasks 

and meet the metabolic requirements for hepatocyte growth and division. Understanding the 

regulatory mechanisms involved in balancing the liver function and proliferation demand after 

injury or resection is crucial. In this study, we analyzed high-resolution temporal RNA sequencing 

data of liver regeneration after two-thirds partial hepatectomy (PHx) using network inference and 

mathematical modeling approaches. The reconstruction of the dynamic regulatory network of liver 

regeneration reveals the trajectories of different metabolic pathways, protein processing in the 

endoplasmic reticulum (ER), ribosome biogenesis, RNA transport, spliceosome, immune 

response, and cell cycle. We further developed a mathematical model of the integrated circuit of 

liver regeneration that accounts for underlying features of compensatory metabolism, proliferation, 

and epithelial-to-mesenchymal transition during liver regeneration. We show that a mutually 

exclusive behavior emerges due to the bistable inactivation of HNF4A, which controls the 

initiation and termination of liver regeneration and different population-level expressions observed 

in single-cell RNA sequencing data of liver regeneration.  

Keywords:  Mathematical modeling, Network biology, Cell cycle, Cell growth, Metabolism, Liver 

injury, RNA sequencing 
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Introduction 

The liver is bestowed with an impeccable capacity to restore its lost mass following an injury or 

partial resection by coordinated cell growth (hypertrophy) and proliferation (hyperplasia). The 

ability to maintain and recover the original liver-to-body mass ratio is inferred as the thermostat-

like regulator “Hepatostat”1. Different studies have used the surgical procedure of two-thirds 

partial hepatectomy (PHx) in rodents (Mus musculus, Rattus norvegicus) to understand liver 

regeneration 2. These studies have revealed the sources of regenerated liver mass and described 

the three phases in liver regeneration (priming, proliferation, and termination). The liver is the 

metabolically active organ and is at a crossroads of lipid and carbohydrates metabolism. The 

regenerating liver not only needs to maintain the essential metabolic function but also needs to 

meet the metabolic requirement of hepatocyte growth and division.  

Liver regeneration depends on the control mechanisms regulating the reversible transition between 

quiescence and proliferation. Hepatocytes shift from quiescent to primed state with the expression 

of immediate-early (IE) genes in response to cytokines (IL6 and TNFα) derived from non-

parenchymal cells2-5. The second phase of regeneration involves the activation of growth factor 

signalling. Non-parenchymal cells synthesize and release growth factors and promote the release 

of extracellular matrix (ECM)-bound reservoir of growth factors. These include growth factors 

HGF and EGF, which activate c-met and EGFR receptors, respectively6, 7. The last step involves 

cessation of proliferation by integrin signaling that promotes communication between ECM and 

epithelial cells8, 9. The liver-to-body mass ratio is maintained by controlling the rate of cell division 

and apoptosis. After two-thirds PHx, the hepatocytes also increase in size, followed by cellular 

division. An increase in the hepatocyte size alone is sufficient to recover the lost mass after PHx 

in Cdk1 knockout10. A significant decrease in NADH concentration and mitochondrial function is 

observed. This kind of compensatory mechanism is not without consequences since there is an 

increase in liver damage markers.  

In addition to cytokines and growth factors, metabolic signals play a role in liver regeneration 11, 

12.  The change in metabolic demand under liver regeneration leads to systemic reorganization of 

metabolism. Animals subjected to PHx display hypoglycemia in the initial phase since the liver  

plays a major role in maintaining systemic glucose levels13. There is an increase in the systemic 

influx of lipids and triglycerides from extrahepatic adipose tissue after PHx leading to transient 
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steatosis, which provides energy currency required for regeneration12, 14, 15. Other systemic cues 

include increased bile acid (BA) levels since the remnant liver cannot handle the BA returning via 

portal flow16. Blocking these metabolic alterations are shown to impair regeneration. Thus, 

regeneration is tightly intertwined with alterations in systemic metabolism. 

Whole transcriptomic studies using microarray and RNA sequencing (RNA-seq) have mapped the 

gene expression pattern and transcriptional regulation in different liver regeneration models of 

rodents 10, 17-25. Metabolic genes are shown to be repressed, while the cell cycle genes are 

upregulated during liver regeneration. This raises the question of how the liver maintains metabolic 

homeostasis during liver regeneration. A division of metabolism into oxidative and biosynthesis 

phases has been proposed during liver regeneration 26. It is not clear how the liver achieves the 

dynamic balance between various cellular processes, including metabolism and cell cycle. Since 

the hepatocytes in the liver lobule are exposed to different microenvironments, there is a zonation 

(spatial heterogeneity) of gene expression. The liver lobule is metabolically partitioned to 

periportal, mid-lobular, and pericentral zones, with different zones exhibiting differences in 

proliferative capability 27-29. Recently, single-cell RNA sequencing (scRNA-seq) studies have 

started to reveal the division of labor with one population of hepatocytes activating early-postnatal-

like gene expression and other compensating for metabolic function during liver regeneration 30, 

31. In response to PHx, a wave of hepatocyte proliferation starting from zone 1 to zone 3 has been 

observed, with midzone 2 representing the primary source of new hepatocytes during liver 

homeostasis and regeneration 32, 33. 

In this study, we modeled the temporal reorganization of the transcriptome of liver regeneration 

after PHx to understand the coordination of liver function and regeneration using a schema 

outlined in Figure 1. The inference of dynamic regulatory network from RNA-seq data was 

performed, which shows the interplay of different cellular processes at different time points during 

liver regeneration. The co-expression pattern of genes reveals the coordination of metabolism and 

the cell cycle. We also developed a mathematical model of the integrated circuit of liver 

regeneration, which accounts for the dynamic balance between requirements of liver function and 

regeneration as observed in scRNA-seq studies of liver regeneration. 
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Methods 

Transcriptomics data 

We used the publicly available high-resolution temporal RNA-seq data (Illumina HISeq 2000) of 

liver regeneration after PHx from Gene Expression Omnibus (with accession number 

GSE95135)23. The samples in the dataset correspond to PHx operated 12- to 14-week-old male 

C57/BL6 mice entrained with 12 hours light-dark, fasting-feeding cycles. PHx samples include 

time points 0, 1, 4, 10, 20, 28, 36, 44, 48, 72, 168 and 672 hours. log2 +1 RPKM values were used 

for the downstream analysis. We also verified our findings using another RNA-seq data of liver 

regeneration (with accession number GSE125007)24. PHx samples include timepoints 0, 24, 30, 

40, 48, 96, 168 and 672 hours.  

Reconstruction of co-expression network of liver regeneration  

The co-expression network of liver regeneration was constructed using the weighted gene co-

expression network (WGCNA) package in R 34. Top 5000 top varying genes across time points 

were selected (using rowVars function in R) to construct the correlation (Pearson) matrix for 

WGCNA. A linear transformation of correlation was performed to retain the sign of correlations. 

A soft power adjacency function, aij = sij
β, was used to construct an adjacency matrix. We used the 

scale-free topology criterion to choose power β. This was obtained by computing the square of the 

correlation (R2) between log(p(k)) and log(k), where p(k) is the frequency distribution of the 

connectivity k. A plot of R2 and β, which shows a saturation characteristic, was used to choose the 

β value of 15. This corresponds to the point where the saturation is reached with mean connectivity 

≥100. A topological overlap matrix (TOM) was constructed from the adjacency matrix, and 1-

TOM was used to construct the dendrogram 35. The modules were identified using the dynamic 

tree cut algorithm with a minimum module size of 50. The module eigen gene (ME) expression 

was obtained by singular value decomposition (SVD). Enrichr was used to identify GO terms and 

KEGG pathways associated with each module 36.  

Probabilistic graphical modeling  

We further reconstructed the dynamic regulatory network using the DREM method 37, which uses 

the Hidden Markov Model (HMM) to integrate time-series gene expression data with the 
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transcription factor (TF)-gene association data. This approach clusters patterns of gene expression 

into paths and bifurcation points. Each bifurcation point represents a divergence in the expression 

of co-expressed genes under TF(s) influence. log2fold change in the expression of genes at every 

time point with respect to the reference time point (0 hours) was used as an input. We used the 

generated TF-gene association available for the mouse 37. The following parameters were used: a) 

Minimum log2 fold change of 1, b) The expression scaling weight set to 0.5, and c) TFs associated 

with a bifurcation point in the model were chosen with a hypergeometric distribution score less 

than 0.001. We also used CheA and ENCODE_and_CheA_consensus libraries 36 to identify 

significant (adj p-value < 0.05) TFs associated with the clusters. 

Mathematical Modeling 

To model the regulatory circuit of liver regeneration, we adopted the framework proposed by 

Reinitz and colleagues 38, 39. This framework combines the best features of discrete and continuous 

approaches to simplify the complexity of the interactions in the network. We formulated a set of 

non-linear Ordinary differential equations (ODEs) of the form: 

𝑑𝑌𝑖

𝑑𝑡
 =  𝛽𝑖[𝐹(𝛿𝑖𝑊𝑖) − 𝑌𝑖)],       𝑊𝑖 = 𝜔𝑖0 +  ∑ 𝜔𝑖𝑗𝑌𝑗 ,          𝑖 = 1, … , 𝑁      

𝑁

𝑗=1

 

 

Yi is expression level of the gene (0 ≤ Yi ≤ 1),  𝐹(𝛿𝑊) = 1/(1 +  𝑒−𝛿𝑊) is “soft-Heaviside” 

function that varies from 0 (W << -1/δ) to 1 (W >>1/δ), δ determines the steepness of the function 

and Wi is the net effect on gene i of all genes in the network. The coefficient ωij can take values 

less than 0 (genej inhibits the genei), more than 0 (genej activates genei) or equal to 0 (no effect 

of genej on genei). This equation also behaves like a discrete boolean for a large value of δi’s. For 

δi values greater than 1, Yi flips between 0 and 1 on a timescale ≈ βi
-1. We studied how the 

qualitative behavior of the system changes with respect to parameter changes by performing 

phase plane and bifurcation analyses using XPPAUT (available 

from http://www.math.pitt.edu/~bard/xpp/xpp.html). The emergent properties of the liver 

regeneration network were analyzed. 
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Results 

Dynamic regulatory network of liver regeneration 

We first constructed the dynamic co-expression network of liver regeneration to study the 

transcriptome organization into functional modules using time-series expression data. We 

performed WGCNA and identified nine modules related to liver regeneration after PHx. Modules 

blue (M1), green (M2), red (M3), pink (M4), and purple (M5) show a positive correlation with 

pre-and post-PHx stages, while the modules black(M6), yellow (M7), brown (M8) and 

magenta(M9) show a negative correlation with stages (Figure 2A). However, the correlation of 

most modules with different time points of liver regeneration decreases. The eigen gene expression 

of each module shows the transient nature of gene expression with a change in direction occurring 

at different time points and recovery to the pre-PHx condition in the termination phase of liver 

regeneration (Figure 2B and Figure S1). The eigen gene expression of M4 and M5 modules 

increases between 1 and 4 hours, and of M2 and M3 modules increases between 4 and 10 hours 

post-PHx (priming phase). The eigen gene expression of the M1 module increases between 28 and 

36 hours post-PHx (proliferative phase). The M5 module shows early recovery between 36 and 44 

hours compared to other modules. The M8 and M9 modules are downregulated between 1 and 4 

hours, while the M6 module is downregulated between 4 and 10 hours.  

We also identified the biological processes and KEGG pathways associated with each module 

(Table S1 and Data S1). In the upregulated modules, the M1 module is associated with the cell 

cycle, DNA replication, and p53 signaling pathway; the M3 module is associated with protein 

processing in ER and protein export; the M2 is associated with complement and coagulation 

cascades, and the M4 module is associated with TNF signaling and ribosome biogenesis. The M1 

module captures the proliferative response of hepatocytes that peaks after 36 hours, while the M3 

module captures the role of endoplasmic reticulum (ER) stress. The upregulated modules also 

show a link with metabolic pathways: glutathione metabolism (M1), arginine and proline 

metabolism (M1), amino sugar, and nucleotide sugar metabolism (M3, M1), fatty acid degradation 

(M5 and M2), PPAR signaling pathway and peroxisome (M5).  

The downregulated modules are primarily associated with metabolism (Table S1). The M6 module 

is associated with cholesterol metabolism, steroid hormone biosynthesis, bile acid biosynthesis, 

bile secretion, and PPAR signaling pathway. The M8 and M9 modules are associated with retinol 
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and amino acid metabolism (branched-chain amino acids; glycine, serine, and threonine; 

tryptophan; cysteine and methionine; histidine). We also found glutathione metabolism, folate 

metabolism, pentose and glucuronate interconversions, Glycoxylate and dicarboxylate 

metabolism, and arachidonic acid metabolism as part of the downregulated modules. WGCNA 

revealed the global organization of liver transcriptome into modules, which are obtained based on 

the scale-free topology criteria.  

To further generate insights into the dynamic organization and regulatory mechanism of liver 

regeneration, we performed probabilistic modeling of gene expression (see methods). This 

dynamic modeling approach revealed three core clusters that are upregulated immediately (cluster 

1), upregulated after 28 hours (cluster 2), and downregulated immediately (cluster 3) post-PHx 

and their bifurcation into 17 sub-clusters (named paths A to Q) (Figure 3 and Data S1). We 

identified transcription factors (TFs) associated with the three core clusters. TFs regulating cluster 

1 include FOS, JUN, CEBPB, NFKB, and STATs (Table 1). These TFs are known to be involved 

during the priming phase of liver regeneration. Other TFs include HNF4A, XBP1, LEF1, USF1, 

GATA4, EGR1, ESR1, and NFATCs. LEF1 is a downstream effector of the Wnt pathway 

important for hepatic periportal gene expression 40, and XBP1 is a regulator of unfolded protein 

response (UPR). Further, six sub-clusters (paths A to F) come under cluster 1 (Figure 3A). Paths 

A, B, C, and E are upregulated throughout the regeneration period up to 1-week post-PHx and 

return to the baseline at 4 weeks. Path A is enriched for complement and coagulation cascade, HIF 

and TNF signaling pathways (Figure 4 and Table S2). Path B captures pathways related to protein 

processing in ER, amino sugar and nucleotide sugar metabolism, and protein export, which may 

play an essential role during the initial response soon after the resection. Path E is significantly 

upregulated post 10 hours and is enriched for fatty acid degradation, p53 signaling, and DNA 

replication. Path D shows an initial rise in gene expression, which returns to baseline 36 hours 

post-PHx (Figure 3A) and is enriched for metabolic pathways related to fatty acid and amino acid 

metabolism (Figure 4). Path F initially shows an increasing trend in gene expression but gets 

downregulated from 4 hours throughout the regeneration period, which makes it different from 

other paths in cluster 1. This path is enriched in steroid hormone biosynthesis and bile acid 

biosynthesis. The enrichment of paths D, E, and F suggests alterations in lipid metabolism in the 

priming phase. 
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TFs regulating cluster 2 include E2Fs, FOXM1, MYC, NRF1, IRF3, NFYA, NYFB, and TFDP1/2 

(Table 1). The gene expression of cluster 2 is relatively uniform compared to the other two core 

clusters. There are 4 paths (G to J) that come under cluster 2, showing an increasing trend post 28 

hours (Figure 3B). Path G continues to increase until 48 hours and returns to baseline at 4 weeks. 

Paths G, H, and J of this cluster are significantly enriched for cell cycle events and DNA damage 

repair pathways (Figure 4 and Table S2). Path I is associated with neutrophil degranulation. 

Cluster 3 shows both transient and sustained downregulation (paths K to Q) throughout the 

regeneration period returning to baseline after 1 week (Figure 3C). TFs regulating this cluster 

include HNF4A, RXR, LXR, EGR1, and ESR1 (Table 1). The paths of this cluster are mainly 

enriched for metabolic pathways (Figure 4 and Table S2). Paths K, L, and M show transient 

downregulation at 4 hours; however, path K further rises during the proliferative phase. Path L is 

associated with negative regulation of JAK-STAT and cell size. Paths Q and P are downregulated 

throughout liver regeneration. Paths K, M, P, and Q are associated with the lipid and amino acid 

metabolism, with path K and P also associated with the glutathione metabolism. Paths N and O 

also show transient downregulation at 4 hours and are associated with amino acid metabolism and 

ribosome, respectively.  

Further, we analyzed another recent RNA-seq data of liver regeneration using probabilistic 

modeling to confirm our findings. Although this dataset has a starting time point of 24 hours, we 

consistently observed the organization of the transcriptome into three core clusters pertaining to 

cell cycle, immune response, and metabolism with a similar set of transcriptional factors capturing 

the events of liver regeneration (Figure S2 and Table S3). The changes related to the immune 

response are a continuum from the priming phase, as observed in Figure 3A. We also found 

pathways related to RNA transport and spliceosome upregulated in both datasets, while ER stress 

pathway is not enriched (Table S3). Lipid and glutathione metabolism are downregulated and co-

cluster in a single path in both datasets (paths P and L in datasets 1 and 2, respectively). 

Downregulated steroid hormone biosynthesis and glycolysis/gluconeogenesis (cluster 3, paths L 

and N) are reset to the baseline by 96 hours. Cysteine and methionine metabolism and one-carbon 

folate pool are upregulated in the validation dataset.  
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Alterations in liver metabolism during regeneration 

The co-expression network-level analyses revealed the transient and sustained dynamical changes 

in metabolic processes post-PHx. We further analyzed the co-expression pattern of specific 

metabolic genes and pathways. Most genes of lipid metabolism are downregulated immediately, 

and their expression returns to the baseline between 36 and 72 hours, coinciding with the 

proliferative phase (Figure S3 and S4). We observed that genes related to the de novo lipogenesis 

pathway (SREBF1, FASN, ACACA, ACLY, ACSL3) and hydrolysis of fat (LPL) are further 

upregulated by 72 hours (cluster 3, path K) (Figure S3). HMGCR involved in converting HMG-

CoA to mevalonic acid is initially downregulated along with SQLE (path K) (Figure S5). The 

mevalonate pathway plays an essential role in cholesterol synthesis. LDLR, which is involved in 

the uptake of cholesterol, is also downregulated initially. The initial phase of lipid metabolism 

downregulation coincides with the cell growth phase (hypertrophy before the initiation of 

proliferative phase) observed after PHx. A negative correlation between lipid metabolism and cell 

size has been reported 41. Further, the RNAi of SREBs that are involved in lipid metabolism results 

in cell size increase.  

In the initial phase of regeneration, along with lipid metabolism, we also observed a decrease in 

mitochondrial gene expression (ATP5J2, NDUFA6, NDUFV3, PDK2) (Figure S6). However, the 

expression of some of the related genes (UCP2, PDK4 and COX6B2) increases during liver 

regeneration. UCP2 is involved in uncoupling substrate oxidation from ATP synthesis.  It is a 

negative regulator of mitochondrial superoxide production that modulates cell proliferation 42. 

PDK4 is a key regulator coordinating lipid metabolism with liver growth 43. Mitochondrial 

metabolism is linked to mammalian cell growth and proliferation 41. The RNAi of PGC1α, which 

controls the expression of genes regulating oxidative phosphorylation, TCA cycle, and lipid 

synthesis, increases cell size. A decrease in mitochondrial gene expression in the initial phase of 

liver regeneration is accompanied by upregulation of LDHA (cluster 1, path A) involved in 

anaerobic glycolysis. On the other hand, high mitochondrial and lipogenic transcriptional 

programs are required to promote proliferation44.  

Genes of glutathione metabolism are also transiently downregulated (cluster 3, paths P and L) 

(Figure 5). These include GCLC and GCLM involved in de novo synthesis of GSH, which plays 

an important role in scavenging reactive oxygen species and maintaining the redox balance. GCLC 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464759


11 
 

and GCLM encode the catalytic and modifier subunits of glutamate cysteine ligase (GCL), 

respectively. GCL catalyzes the rate-limiting step involved in the generation of γ-glutamylcysteine 

(γ-GC) from glutamate and cystine. γ-GC and GSH levels are known to be regulated by 

inflammatory signaling45. However, glutathione S-transferases (GSTM1, GSTM2, GSTM3, 

GSTM4, GSTM6, and GSTM7) are transiently downregulated in 10 hours. Increased GSH levels 

are reported in HCC and during liver regeneration 46. GSH deficiency interferes with liver 

regeneration after PHx 47. In the NAD salvage pathway, we observed that NNMT is upregulated 

(cluster 1, path E) during liver regeneration while NAMPT levels fluctuate with downregulation 

at 4 and 28 hours (cluster 3, path L) (Figure 5). However, NAMPT is upregulated at 36 hours. 

Deletion of NAMPT is shown to affect cell proliferation during liver regeneration48. NNMT 

knockdown leads to an increase in lipogenic gene expression and a decrease in gluconeogenic gene 

expression. Both NAMPT and NNMT control lipid, cholesterol, and glucose metabolism by 

stabilizing SIRTs 49. NNMT is at the crossroad of metabolism and epigenetic regulation, but in the 

liver, it is not the major methyltransferase to maintain S-adenosyl-methionine (SAM) to S-

Adenosyl homocysteine (SAH) ratio50. However, NNMT overexpression can decrease NAD 

levels, reduce methylation capacity, and promote liver steatosis and fibrosis51.  

We observed that the expression of main methyltransferases of the liver (GNMT, GAMT) involved 

in the conversion of SAM to SAH is downregulated (cluster 3, path P), and genes of methionine 

catabolism (MAT1A and MAT2A) involved in the production of SAM are upregulated (cluster 1, 

paths B and E). This shows that SAM levels may increase during regeneration and contribute to 

epigenetic control. This is further supported by the upregulation of genes involved in DNA 

methylation (DNMT1 and UHRF1) (cluster 2, path H) (Figure 5), which is consistent with the 

observation by Wang et al., (2019). Both these genes are co-expressed with cell cycle genes in the 

mid-phase, while genes involved in SAM production are upregulated very early on. On the other 

hand, we observed that genes of different amino acids metabolism (BCAA, Tryptophan, and 

Tyrosine metabolism) are also transiently downregulated. A decrease in expression of genes of the 

BCAA degradation pathway is consistent with observations that the levels of BCAA in plasma 

increase during liver regeneration 11, 12.  
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Alterations in liver zonation 

Hepatocytes segregate into three functional zones (perivenous, mid-zonal, and periportal 

hepatocytes), referred to as liver zonation. Halpern and colleagues have reported gene expression 

specific to these regions 27. We examined how zone-specific marker genes are affected by PHx. 

Periportal genes ARG1, ASL are upregulated, while ASS1, ALB, and CYP2F2 are downregulated 

(Figure S7). The expression of periportal-specific transcriptional factor YAP1 shows an 

increasing trend along with its targets CTGF and CYR61. The pericentral gene CYP2E1 is 

significantly downregulated, while HIF1A, AXIN2, OAT, and ANG are upregulated (Figure S8). 

The mid-zonal gene HAMP is upregulated, while MUP3 and CYP8B1 are downregulated (Figure 

S9). Although zone-specific gene expression shows a mixed pattern including compensation with 

the increase in the expression of some of the genes, our results indicate that metabolic functions 

such as cholesterol biosynthesis, bile biosynthesis, and lipogenesis are transiently downregulated. 

These results suggest that a transient decrease in hepatic metabolism may counterbalance 

hepatocyte function vs. hepatocyte growth and proliferation. 

A model of balance between liver identity and proliferation during liver regeneration 

The transcription factor enrichment analysis showed HNF4A as a TF governing cluster 1 and 

cluster 3 (Table 1). Liver identity genes (223 out of 622 identified genes)52 show overlap with 

these two core clusters that are upregulated and downregulated immediately. On the other hand, 

there is no overlap with cluster 2, the upregulated cell cycle cluster activated post 28 hours. We 

also observed that there is less overlap between liver identity genes and cell cycle clusters in the 

validation dataset. This pattern of gene expression may be due to the segregation of functions 

among hepatocytes. However, the immediately upregulated cluster also includes some genes of 

cell cycle and p53 signaling pathway activated early compared to the cell cycle cluster activated 

post 28 hours. These include Cyclin D (CCND1) and Cdk inhibitor (CDKN1A); their ratio controls 

the passage through the restriction point and G1/S transition (Figure S10). Interestingly, AFP that 

is induced in the fetal liver is also co-expressed with cell cycle genes activated post 28 hours (path 

J). 

Recently, single-cell transcriptomic data of liver regeneration has shown that there is a functional 

bifurcation of hepatocytes into proliferative and non-proliferative cells30. The hepatic function 

genes are upregulated predominately in non-proliferating cells, while these genes are 
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downregulated in dividing cells. This suggests that there is a division of labor. The staining for 

Hnf6 (Onecut1) and Hnf4a, two key hepatocyte transcription factors, decreased in replicating 

cells53. A mathematical model of a simple regulatory circuit was developed to demonstrate how 

the division of labor occurs. We propose that a mutually exclusive behavior between liver function 

and cell division can be established by the feedback loop regulation between these processes 

during liver regeneration. The regulatory circuit includes mutual antagonism between Cyclin D 

and HNF4A 54-57 (Figure 6A). Deletion of HNF4A results in increased expression of Myc and 

Cyclin D, while Cyclin D represses the transcriptional activity of HNF4A. This double negative 

feedback loop circuit can be regulated by a plethora of signals (local and in the circulation) 

activated during the priming phase of liver regeneration. The PHx can alter the balance between 

mitogen and mitoinhibitors by matrix remodeling, induce secretion of ligands and cytokines and 

change the circulating levels of metabolites in plasma. Further, the underlying mechanism of 

control of this core double negative circuit can vary since hepatocytes express different genes 

depending on their location in the hepatic lobule along the periportal-pericentral axis. We propose 

two kinds of inputs: proliferative and compensation signals that can act on the core circuit in a 

context-dependent manner in different hepatocytes to bring about different outcomes. The 

proliferative input suppresses HNF4A and activates Cyclin D expression, while compensation 

signals promote HNF4 activation. 

The phase plane analysis of the model shows that the nullclines of HNF4A and Cyclin D intersect 

at three points creating two stable and one unstable steady states (Figure 6B) for the parameter 

values given in Table S4. This circuit exhibits bistable characteristics depending on the strength 

of the proliferation signal S (Figure 6C). The two stable states correspond to hepatocytes in 

replicating (high Cyclin D) and differentiated (high HNF4A) states. At the intermediate signal 

strength, two populations of hepatocytes (differentiated and replicating state) co-exist. The liver 

regeneration program after PHx can be viewed as changes occurring around the bistable switch. 

This leads to transient loss of hepatocyte identity that facilitates the process of regeneration. The 

re-activation of HNF4A with the decrease in the input signal (due to repair) becomes essential for 

the termination of liver regeneration (shown by arrow in Figure 6C). The development of HCC 

can be explained by the shift in re-activation threshold to a negative regime with the change in 

feedback loop strength, making the transition irreversible (Figure 6D). On the other hand, the 
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compensation signal shifts the HNF4A nullcline up resulting in one stable steady state 

corresponding to hyperactivation of HNF4A as observed by Chembazhi et al., (2021) (Figure 7). 

Further, the repression of the mesenchymal program is also required for the maintenance of liver 

identity 58. HNF4A and epithelial-to-mesenchymal transition (EMT) master regulatory gene 

SNAIL form a mutual inhibition circuit, which controls the balance between liver differentiation 

and mesenchymal program (Figure 8A). EMT control network involves SNAIL-induced self-

activation of ZEB159. An inhibition of HNF4A by proliferative signal can activate EMT in some 

hepatocytes. The phase plane analysis of this control circuit shows tristability (co-existence of 

three stable steady states) depending on the strength of proliferation signal S (Figure 8B to D) for 

the parameter values given in Table S4. These states correspond to (1) high HNF4A with low 

SNAIL/ZEB1, (2) low HNF4A with high SNAIL/ZEB1, and (3) high HNF4 and SNAIL/ZEB1 

(hybrid state). The single-cell omics study of liver regeneration has shown the existence of a hybrid 

cluster enriched for epithelial and hepatocyte-specific features and markers of mesenchymal cells 

30. The proposed regulatory circuit accounts for the cellular plasticity during liver regeneration. 

Discussion 

The liver balances its function and proliferation demand after injury or resection. Recent 

advancement in high throughput techniques is helping to understand further the regulatory 

mechanisms involved in the regulation of liver regeneration. We analyzed RNA-seq data of liver 

regeneration to understand the temporal reorganization of the transcriptome and to generate 

network-level insights. We also analyzed the results obtained based on scRNA-seq of liver 

regeneration. The dynamic network reconstruction revealed the trajectory of major pathways that 

are upregulated and downregulated (transient vs. sustained) during liver regeneration (Figure 2 

and 3). Our analysis supports the model of mutual antagonism between liver function and 

proliferation in liver regeneration. We show multistability of the underlying network of liver 

regeneration. 

While overall metabolic downregulation suggests a decrease in liver function, the dynamics of 

metabolic pathways suggest that maintaining the levels of specific metabolites are required for 

liver regeneration. We observed that fine-tuning of SAM levels might be required for the 

methyltransferase reactions in liver regeneration (Figure 5). This is supported further by the 

downregulation of major liver methyltransferases. The co-expression pattern of cell cycle and 
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DNA methylation genes highlights the scenario for crosstalk between cell cycle and chromatin 

regulatory proteins. Genes of NAD, glutathione, and lipid metabolic pathway decreased and 

reappeared immediately in the priming phase of liver regeneration. This suggests a possible 

requirement of these pathways for the cell cycle progression. Although NNMT expression 

correlates with adiposity, its expression during liver regeneration may be beneficial. Hepatic 

steatosis is shown to alter the demand for NAD and GSH 60. Lipid metabolic genes are also further 

upregulated at 36 to 72 hours, respectively, coinciding with the proliferative phase (Figure S3). 

On the other hand, PPARA, a transcriptional activator that controls β-oxidation, follows the 

inverse profile with its expression returning to baseline during the proliferative phase. Along with 

a decrease in the liver’s metabolic function, our analysis also captures the dynamic changes in 

metabolism that may indicate the shift from growth to proliferative phase during liver regeneration.  

Another pathway that is upregulated during liver regeneration is protein processing in ER and 

protein transport (Figure 4 and Table S1). ER stress plays a role in liver metabolism, damage, 

and inflammation61. The knockdown of XBP1 results in liver injury and impairment of liver 

regeneration62. Loss of IRE1, an upstream activator of XBP1, impairs liver regeneration with 

activation of STAT3 affected63. ER stress is also shown to suppress the liver identity gene in the 

damaged liver52. On the other hand, an increase in ER stress under HFD conditions can impair 

liver regeneration64. We also found ribosome biogenesis and RNA processing as important features 

of liver regeneration. Ribosome biogenesis is known to increase during cell growth and 

proliferation65. PTBP1 involved in the regulation of alternate splicing events is co-expressed with 

the cell cycle cluster 2. On the other hand, genes involved in alternate polyadenylation (SRSF3 

and SRSF7 are co-expressed) of mRNA precursors66 are immediately upregulated post-PHx 

compared to PTBP1. A decrease in SRSF3 expression is observed in mouse models of NAFLD 

and NASH 67. A global change in alternate splicing machinery is observed in NAFLD68. These 

results suggest that mRNA cleavage and polyadenylation may also control gene expression during 

liver regeneration in addition to epigenetic regulation. Consistently, 3,5 diethoxicarbonyl-1,4 

dihydrocollidine (DDC) treatment leads to liver regeneration and a switch to a fetal splicing 

program 22. 

The co-expression pattern of genes suggests a mutually exclusive behavior of the cell cycle and 

liver identity genes during liver regeneration. Few liver identity genes were upregulated and were 
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co-expressed with Cdk inhibitor (CDKN1A) and activator (CCND1). An increase in Cdk inhibitor 

level may provide a window of opportunity for hepatocytes to grow before dividing. Alternatively, 

the co-expression of liver identity genes with Cdk inhibitor may suppress the cell division and 

maintain liver function69. On the other hand, Cyclin D expression alone influences the 

transcriptional regulation of liver metabolism55. Distinguishing these effects requires single-cell 

level quantification. Mathematical modeling showed that interaction between regulators of cell 

cycle and liver function could make the system bistable (Figure 6), which accounts for the co-

existence of two populations of hepatocytes, with one undergoing cell division while the other 

helping to maintain liver function30, 31. The bistable switch accounts for transient inactivation of 

HNF4A with dynamic change in input signals during liver regeneration. We highlighted that the 

transition from liver function to proliferation could become irreversible with a change in the 

feedback loop strength. In this picture, the termination of liver regeneration depends on the re-

activation of HNF4A, which is consistent with 70. Different studies have reported HNF4A 

inactivation in HCC71-73. We also showed that multistability emerges by coupling the HNF4A 

feedback loop with the EMT circuit (Figure 8). The EMT circuit is also known to exhibit 

tristability in cancer progression 74. 

We propose an integrated circuit of liver regeneration by extending the core circuit (Figure 9). 

The cell cycle and EMT control during liver regeneration may involve the YAP1/Hippo and 

Wnt/β-catenin signaling pathways converging on HNF4A inactivation. Yap1, a mechanical 

rheostat acting downstream of the Hippo signaling pathway, has a direct role in hepatocyte 

differentiation by inhibiting HNF4A and activating SNAIL75. Reciprocal control of Yap1 by 

SNAIL (activating) and HNF4A (inhibiting) has been shown, resulting in a complex circuit of 

multiple feedback loops controlling liver identity. The ectopic activation of Yap1 is sufficient to 

de-differentiate hepatocytes into cells with stem cell-like characteristics76. The early phase of liver 

regeneration is accompanied by Yap1 activation and nuclear location77. Yap1 also cooperates with 

Myc in the control of proliferation78. This mechanism explains the existence of proliferative 

hepatocytes undergoing EMT during liver regeneration30. 

Wnt/β-catenin signaling pathway is also induced in response to liver regeneration under PHx 79, 80. 

Wnt can also control the same circuit of HNF4A and EMT. It is known that Wnt and HNF4A 

mutually inhibit each other, and Wnt activates SNAIL to control the EMT81. Myc and β-catenin 
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cooperate in liver carcinogenesis with Yap1 as a mediator82. It is also shown that sinusoidal 

endothelial cell Wnts drive proliferation, while macrophage Wnts drive functional compensation 

69. This integrated circuit of liver regeneration controlled by Yap1 and Wnt may provide 

underlying features of proliferation, compensatory metabolism, and EMT states as observed in 

single-cell studies. Thus, simultaneous control of HNF4A may drive the bifurcation of hepatocytes 

into different activity states. On the other hand, both Wnt and Yap1 have opposing functions to 

establish liver zonation 79. Wnt/β-catenin signaling is active in pericentral hepatocytes, while 

YAP1 is expressed in the periportal region. It will be interesting to study further the factors that 

control the dual role of Yap1 and Wnt in liver regeneration and zonation. Overall, our study 

provides a systems-level view of liver regeneration post-PHx. The underlying gene modules 

identified here can be connected to phenomenological model of liver regeneration 83 to obtain the 

dynamical characteristics of entry and exit from liver regeneration. 
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Figure 1: The workflow used to study the temporal reorganization of transcriptome during liver 

regeneration.  

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 19, 2021. ; https://doi.org/10.1101/2021.10.18.464759doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.18.464759


23 
 

 

 

 

 

 

 

 

Figure 2: Modular organization of transcriptome of liver regeneration. (A) Correlation of module 

eigen (ME) gene expression with stages (pre-and post-PHx) and different time points. (B) Eigen 

gene expression profile of individual modules with respect to different time points of liver 

regeneration. 
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Figure 3: The regulatory paths of the set of co-expressed genes in the three core clusters of liver 

regeneration. The x-axis represents the time points of sample collection, and the y-axis represents 

the mean log2 fold change (log2FC) in mRNA expression post-PHx for each path. A path is split 

into multiple paths (split nodes) based on the divergence in gene expression.  
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Figure 4: Sankey plot showing the significant KEGG pathways (dark blue: adj p-value < 0.05; 

light blue: p-value < 0.05; thickness represents -𝑙𝑜𝑔10(𝑎𝑑𝑗 𝑝 − 𝑣𝑎𝑙𝑢𝑒)) associated with different 

paths of cluster 1 (A to F), cluster 2 (G to J) and cluster 3 (K to Q) in the DREM analysis. 
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Figure 5: Expression profile of genes affecting GSH, NAD, and SAM levels. The blue line 

represents the baseline (0 hours), and the red line represents a two-fold change with respect to the 

baseline. 
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Figure 6: A model of balance between liver function and regeneration. (A) A core regulatory 

circuit of mutual antagonism between Cyclin D and Hnf4a controlled by inhibitory input stimuli 

S is shown. The activation is shown in green and inhibition in red. (B) Phase plane showing the 

nullclines of Hnf4a (blue) and Cyclin D (red) for S=0.2. (C) Bistable inactivation of Hnf4a with 

an increase in input stimuli S. (D) Irreversible inactivation of Hnf4a with an increase in feedback 

loop strength (wHNF4A_CycD= -1.5). The solid circle represents the stable steady state, and the open 

circle represents the unstable steady state.   
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Figure 7: Phase plane showing the hyperactivation of Hnf4a during liver regeneration. The 

nullcline of Hnf4a (blue) shifts above (arrow) in the presence of activatory stimuli (M=0.5). 

Nullclines of Cyclin D (red) and Hnf4a (light blue) for inhibitory stimuli S=0.2 are given for 

reference. The solid circle represents the stable steady state, and the open circle represents the 

unstable steady state.  
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Figure 8: Multistability of the underlying circuit of liver regeneration. (A) The regulatory circuit 

controlling the balance between liver function and EMT during liver regeneration is shown. 

Activation is shown in green and inhibition in red. Nullclines of Hnf4a (blue) and Snail/Zeb1(red) 

are shown for different input stimuli (B) S=0, (C) S=0.2, and (D) S=0.5. The solid circle represents 

the stable steady state, and the open circle represents the unstable steady state.  
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Figure 9: The proposed integrated circuit of liver regeneration controlled by Yap1 and Wnt. 

Activation is shown in green and inhibition in red. EC-endothelial cell, M-macrophage. 
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Table 1: Transcription factors (TFs) associated with DREM core clusters. Significant TFs (adj p-

value < 0.05) are identified based on different databases for transcription factor enrichment 

analysis. DREM results are based on generated TF-gene association for the mouse (score < 

0.001). * represents uncorrected p-value. 

 
 

 

 

Cluster 

 

ChEA_2016 

 

ENCODE_and_ChEA 

 

DREM 

 

DREM and 

ENCODE_and_ChEA 

 

1 RXR, LXR, PPARA 

RELA, CLOCK  

HNF4A, STAT3, USF1, 

EGR1, ESR1, GATA1 

XBP1, NFATCs, 

STATs, GATA4, 

JUN, JUND, NFKB1, 

LEF1, NFE2L1 

 

CEBPB, FOS, FOSL2 

2 E2F1, MYC, FOXM1 FOXM1, MYC, IRF3 TFDP1, TFDP2 E2Fs, NRF1, NFYA, 

NFYB 

 

3 RXR, LXR, PPARA, 

EGR1, ESR1, FOXO1 

HNF4A, EGR1, ESR1*   
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